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EYE TRACKING FOR
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SUBTLE GAZE GUIDANCE

[Sun et al., Siggraph‘18]
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EYE TRACKING IN VR/AR

WORKING PRINCIPLE

How do video-based eye tracking systems work?

lens R
s AL
Eye |

X = 00X + by by + Cx

| Camera Yy =a,8x+ b8y +c

Display R

Face

. . Domain mapping 3d gaze vector or
Eye capture Pupil localization using calibration 2d point of regard

parameters
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@ ON-AXIS VS OFF-AXIS GAZE TRACKING

Display Display
I I Beam splitter

Convex lens /_\ /.\
e s

1 Convex lens
IR camera - r
IR camera

Camera view off-axis Camera view on-axis



ON-AXIS GAZE TRACKING

Eye tracking prototype for Virtual Reality headsets

Components for on-axis eye tracking integration
Eye tracking cameras, dichroic mirrors,
infrared illumination, VR glasses frame

Modded GearVR with integrated gaze tracking
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ON-AXIS GAZE TRACKING




ON-AXIS EYE TRACKING CAMERA VIEW




OFF-AXIS GAZE TRACKING
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OFF-AXIS GAZE TRACKING

Eye tracking prototype for VR headsets




EYE TRACKING IN VR/AR

CHALLENGES FOR MOBILE VIDEO-BASED EYE TRACKERS

Changing illumination conditions (over-exposure and hard shadows)
Occlusions from eyes lashes, skin, blink, glasses frame

Varying eye appearance : flesh, mascara and other make-up
Reflections

Camera view and noise (blur, defocus, motion)

drifting calibration (single-camera case) due to HMD or glasses motion

End-to-end latency - Reaching low latency AND high robustness is hard !

Capturing training data is expensive
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PROJECT GOALS

Deep learning based gaze estimation

Higher robustness than previous methods

Target accuracy is < 2 degrees of angular error (over full field of view!)
Fast inference ranging in a few milliseconds even on mobile GPU

Compatibility to any captured input (on-axis, off-axis, near-eye, remote, etc.,
dark pupil tracking only, glint-free tracking)

Explore usage of synthetic data

Can we learn increase calibration robustness ?
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RELATED RESEARCH

PupilNet [Fuhl et al., 2017]
2-pass CNN-based method running in 8 ms (CPU) performing pupil U - H =3V

localization task

15t pass on low res image (96x72 pixels)

2nd pass on full-res image (VGA resolution)

trained on 135k manually labeled real images

Higher robustness than previous ‘hand-crafted’ pupil detectors
Domain Randomization [Tremblay et al., Nvidia, 2018]

Image and label generator for automotive setting

Randomized objects force network to learn essential structure of
cars independent of view and lighting condition
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NVGAZE
SYNTHETIC EYES DATASET



GENERATING TRAINING DATA

1: Eye Model

We adopted the eye model from Wood et al. 2015 * and modified it to more
accurately represent human eyes.

Rsclera = 11.5mm

Rcornea = 7.8mm

Optical
Axis

3.6mm

N
V.

24mm * Wood, E., Baltrusaitis, T., Zhang, X., Sugano, Y., Robinson, P., & Bulling, A.
“Rendering of eyes for eye-shape registration and gaze estimation”, ICCV 2015.
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T

Line of sight

Crystalline lens

Fovea

Target

Pupillary axis

Retina

GENERATING TRAINING DATA

2: Pupil Center Shift

Pupil center is off from iris center,
and it moves as pupil changes in size.

