
S9563: Efficient Distributed Storage I/O using NVMe and
GPUDirect in a PCIe Network

Jonas Markussen
Software Architect and PhD Student
Dolphin Interconnect Solutions

Driver software

• Optimized data transfer paths using PCIe
peer-to-peer transactions

• Direct block-level disk access from GPU,
eliminating CPU in I/O data path entirely

• Concurrently sharing NVMe drives
between multiple hosts and GPUs

• PCIe non-transparent bridges offer great
flexibility in dynamic device configurations

Summary

Outline

• PCIe and NVMe

• Non-Transparent Bridging

• GPUDirect RDMA & Async

• Device Lending and SmartIO

PCI Express (PCIe)

PCI Express (PCIe) is the most widely adopted I/O interconnection
technology used in computer systems today

0

10

20

30

40

50

60

70

Gen3 Gen4 Gen5

Gi
ga

by
te

s p
er

 se
co

nd
 (G

B/
s)

PCIe x4
PCIe x8
PCIe x16

Most common
today

Current standard

Near future

The PCIe fabric is structured as a tree, where devices form the leaf
nodes (endpoints) and the CPU is on top of the root

Device
(endpoint)

Switch
Root port

The PCIe fabric is structured as a tree, where devices form the leaf
nodes (endpoints) and the CPU is on top of the root

$ lspci –tv

PCIe devices are mapped in to the same address space as CPUs,
allowing devices to access system memory directly (DMA)

PCIe devices are mapped in to the same address space as CPUs,
allowing devices to access system memory directly (DMA)

PCIe devices are mapped in to the same address space as CPUs,
allowing devices to access system memory directly (DMA)

PCIe devices are mapped in to the same address space as CPUs,
allowing devices to access system memory directly (DMA)

Base Address Regions
(BARs)

$ lspci –s XX:XX.X -v

PCIe devices are mapped in to the same address space as CPUs,
allowing devices to access system memory directly (DMA)

Memory-Mapped IO
MMIO

$./bandwidthTest

PCIe devices are mapped in to the same address space as CPUs,
allowing devices to access system memory directly (DMA)

DMA Read
(non-posted)

$./bandwidthTest

PCIe devices are mapped in to the same address space as CPUs,
allowing devices to access system memory directly (DMA)

DMA Write
(posted)

$./p2pBandwidthLatencyTest

As device memory is mapped in to the same address space by the
system, devices can also access other devices' memory

Peer-to-Peer DMA

PCIe Summary

• Devices share address space with the CPU
and are able to access memory = DMA

• Memory reads and writes are forwarded
shortest path on the PCIe fabric

• Devices can access memory on other devices
= peer-to-peer DMA

NVM Express (NVMe)

https://www.anandtech.com/

NVMe is designed around multiple parallel I/O command
submission queues (SQs) and command completion queues (CQs)

One SQ and one CQ per CPU (1:1)

NVMe is designed around multiple parallel I/O command
submission queues (SQs) and command completion queues (CQs)

Multiple SQs sharing single CQ (N:M)

Share single CQ

Command queues are implemented as ring-buffers where each
individual queue has a dedicated doorbell register

Command queues are implemented as ring-buffers where each
individual queue has a dedicated doorbell register

Write tail pointer

I/O commands use physical page region lists (PRP lists) to
describe physical addresses of non-contiguous memory

Small reads/writes
= single command

Also hosted in memory

Software can set up up I/O command queues anywhere in memory

Software can set up up I/O command queues anywhere in memory

Device registers

Software can set up up I/O command queues anywhere in memory

Configured
by software

Device registers

Software submits commands by writing to queue memory and
updating the associated doorbell register

Software submits commands by writing to queue memory and
updating the associated doorbell register

Software writes
commands

Software submits commands by writing to queue memory and
updating the associated doorbell register

Software writes
commands

Software submits commands by writing to queue memory and
updating the associated doorbell register

Software updates
doorbell register

Controller reads commands from submission queue memory and
writes completions to completion queue memory

Controller reads commands from submission queue memory and
writes completions to completion queue memory

Controller reads
commands

Controller reads commands from submission queue memory and
writes completions to completion queue memory

. . .
Read blocks (DMA write)
and/or write blocks (DMA read)

Controller reads commands from submission queue memory and
writes completions to completion queue memory

