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AGENDA

Part I (Michael) 25 min

• Eye tracking for near-eye displays

• Synthetic dataset generation

• Network training and results

Part II (Alexander) 15 min

• Fast Network Inference using cuDNN

• Deep Learning Best Practice



3

NVGAZE TEAM

Michael Stengel Alexander MajercikJoohwan Kim Shalini De Mello

Morgan McGuire David LuebkeSamuli Laine

Perception & LearningNew Experiences GroupNew Experiences GroupNew Experiences Group

New Experiences Group New Experiences Group VP of Graphics Research
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EYE TRACKING FOR
NEAR-EYE DISPLAYS

Michael Stengel
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EYE TRACKING IN VR/AR

Avatars Foveated Rendering

Dynamic Streaming

Attention Studies

Computational Displays Perception

User State Evaluation

[Eisko.com]

Health CareGaze Interaction

Periphery

[arpost.co] [Vedamurthy et al.][Sitzmann et al.]

[Patney et al.]

[Sun et al.]

[eyegaze.com]

[Padmanaban et al.]
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SUBTLE GAZE GUIDANCE
Enlarging virtual spaces through redirected walking

[Sun et al., Siggraph‘18]
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FOVEATED RENDERING

Accelerating Real-time Computer Graphics
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ACCOMMODATION SIMULATION

Enhancing Depth Perception
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GAZE-AS-INPUT
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LABELED
REALITY
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EYE TRACKING IN VR/AR

• How do video-based eye tracking systems work?

WORKING PRINCIPLE

Pupil localization
Domain mapping 
using calibration 
parameters

3d gaze vector or
2d point of regard

Eye

Camera
Display

Lens

Face

(x,y)

Eye capture
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ON-AXIS VS OFF-AXIS GAZE TRACKING

Camera view off-axis Camera view on-axis
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Modded GearVR with integrated gaze tracking

ON-AXIS GAZE TRACKING
Eye tracking prototype for Virtual Reality headsets

Components for on-axis eye tracking integration

Eye tracking cameras, dichroic mirrors,

infrared illumination, VR glasses frame
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ON-AXIS GAZE TRACKING
Eye tracking prototype for VR headsets
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ON-AXIS EYE TRACKING CAMERA VIEW
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OFF-AXIS GAZE TRACKING
Eye tracking prototype for VR headsets

Eye

Camera

Display

Lens
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OFF-AXIS GAZE TRACKING
Eye tracking prototype for VR headsets
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EYE TRACKING IN VR/AR

• Changing illumination conditions (over-exposure and hard shadows)

• Occlusions from eyes lashes, skin, blink, glasses frame

• Varying eye appearance : flesh, mascara and other make-up

• Reflections

• Camera view and noise (blur, defocus, motion)

• drifting calibration (single-camera case) due to HMD or glasses motion

• End-to-end latency

• Capturing training data is expensive

CHALLENGES  FOR MOBILE VIDEO-BASED EYE TRACKERS

→ Reaching low latency AND high robustness is hard !
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PROJECT GOALS

• Deep learning based gaze estimation 

• Higher robustness than previous methods

• Target accuracy is < 2 degrees of angular error (over full field of view!)

• Fast inference ranging in a few milliseconds even on mobile GPU

• Compatibility to any captured input (on-axis, off-axis, near-eye, remote, etc.,
dark pupil tracking only, glint-free tracking)

• Explore usage of synthetic data

• Can we learn increase calibration robustness ?
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RELATED RESEARCH
• PupilNet [Fuhl et al., 2017]

• 2-pass CNN-based method running in 8 ms (CPU) performing pupil 
localization task

• 1st pass on low res image (96x72 pixels)

• 2nd pass on full-res image (VGA resolution)

• trained on 135k manually labeled real images

• Higher robustness than previous ‘hand-crafted’ pupil detectors

• Domain Randomization [Tremblay et al., Nvidia, 2018]

• Image and label generator for automotive setting

• Randomized objects force network to learn essential structure of 
cars independent of view and lighting condition
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NVGAZE
SYNTHETIC EYES DATASET
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GENERATING TRAINING DATA
1: Eye Model

We adopted the eye model from Wood et al. 2015 * and modified it to more 

accurately represent human eyes.