Average displacements:

8mm pupil: 0.1 mm nasal and 0.07 mm up
6mm pupil: 0.15 mm nasal and 0.08 mm up
4mm pupil: 0.2 mm nasal and 0.09 mm up

This is known to cause gaze tracking error of
up to 5 deg in pupil-glint tracking methods.
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AERATING TRAINING DATA
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GTC GENERATING TRAINING DATA

2: Combining Eye and Head Models

10 scanned faces with photorealistic eye, adopted the eye model from Wood et al. 2015
- physical material properties for cornea, sclera and skin under infrared lighting conditions
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GTC GENERATING TRAINING DATA

2: Synthetic Model
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GENERATING TRAINING DATA

3: Dataset

4M Synthetic HD eye images for animated eye (400K images per subject) are generated using
Blender on Multi-GPU cluster.
Render engine used is Cycles as physically accurate path tracer.



GENERATING TRAINING DATA

3: Dataset
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ANATOMY-AWARE AUGMENTATION

Original Augmentation during training
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GENERATING TRAINING DATA

4. Region Labels

- Region maps are generated out of images with self-illuminating material.
» Refractive effect of air-cornea layer is accounted for.
« Synthetic ground truth is available even if regions are occluded by skin (during blink).
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ANATOMY-AWARE AUGMENTATION

Original Synthetic Image

X2

Augmented Synthetic Image

»

Region-wise

» Contrast scaling
* Blur

* Intensity offset
Global

» Contrast scaling
» Gaussian noise

Samples of real images for comparison




NVGAZE NETWORK



NVGAZE INFERENCE OVERVIEW

Input Image Convolutional Network
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NETWORK ARCHITECTURE

Camera image
640x480

Fully
—> |Connected| —> (X, V)
Layer

FC

Resolution Num. Channels

16 Input 255 x 191 1
1
conv Convi  127x95 16
. Conv2 63 x 47 24
Fully convolutional network Conva 31 x 23 3
In reference design, each layer has ... onv X
Stride of 2 Conv4 15 x 11 54
No padding Convs 7x5 81

3x3 Conv. kernel Convé 32 122 3% @nvioa



NETWORK COMPLEXITY ANALYSIS

10 subjects with slippage and blink

1 subject with slippage and blink

1 subject
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TRAINING AND VALIDATION

Loss function

Ground Truth

Train Set—>»{ Augmentation > Train Loss
Ground Truth

Test Set (Synthetic) » Network Test Loss

Grouns Truth
Per-subject o
Validation Set (Real) —— > —>| Affine Transform Validation Loss

* Trained on a 10 synthetic subjects + 3 real subjects. No fine-tuning.
« Ramp-up and ramp-down for 50 epochs at the beginning and end.
« Adam optimizer with MSE loss
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NEURAL NETWORK PERFORMANCE

Gaze Estimation

Accuracy / Near Eye Display
2.1 degrees of error in average across real subjects
Error is almost evenly distributed across the entire tested visual field
1.7 degrees best-case accuracy when trained for single subject

Accuracy / Remote Gaze Tracking
8.4 degrees average accuracy for remote gaze tracking (same accuracy as state of the
art by Park et al., 2018) but 100x faster

Latency for gaze estimation
<1 milliseconds for inference and data transfer between CPU and GPU space
cuDNN implementation running on TitanV or Jetson TX2
bottleneck is camera transfer @ 120 Hz

37 “ANVIDIA.



PUPIL LOCALIZATION
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NEURAL NETWORK PERFORMANCE
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EURAL NETWORK PERFORMANCE

Pupil Location Estimation

ti

I

Pixel error
10 15
Ours —m— PupilNet 1
CBF 20 FCK8PS
CBF15 —* EISE
Park et al. === ExCuSe
PupiINet —t— Swirski
FSK8P8 === Set
=== Starburst

Layer index 1 2 3 4 5 6 7

Kernel size 9x9 7X7 5X5 5X5 3%3 3X3 3x3
Output channels 24 36 52 80 124 256 512

Our network is more accurate, more robust
and requires less memory than others.
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OPTIMIZING FOR
FAST INFERENCE

Alexander Majercik



PROJECT GOALS

Deep learning based gaze estimation

Higher robustness than previous methods

Target accuracy is <2 degrees of angular error

Fast inference ranging in a few milliseconds even on mobile GPU

Compatibility to any captured input (on-axis, off-axis, near-eye, remote, etc.,
dark pupil tracking only, glint-free tracking)