Controller writes
completion

Controller reads commands from submission queue memory and
writes completions to completion queue memory

Controller writes
completion

Software detects completions either by waiting for hardware
interrupts or by polling completion queue memory

Software detects completions either by waiting for hardware
interrupts or by polling completion queue memory

Software polls
queue memory

• Multiple I/O queues enables highly parallel design

• Controller uses DMA = queues and data buffers
can be hosted anywhere in memory space

• Single doorbell register write in I/O path

• Software can poll for completions instead of
waiting for hardware interrupt

NVMe Summary

Non-Transparent Bridging

We can interconnect separate PCIe root complexes and translate
addresses between them using a non-transparent bridge (NTB)

External
PCIe Cable

Non-Transparent
Bridge (NTB)

We can interconnect separate PCIe root complexes and translate
addresses between them using a non-transparent bridge (NTB)

We can interconnect separate PCIe root complexes and translate
addresses between them using a non-transparent bridge (NTB)

We can interconnect separate PCIe root complexes and translate
addresses between them using a non-transparent bridge (NTB)

HW address
translation

Since PCIe devices are also part of address space, it is also
possible to map remote device resources

Since PCIe devices are also part of address space, it is also
possible to map remote device resources

Since PCIe devices are also part of address space, it is also
possible to map remote device resources

Software runs here

Using NTBs, it is possible for a local driver to use a remote device
by setting up MMIO and DMAmappings

Using this disk
Must map for local CPU

Must map for remote device
"DMA window"

Application

NVMe Driver

NVMe SSD

PCIe

PCIe NTB

Local Remote

Using NTBs, it is possible for a local driver to use a remote device
by setting up MMIO and DMAmappings

NVMe over Fabrics (NVMeoF)
using 100 GbE Ethernet RDMA

(SPDK target, kernel direct)

Native NVMe over PCIe NTB

Application

NVMeoF Host Driver

Interconnect

RDMA Facilitation

Transport Layer

NVMeoF Target Driver

NVMe SSD

Interconnect

RDMA Facilitation

Transport Layer

PCIe (or other IO bus)

Local
"Host"

Remote
"Target"

Interconnect Link Interconnect Link

PCIe (or other IO bus) PCIe

HW addr translations
= Low latency

4 kB read completion latency = ~14.21 µs

4 kB read completion latency = ~17.91 µs

NTB Summary

• NTBs connects separate independent root complexes and
translating addrs between them

• Since device memory (BARs) are part of address space,
we can map remote device resources for a local host

https://www.anandtech.com/

GPUDirect RDMA & Async

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

cudaSetDevice(0);

void *buffer;
cudaMalloc(&buffer, 0x10000);

cudaPointerAttributes attrs;
cudaPointerGetAttributes(&attrs, buffer);

/* Pass attrs.devicePointer to kernel module */

nvidia_p2p_get_pages(...);

https://docs.nvidia.com/cuda/gpudirect-rdma/

Sets device to allocate memory on

Allocate buffer

Get device pointer

Pin memory on the GPU and
return physical addresses

Pass device pointer to kernel
Userspace CUDA program

Third-party device driver
(kernel space)

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

GPUDirect RDMA provides functionality to pin device memory on a
GPU and exposing physical addresses of the pinned memory

This allows a third-party device to read and write directly to GPU
memory instead of copying to and from system memory

Read from disk via RAM

DMA Write DMA Read

Read from disk with GPUDirect

Single DMA Write (peer-to-peer)

"Zero copy"

void *ptr = mmap(. . .);

cudaHostRegister(ptr, 0x1000, cudaHostRegisterIoMemory);

Unified Memory allows mapping controller registers and queue
doorbells in to memory space managed by the CUDA driver

Maps registers in to virtual address space
(Memory mapped I/O)

Register mapped memory with CUDA

With doorbell registers mapped in to CUDA memory space, a GPU
kernel can now trigger doorbell writes using GPUDirect Async

Queues and data
hosted in GPU memory

GPU manages
I/O entirely

All transactions are peer-to-peer
(No CPU involved)

By assigning I/O queues to each individual GPU, multiple GPUs
can share a single NVMe disk simultaneously

Expansion Chassis Host

External
PCIe Cable

By assigning I/O queues to each individual GPU, multiple GPUs
can share a single NVMe disk simultaneously