* Wood, E., Baltrušaitis, T., Zhang, X., Sugano, Y., Robinson, P., & Bulling, A.

“Rendering of eyes for eye-shape registration and gaze estimation”, ICCV 2015.

Optical 

Axis

5 deg
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GENERATING TRAINING DATA
2: Pupil Center Shift

Pupil center is off from iris center,

and it moves as pupil changes in size.

Average displacements:

8mm pupil: 0.1 mm nasal and 0.07 mm up

6mm pupil: 0.15 mm nasal and 0.08 mm up

4mm pupil: 0.2 mm nasal and 0.09 mm up

This is known to cause gaze tracking error of

up to 5 deg in pupil-glint tracking methods.
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GENERATING TRAINING DATA
2: Scanned faces
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GENERATING TRAINING DATA
2: Combining Eye and Head Models

• 10 scanned faces with photorealistic eye, adopted the eye model from Wood et al. 2015

• physical material properties for cornea, sclera and skin under infrared lighting conditions
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GENERATING TRAINING DATA
2: Synthetic Model
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GENERATING TRAINING DATA
3: Dataset

• 4M Synthetic HD eye images for animated eye (400K images per subject) are generated using 

Blender on Multi-GPU cluster.

• Render engine used is Cycles as physically accurate path tracer.



28

GENERATING TRAINING DATA
3: Dataset
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ANATOMY-AWARE AUGMENTATION



30

GENERATING TRAINING DATA
4: Region Labels

• Region maps are generated out of images with self-illuminating material.

• Refractive effect of air-cornea layer is accounted for.

• Synthetic ground truth is available even if regions are occluded by skin (during blink).

Pupil Iris

Sclera

Skin

Sclera occluded

by skin

Glint
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ANATOMY-AWARE AUGMENTATION

Samples of real images for comparison

Original Synthetic Image Augmented Synthetic Image

Region-wise

• Contrast scaling

• Blur

• Intensity offset

Global

• Contrast scaling

• Gaussian noise
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NVGAZE NETWORK
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NVGAZE INFERENCE OVERVIEW

IR  Camera

Gaze Vector

Input Image Convolutional Network
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NETWORK ARCHITECTURE

16
Conv1

24

36
54

81
122

Fully

Connected

Layer

(x, y)

Conv2

Conv3

Conv4

Conv5
Conv6 FC

Layer Resolution Num. Channels

Input 255 x 191 1

Conv1 127 x 95 16

Conv2 63 x 47 24

Conv3 31 x 23 36

Conv4 15 x 11 54

Conv5 7 x 5 81

Conv6 3 x 2 122

Fully convolutional network

In reference design, each layer has …

Stride of 2

No padding

3x3 Conv. kernel

Camera image

640x480
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NETWORK COMPLEXITY ANALYSIS
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TRAINING AND VALIDATION

• Trained on a 10 synthetic subjects + 3 real subjects. No fine-tuning.

• Ramp-up and ramp-down for 50 epochs at the beginning and end.

• Adam optimizer with MSE loss

Loss function



37

NEURAL NETWORK PERFORMANCE

Accuracy / Near Eye Display

2.1 degrees of error in average across real subjects

Error is almost evenly distributed across the entire tested visual field

1.7 degrees best-case accuracy when trained for single subject

Accuracy / Remote Gaze Tracking

8.4 degrees average accuracy for remote gaze tracking (same accuracy as state of the 

art by Park et al., 2018) but 100x faster

Latency for gaze estimation

<1 milliseconds for inference and data transfer between CPU and GPU space

cuDNN implementation running on TitanV or Jetson TX2

bottleneck is camera transfer @ 120 Hz

Gaze Estimation
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PUPIL LOCALIZATION
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NEURAL NETWORK PERFORMANCE
Pupil Location Estimation
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Our network is more accurate, more robust

and requires less memory than others.