Explore usage of synthetic data (large dataset >1,000.000 images)

Can we learn increase calibration robustness ?
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PROJECT GOALS

Deep learning based gaze estimation

Higher robustness than previous methods

Target accuracy is <2 degrees of angular error

Fast inference ranging in a few milliseconds even on mobile GPU

Compatibility to any captured input (on-axis, off-axis, near-eye, remote, etc.,
dark pupil tracking only, glint-free tracking)

Explore usage of synthetic data (large dataset >1,000.000 images)

Can we learn increase calibration robustness ?
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depth sensor
focus-tunable lens

eye-tracking camera

offset lens

Computational Displays

[eyegaze.com]

Gaze Interaction

Avatars

User State Evaluation

Attention Studies

NETWORK LATENCY REQUIREMENTS

Foveated Rendering
Dynamic Streaming

[Vedamurthy et al.]
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NETWORK LATENCY REQUIREMENTS

Human Perception Esports

60 ms To Get it Right Esports Research at NVIDIA

Gaze-Contingent Rendering
and Human perception

46 <ANVIDIA.



NETWORK LATENCY REQUIREMENTS

Human Perception Esports

60 ms To Get it Right Esports Research at NVIDIA
Gaze-Contingent Rendering
and Human perception

BOTTOM LINE: Network should run in ~1ms!



57

Fast inference is also training problem



NETWORK DESIGN FOR FAST INFERENCE

-7 layer stacked convolutional network

- Input: 293x293 eye image, Output: pupil position in image space




ﬁ NETWORK DESIGN FOR FAST INFERENCE

Key Design Decisions

50 <A NVIDIA.



ﬁ NETWORK DESIGN FOR FAST INFERENCE

Key Design Decisions

Convolutions and FC layers only



ﬁ NETWORK DESIGN FOR FAST INFERENCE

Key Design Decisions

Convolutions and FC layers only
No max pooling



ﬁ NETWORK DESIGN FOR FAST INFERENCE

Key Design Decisions

Convolutions and FC layers only
No max pooling
RelLU activation



ﬁ NETWORK DESIGN FOR FAST INFERENCE

Key Design Decisions

Convolutions and FC layers only
No max pooling
RelLU activation

Data-directed approach



ﬁ NETWORK DESIGN FOR FAST INFERENCE

Data-directed approach




Better Training -> Simpler Network -> Run Faster



checkCUDNN( cudnnConvolutionBiasActivationForward(
m_cudnn, /f Handle to cuDNN context
&alpha, /f Scaling factor

m_input->getTensorDesc()}, // Input tensor description
m_input->getData fp32(), // Input tensor data

m filterDesc, f/f Filter description

m weights fp32, f/f Weights

m_convDesc, f/f Convolution description
m_convAlgo, /f Convolution algorithm
workspace, // Workspace

workspaceSize, // Workspace size

&beta, /f Scaling factor
m_outTensorDesc, /f Optional added tensor description
getData fp32(), // Optional added tensor data
m biasTensor, /f Bias description

m bias fp32, /f Bias data

m_activation, // Activation function
m_outTensorDesc, f/f Output tensor description

getData fp32())); // Output data
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@AST INFERENCE WITH NVIDIA CUDNN
Optimizing the pipeline

GPU Programming Best Practices
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@AST INFERENCE WITH NVIDIA CUDNN
Optimizing the pipeline

GPU Programming Best Practices:
Minimize CPU-GPU copy



AST INFERENCE WITH NVIDIA CUDNN
Optimizing the pipeline
GPU Programming Best Practices:
Minimize CPU-GPU copy

Minimize kernel launches (pack work into your
kernels efficiently)



AST INFERENCE WITH NVIDIA CUDNN

Optimizing the pipeline

GPU Programming Best Practices:
Minimize CPU-GPU copy

Minimize kernel launches (pack work into your
kernels efficiently)

To do both...combine the eye images into a single
pass!