Expansion Chassis Host

Peer-to-Peer DMA

I/O queues and buffers
hosted in GPU memory

No CPU in
I/O path

7,0

7,5

8,0

8,5

9,0

9,5

10,0

RAM Peering GPU

C
om

pl
et

io
n

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Submission Queue Memory Location

97th Percentile Latency (1 PRP = 4 kB, Random Read, 128 MB file)

~ 400 ns
reading over the
transparent link

Disk: Intel P4800X
GPU: Quadro P620
RAM: DDR4 2133 MHz
CPU: Intel Xeon E5-2603 v4

GPUDirect Summary

• GPUDirect DMA allows third-party devices, such as NVMe
disks, to access GPU memory directly

• GPUDirect Async allows memory-mapped I/O from a CUDA
kernel = eliminate CPU in I/O path entirely

• We have used these to make a distributed NVMe driver in
CUDA kernel code

Device Lending and SmartIO

In PCIe clusters, the same fabric is used both for interconnecting
hosts as well as the local I/O bus inside each host

External PCIe
cable

PCIe interconnect switch RAM Memory bus

Internal
PCIe bus

PCIe interconnect
host adapter

PCIe device

CPU and chipset

Interconnect
switch

Using an NTB, it is possible to map remote device memory regions
(BARs) for a local host

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Local
Memory

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)
Borrower's

Address Space
Lenders's

Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Intr. Vectors Intr. Vectors

1

Using an NTB, it is possible to map remote device memory regions
(BARs) for a local host

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Local
Memory

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)
Borrower's

Address Space
Lenders's

Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

Intr. Vectors Intr. Vectors

1

The remote system can in turn reverse-map the local system’s
memory and interrupt addresses for the device

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Local
Memory

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)
Borrower's

Address Space
Lenders's

Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

Intr. Vectors Intr. Vectors

2

The remote system can in turn reverse-map the local system’s
memory and interrupt addresses for the device

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Local
Memory

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)
Borrower's

Address Space
Lenders's

Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

DMA Buffers

MSI/Intr. VectorsIntr. Vectors

Map address
0x123000

0x123000

2

The remote system can in turn reverse-map the local system’s
memory and interrupt addresses for the device

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Local
Memory

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)
Borrower's

Address Space
Lenders's

Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

Borrower's
Local Memory

Borrower's
Intr. Vectors

DMA Buffers

MSI/Intr. VectorsIntr. Vectors

0xa5000

2

By emulating a PCIe hot-add event, the remote device is inserted
into the kernel device tree, making it appear locally installed

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Local
Memory

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)
Borrower's

Address Space
Lenders's

Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

Borrower's
Local Memory

Borrower's
Intr. Vectors

DMA Buffers

MSI/Intr. VectorsIntr. Vectors

0xa5000

3

By emulating a PCIe hot-add event, the remote device is inserted
into the kernel device tree, making it appear locally installed

NTB
Adapter

CPU Cores

PCIe Complex (Root)

Remote
Device

Local
Memory

CPU Cores

PCIe Complex (Root)

Memory

Remote
Device

NTB
Adapter

"Lender" (Remote) "Borrower" (Local)
Borrower's

Address Space
Lenders's

Address Space

Memory

NTB Adapter

Local Memory

NTB Adapter

Remote
Device

Borrower's
Local Memory

Borrower's
Intr. Vectors

DMA Buffers

MSI/Intr. VectorsIntr. Vectors

Injected
Device

dma_map_page(dev,0xf90000); Use addr
0xa5000

Local driver
takes device

0xa5000

3

Local

Borrowing System

Remote

Lending System

Application

"Borrowed" remote device

CUDA library + driver

PCIe bus

PCIe bus

PCIe NTB interconnect

Unmodified local driver
(with hot-plug support)

Resource appears local

to OS, driver, and app

Hardware mappings

ensure fast data path

Works with any PCIe device
(even individual SR-IOV functions)

Using Device Lending and our CUDA NVMe driver, it is possible to
use create highly flexible and distributed I/O workloads

nvm-latency-bench
Local disk, no GPU
Disk: Intel Optane 900P
RAM: DDR4 2133 MHz
CPU: Xeon E5-2603 v4
GPU: Quadro P620

