Modeling Fluid Structure Interaction with Multi-GPU Enabled Software

Wayne L. Mindle, Ph.D. CertaSIM, LLC Thomas Unfer, Ph.D. Jérôme Limido, Ph.D. Anthony Collé IMPETUS Afea SAS Kshitiz Khanna CertaSIM, LLC

GTC 2019

March 18-21, 2019 Silicon Valley

□ Types of Fluid Solvers

Multi GPU Processing

□ SPH Examples

Under Development

Smoothed Particle Hydrodynamics

□ CFD (Full Navier-Stokes)

□ ALE – Arbitrary Lagrangian-Eulerian

Smoothed Particle Hydrodynamics

Why SPH over other Fluid Solvers?

Conceptually Simple

Robust

□ Easily applied to 3D

- □ Arbitrary Deformation in a Lagrangian Frame
- Exact Local Conservation of Momentum
- □ Ideally Suited for Fluid Structure Impact

Smoothed Particle Hydrodynamics - Fluid Structure Impact

What makes an SPH Solver ideal for Fluid Structure Interaction?

□ Simple particle to structure "penalty" based Contact Algorithm

□ Scales easily to 10's of millions of particles on GPUs

□ High particle resolution

Does not require remeshing during computation

IMPETUS Afea Next Generation SPH Solver - ySPH

Resolves Inherent Problems with Classic SPH

- □ Accurate Pressure Computation
- □ Eliminated the classic SPH tensile instability problem

GPU Based Solver

- Developed Specifically for GPU parallelization
- Requires only single precision for accurate solution
- □ Very scalable to many CUDA cores

IMPETUS Afea Next Generation SPH Solver - ySPH

Example: Tire Hydroplaning

Tire Hydroplaning 14.76 Million Fluid Particles

Back View

Front View

Tire Hydroplaning 14.76 Million Fluid Particles

Tire Hydroplaning 14.76 Million Fluid Particles

□ Methods for Multi-GPU Implementation

Duplicate the Model on both GPUs

- Easier to implement (Fully Functional)
- Divide the Model into 2 parts
 - Allows for larger models to run
 - More difficult to implement (In Alpha Testing)

Hardware Configuration – Single Workstation with Dual GPUs

KRONOS 840-G4 Ciara Technologies Dual GPUs can be used with and without NVLINK
NVLINK provides a Direct connection between 2 GPUs

QUADRO GV100 – Flagship Workstation GPU

□ Requires that both GPUs be in TCC Mode

Only for Computation in this mode

Method 1: Multi GPU Processing Algorithm – No NVLINK

One iteration

1st Leapfrog Integration Both GPUs

Collision Computations Shared between GPUs by way of the CPU

2nd Leapfrog Integration Both GPUs

Method 1: Multi GPU Processing Algorithm – NVLINK

One iteration

1st Leapfrog Integration Both GPUs

Collision Computations Shared directly between GPUs with NVLINK

2nd Leapfrog Integration Both GPUs

IMPETUS Afea Next Generation SPH Solver - **ySPH**

SPH Example: Hypervelocity Impact

□ Velocity > 2.5 km/sec

□ Metal behaves like a fluid when impacted at these velocities

A particle based method such as the SPH method is necessary to model the structures

Deformation is very large so classic Finite Elements(FE) cannot handle the deformation

Hypervelocity Oblique Impact

Reference Experiment Thiot Ingenierie Test Lab

Projectile: Aluminum Sphere Target: Aluminium Plate

Simulation IMPETUS Afea Solver® ySPH Module

Material Model: Elastic Perfectly Plastic + Mie-Gruneisen EOS

Hypervelocity Oblique Impact

Hypervelocity Oblique Impact

Every Particle Counts: High resolution is necessary to track debris formation

Comparison – 800K Model for Hypervelocity Impact

➤"Legacy MPP Solver"

- Standard Intel Cluster Configuration
 - ≻ 36 cores
 - Runtime 20 mins

GPU Massively Parallel Processing

- GV100 Standalone Workstation
 - Single GV100 ----- 41 sec
 - Dual GV100 ----- 41 sec
 - Dual GV100 NVLINK--- 31 sec

IMPETUS Afea Next Generation SPH Solver - **ySPH**

Example: Cylinder Impacting Water

Cylinder Drop in Water

IMPETUS Afea Next Generation SPH Solver - **ySPH**

Example: Dam Break

Fluid Under a Gravity Load at time = 0.

24

Dam Break – Scaling and Timing for <u>Single GPU</u>

Copyright © 2019 by CertaSIM, LLC

Dam Break – Scaling and Timing for Dual GPU

Dam Break – Scaling and Timing for **Dual GPU NVLINK**

Dam Break – GV100 Timing Comparison

□ Objects can be Rigid or Deformable

- Adds a significant increase in computation time
- Deformable Objects add even more

Dam Break with Rigid Box

Dam Break with Rigid Complex Geometry

Dam Break with Rigid Complex Geometry

Under Current Development

SPH-ALE formulation: Described by Vila [1]

Combination of Eulerian and Lagrangian descriptions

- Eulerian : Large deformations
- Lagrangian : Interface tracking

[1] J. P. Vila, On particle weighted methods and SPH, M3AS, 1999

YSPH-ALE Solver- Rotating Square Patch of fluid

Pressure field at M=0,01

ALE SPH

<u>Riemann</u>

<u>γ-SPH-</u> <u>ALE</u>

Copyright © 2019 by CertaSIM, LLC

GTC 2019 Silicon Valley, March 18-21

52

YSPH-ALE - Rotating Square Patch of fluid

Contact Info:

CertaSIM, LLC

sales @certasim.com TEL: 510-963-5485 www.certasim.com