AST INFERENCE WITH NVIDIA CUDNN

Merging the input images

Convolution kernel




AST INFERENCE WITH NVIDIA CUDNN

Merging the input images




AST INFERENCE WITH NVIDIA CUDNN

Merging the input images




AST INFERENCE WITH NVIDIA CUDNN

Merging the input images




AST INFERENCE WITH NVIDIA CUDNN

Merging the input images




CUDNN
CPU GPU CPU




AST INFERENCE WITH NVIDIA CUDNN

Results

Single Image (Python based DL
framework)

Single Image (CuUDNN)

Concatenated input (cuDNN)



AST INFERENCE WITH NVIDIA CUDNN

Results
Single Image (Python based DL ~6
framework)

Single Image (CuUDNN)

Concatenated input (cuDNN)



AST INFERENCE WITH NVIDIA CUDNN

Results
Single Image (Python based DL ~6
framework)
Single Image (CuUDNN) 0.748

Concatenated input (cuDNN)



AST INFERENCE WITH NVIDIA CUDNN

Results
Single Image (Python based DL ~6
framework)
Single Image (CuUDNN) 0.748

Concatenated input (cuDNN) 1.022



SUMMARY

Network Latency Requirements
Foveated rendering, human perception esports
Network has to execute in ~1ms!

Network Design for Fast Inference (During Training!)
Simple network (stacked convolution, no max pooling, relu)
Complexity is in the data!

Fast Inference Using NVIDIA cuDNN

Follow GPU best practices to optimize your pipeline around your well-desighed network
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Try the NvGaze Demo:

VR Theater
SJCC Expo Hall 3, Concourse Level

Tuesday: 12:00pm - 7:00pm
Wednesday: 12:00pm - 7:00pm
Thursday: 11:00am - 2:00pm
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REFERENCES

NVGaze: An Anatomically-Informed Dataset for Low-Latency, Near-Eye Gaze Estimation [Kim’19]

Adaptive Image-Space Sampling for Gaze-Contingent Real-time Rendering [Stengel’16]

Perception-driven Accelerated Rendering [Weier’17]

Visualization and Analysis of Head Movement and Gaze Data for Immersive Video in Head-mounted Displays [Loewe’15]
Subtle gaze guidance for immersive environments [Grogorick ‘17]

Towards virtual reality infinite walking: dynamic saccadic redirection [ Sun 18]
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Q&A

Michael Stengel Alexander Majercik
New Experiences Group New Experiences Group
mstengel@nvidia.com amajercik@nvidia.com

Try out our demo in the Exhibitor Hall !

Dataset and model available at sites.google.com/nvidia.com/nvgaze
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ON-AXIS GAZE TRACKING GLASSES

Eye tracking prototype for Augmented Reality glasses

Vertical beam splitter Horizontal beam splitter Infared illumination units

Gaze tracking glasses with vertical/horizontal waveguides



OFF-AXIS GAZE TRACKING

3D Reconstruction Result
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GAZE CALIBRATION

» Sparse Pattern sampling (e.g. ring pattern), average over time

Calibration Method A - Using calibration network layer
» calibration sets layer weights o o
» 3d gaze direction directly estimated by network inference

Ring target pattern

Calibration Method B - Mapping 2d pupil center to 2d screen position
 calibration estimates polynomial mapping functions F, and Fy
 localized pupil centers (network inference) are mapped using F, and Fy
» derive 3d gaze vector from binocular 2d screen positions

83 <ANVIDIA.



FOVEATED RENDERING
Accelerating Real-time Computer Graphics

Pl B Peripheral
d Vision Perifovea
e |50 (8 [18

Retinal Cone Distribution
[Goldstein,2007]
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FOVEAL REGION
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GTC
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ATTENTION ANALYSIS
Generating 3D Saliency Information

[Loewe and Stengel et al. ETVIS‘15]
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