Sequential Read, PRPs=32, QD=64
Bandwidth = ~ 2715.42 MB/s

Random 4 kB Reads, PRPs=1, QD=1
Cpl Latency = ~ 6.48 µs

nvm-latency-bench
Local disk, remote GPU
Disk: Intel Optane 900P
RAM: DDR4 2133 MHz
CPU: Xeon E5-2603 v4
GPU: Quadro P600

Sequential Read, PRPs=32, QD=64
Bandwidth = ~ 2716.47 MB/s

Random 4 kB Reads, PRPs=1, QD=1
Cpl Latency = ~ 6.47 µs

Almost same
performance as local

NVMe driver
CUDA driver and

host software

nvm-latency-bench
Remote disk, local GPU
Disk: Intel Optane P4800x
RAM: DDR4 2133 MHz
CPU: Xeon E5-2603 v4
GPU: Quadro P620

Sequential Read, PRPs=32, QD=64
Bandwidth = ~ 2705.618 MB/s

Random 4 kB Reads, PRPs=1, QD=1
Cpl Latency = ~ 9.7 µs

Longer path for SSD

nvm-latency-bench
Remote disk, local GPU
Disk: Intel Optane 900P
RAM: DDR4 2133 MHz
CPU: Xeon E5-2603 v4
GPU: Quadro P620

Random 4 kB Reads, PRPs=1, QD=1
Cpl Latency = ~ 9.198 µs

Shorter path to commands

NVMe driver
CUDA driver and

host software

nvm-latency-bench
Remote disk, local GPU
Disk: Intel Optane 900P
RAM: DDR4 2133 MHz
CPU: Xeon E5-2603 v4
GPU: Quadro P620

Random 4 kB Reads, PRPs=1, QD=1
Cpl Latency = ~ 8.65 µs

Shortest path to commands

NVMe driver
CUDA driver and

host software

LRcDl
RA0

RePR
te RA0PeeULQ

g GP8

8.6

9.0

9.4

9.8

10.2

CR
P
Sl
et
LR
Q
LD
te
Qc
y
(P
Lc
UR
se
cR
QG
s) BuffeU LQ LRcDl RA0

LRcDl
RA0

RePR
te RA0PeeULQ

g GP8

BuffeU RQ LRcDl GP8

LRcDl
RA0

RePR
te RA0PeeULQ

g GP8

8.6

9.0

9.4

9.8

10.2

BuffeU RQ PeeULQg GP8

CRPPDQG 6ubPLssLRQ LDteQcy
RDQGRP ReDGs, 4ueue DeSth 1, PRPs SeU CRPPDQG 1

Submission Queue Location

nvm-cuda-bench
Local disk, local GPU
Disk: Intel Optane 900P
RAM: DDR4 2133 MHz
CPU: Xeon E5-2603 v4
GPU: Quadro P620

Sequential Read, PRPs=32, QD=32
Bandwidth = ~ 2662.098 MB/s

NVMe driver

CUDA driver and
host software

nvm-cuda-bench
Remote disk, local GPU
Disk: Intel Optane 900P
RAM: DDR4 2133 MHz
CPU: Xeon E5-2603 v4
GPU: Quadro P620

Sequential Read, PRPs=32, QD=32
Bandwidth = ~ 2651.642 MB/s

Same as running locally

CUDA driver and
host software

NVMe driver

• Optimized data transfer paths using PCIe
peer-to-peer transactions

• Direct block-level disk access from GPU,
eliminating CPU in I/O data path entirely

• Concurrently sharing NVMe drives
between multiple hosts and GPUs

• PCIe non-transparent bridges offer great
flexibility in dynamic device configurations

Summary

Thank you!

http://github.com/enfiskutensykkel/ssd-gpu-dma

CUDA NVME driver + benchmarks

jonassm@dolphinics.com

My e-mail address

Visit Dolphin at booth
#1520 for a live demo!

S9709 Dynamic Sharing of GPUs and IO in a PCIe Network
Thursday March 21, Room 212B

Device Lending details

Thank you!

http://github.com/enfiskutensykkel/ssd-gpu-dma

CUDA NVME driver + benchmarks

jonassm@dolphinics.com

My e-mail address

Visit Dolphin at booth
#1520 for a live demo!

S9709 Dynamic Sharing of GPUs and IO in a PCIe Network
Thursday March 21, Room 212B

Device Lending details