NEURAL NETWORK PERFORMANCE
Pupil Location Estimation
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OPTIMIZING FOR
FAST INFERENCE

Alexander Majercik
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PROJECT GOALS

• Deep learning based gaze estimation 

• Higher robustness than previous methods

• Target accuracy is <2 degrees of angular error

• Fast inference ranging in a few milliseconds even on mobile GPU

• Compatibility to any captured input (on-axis, off-axis, near-eye, remote, etc.,
dark pupil tracking only, glint-free tracking)

• Explore usage of synthetic data (large dataset >1,000.000 images)

• Can we learn increase calibration robustness ?
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PROJECT GOALS

• Deep learning based gaze estimation 

• Higher robustness than previous methods

• Target accuracy is <2 degrees of angular error

• Fast inference ranging in a few milliseconds even on mobile GPU

• Compatibility to any captured input (on-axis, off-axis, near-eye, remote, etc.,
dark pupil tracking only, glint-free tracking)

• Explore usage of synthetic data (large dataset >1,000.000 images)

• Can we learn increase calibration robustness ?
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NETWORK LATENCY REQUIREMENTS

Avatars Foveated Rendering

Dynamic Streaming

Attention Studies

Computational Displays Perception

User State Evaluation

[Eisko.com]

Health CareGaze Interaction

Periphery

[arpost.co] [Vedamurthy et al.][Sitzmann et al.]

[Patney et al.]

[Sun et al.]

[eyegaze.com]
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NETWORK LATENCY REQUIREMENTS

Esports Research at NVIDIA60 ms To Get it Right
Gaze-Contingent Rendering 

and Human perception

Human Perception Esports
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NETWORK LATENCY REQUIREMENTS

BOTTOM LINE: Network should run in ~1ms!

Esports Research at NVIDIA60 ms To Get it Right
Gaze-Contingent Rendering 

and Human perception

Human Perception Esports
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Fast inference is also training problem
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- 7 layer stacked convolutional network

- Input: 293x293 eye image, Output: pupil position in image space

24

52

80
124

256
512

36

NETWORK DESIGN FOR FAST INFERENCE
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NETWORK DESIGN FOR FAST INFERENCE
Key Design Decisions
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- Convolutions and FC layers only

NETWORK DESIGN FOR FAST INFERENCE
Key Design Decisions
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- Convolutions and FC layers only

- No max pooling

NETWORK DESIGN FOR FAST INFERENCE
Key Design Decisions
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- Convolutions and FC layers only

- No max pooling

- ReLU activation

NETWORK DESIGN FOR FAST INFERENCE
Key Design Decisions
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- Convolutions and FC layers only

- No max pooling

- ReLU activation

- Data-directed approach

NETWORK DESIGN FOR FAST INFERENCE
Key Design Decisions
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NETWORK DESIGN FOR FAST INFERENCE
Data-directed approach
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Better Training -> Simpler Network -> Run Faster
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CUDNN 
GPU

CPU OpenGL
GPU

CPU
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CUDNN 
GPU

CPU OpenGL
GPU

CPU

CUDNN 
GPU

CPU OpenGL
GPU

CPU
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FAST INFERENCE WITH NVIDIA CUDNN

- GPU Programming Best Practices

Optimizing the pipeline
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FAST INFERENCE WITH NVIDIA CUDNN

- GPU Programming Best Practices:

- Minimize CPU-GPU copy

Optimizing the pipeline
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FAST INFERENCE WITH NVIDIA CUDNN

- GPU Programming Best Practices:

- Minimize CPU-GPU copy

- Minimize kernel launches (pack work into your 
kernels efficiently)

Optimizing the pipeline
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FAST INFERENCE WITH NVIDIA CUDNN

- GPU Programming Best Practices:

- Minimize CPU-GPU copy

- Minimize kernel launches (pack work into your 
kernels efficiently)

- To do both…combine the eye images into a single 
pass!

Optimizing the pipeline



65

FAST INFERENCE WITH NVIDIA CUDNN
Merging the input images

Convolution kernel
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FAST INFERENCE WITH NVIDIA CUDNN
Merging the input images
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FAST INFERENCE WITH NVIDIA CUDNN
Merging the input images
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FAST INFERENCE WITH NVIDIA CUDNN
Merging the input images
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FAST INFERENCE WITH NVIDIA CUDNN
Merging the input images
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CUDNN 
GPUCPU

OpenGL
GPU

CPU
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FAST INFERENCE WITH NVIDIA CUDNN
Results

Method Time (ms)

Single Image (Python based DL 

framework)

Single Image (cuDNN)

Concatenated input (cuDNN)
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FAST INFERENCE WITH NVIDIA CUDNN
Results

Method Time (ms)

Single Image (Python based DL 

framework)

~6

Single Image (cuDNN)

Concatenated input (cuDNN)
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FAST INFERENCE WITH NVIDIA CUDNN
Results

Method Time (ms)

Single Image (Python based DL 

framework)

~6

Single Image (cuDNN) 0.748

Concatenated input (cuDNN)
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FAST INFERENCE WITH NVIDIA CUDNN
Results

Method Time (ms)

Single Image (Python based DL 

framework)

~6

Single Image (cuDNN) 0.748

Concatenated input (cuDNN) 1.022
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SUMMARY

- Network Latency Requirements

- Foveated rendering, human perception esports

- Network has to execute in ~1ms!

- Network Design for Fast Inference (During Training!)

- Simple network (stacked convolution, no max pooling, relu)

- Complexity is in the data!

- Fast Inference Using NVIDIA cuDNN

- Follow GPU best practices to optimize your pipeline around your well-designed network
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Try the NvGaze Demo:

VR Theater

SJCC Expo Hall 3, Concourse Level

Tuesday: 12:00pm - 7:00pm

Wednesday: 12:00pm - 7:00pm

Thursday: 11:00am - 2:00pm
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Q&A

Michael Stengel Alexander Majercik

New Experiences Group

amajercik@nvidia.com

New Experiences Group

mstengel@nvidia.com
Try out our demo in the Exhibitor Hall !

sites.google.com/nvidia.com/nvgazeDataset and model available at
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EYE TRACKING IN VR/AR

Avatars Foveated Rendering

Dynamic Streaming

Attention Studies

Computational Displays Perception

User State Evaluation

[Eisko.com]

Health CareGaze Interaction

Periphery

[arpost.co] [Vedamurthy et al.][Sitzmann et al.]

[Patney et al.]

[Sun et al.]

[eyegaze.com]

[Padmanaban et al.]
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ON-AXIS GAZE TRACKING GLASSES
Eye tracking prototype for Augmented Reality glasses

Gaze tracking glasses with vertical/horizontal waveguides

Vertical beam splitter Horizontal beam splitter Infared illumination units
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OFF-AXIS GAZE TRACKING
3D Reconstruction Result
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GAZE CALIBRATION

• Sparse Pattern sampling (e.g. ring pattern), average over time

Calibration Method A – Using calibration network layer

• calibration sets layer weights

• 3d gaze direction directly estimated by network inference

Calibration Method B - Mapping 2d pupil center to 2d screen position

• calibration estimates polynomial mapping functions FL and FR

• localized pupil centers (network inference) are mapped using FL and FR

• derive 3d gaze vector from binocular 2d screen positions

Ring target pattern
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Retinal Cone Distribution
[Goldstein,2007]

FOVEATED RENDERING

Accelerating Real-time Computer Graphics
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FOVEAL REGION
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APPLICATION EXAMPLE 
FOVEATED RENDERING
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ATTENTION ANALYSIS

Generating 3D Saliency Information

[Loewe and Stengel et al. ETVIS‘15]


