Accelerating Model Development by Reducing Operational Barriers

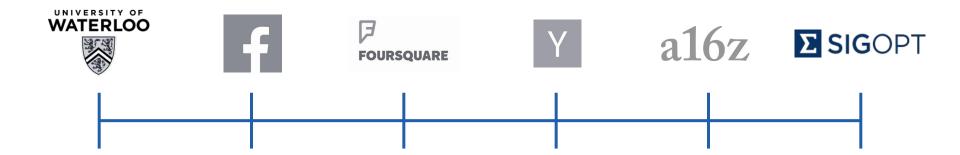
Patrick Hayes, Cofounder & CTO, SigOpt

Talk ID: S9556

SIGOPT

Accelerate and amplify the impact of modelers everywhere

I SIGOPT

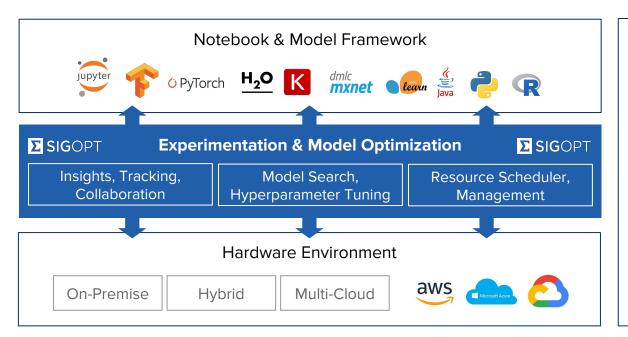


SigOpt automates experimentation and optimization

Data Preparation

Transformation
Labeling
Pre-Processing
Pipeline Dev.
Feature Eng.
Feature Stores

Experimentation, Training, Evaluation



Model Deployment

Validation
Serving
Deploying
Monitoring
Managing
Inference
Online Testing

Model Tuning

Deep Learning Architecture Search

Training & Tuning

Hyperparameter Search

Hyperparameter Optimization

Evolutionary Algorithms

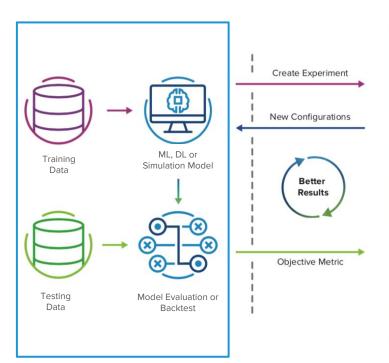
Grid Search

Random Search

Bayesian Optimization

How it works: Seamlessly tune any model

Never accesses your data or models



- 1 Install SigOpt
- 2 Create experiment
- 3 Parameterize model
- 4 Run optimization loop
- 5 Analyze experiments

- 1 Install SigOpt
- 2 Create experiment
- 3 Parameterize model
- 4 Run optimization loop
- 5 Analyze experiments

```
Step 1, part a: Installing sigopt
```

```
[ ] pip install sigopt
```

Step 1, part b: initializing sigopt connection

```
[ ] from sigopt import Connection
conn = Connection(client_token=" ")
```

- 1 Install SigOpt
- 2 Create experiment
- 3 Parameterize model
- 4 Run optimization loop
- 5 Analyze experiments

Step 2

```
experiment = conn.experiments().create(
    name="Multi-Layer Perceptron",
    parameters=[
        dict(
            name="log learning rate",
            bounds=dict(min=-7, max=0),
            type="double"
        dict(
            name="activation",
            categorical values=[
                dict(name="relu"),
                dict(name="sigmoid"),
                dict(name="tanh")
            type="categorical"
        dict(name="num hidden 1", bounds=dict(min=1, max=6), type="int"),
        dict(name="num hidden 2", bounds=dict(min=1, max=6), type="int"),
        dict(name="num hidden 3", bounds=dict(min=1, max=6), type="int"),
        dict(name="batch size", bounds=dict(min=5, max=20), type="int")
    parallel bandwidth=4,
   observation budget=100
```

- 1 Install SigOpt
- 2 Create experiment
- 3 Parameterize model
- 4 Run optimization loop
- 5 Analyze experiments

Step 3

```
def create model(assignments):
    model = Sequential()
    model.add(Dense(assignments['num hidden 1'],
                    input dim=784,
                    activation=assignments['activation']))
    model.add(Dense(assignments['num hidden 2'],
                    input dim=assignments['num hidden 1'],
                    activation=assignments['activation'])),
    model.add(Dense(assignments['num hidden 3'],
                    input dim=assignments['num hidden 2'],
                    activation=assignments['activation'])),
    model.add(Dense(10, activation='softmax'))
    model.compile(
        optimizer=optimizers.RMSprop(
            lr=10**assignments['log learning rate']
        loss='categorical crossentropy',
       metrics=['accuracy'],
    model.fit(x train, y train, epochs=24,
              batch size=assignments['batch size'])
    return model
def evaluate model(assignments):
    model = create model(assignments)
    return model.evaluate(x test, y test)[1]
```

- 1 Install SigOpt
- 2 Create experiment
- 3 Parameterize model
- 4 Run optimization loop
- 5 Analyze experiments

Step 4

```
while experiment.progress.observation_count < experiment.observation_budget:
    suggestion = conn.experiments(experiment.id).suggestions().create()
    assignments = suggestion.assignments
    value = evaluate_model(assignments)

    conn.experiments(experiment.id).observations().create(
        suggestion=suggestion.id,
        value=value,
    )

    experiment = conn.experiments(experiment.id).fetch()

best_assignments = conn.experiments(experiment.id)
    .best_assignments().fetch().data[0].assignments

# This is a SigOpt-tuned model
    classifier = create_model(best_assignments)</pre>
```

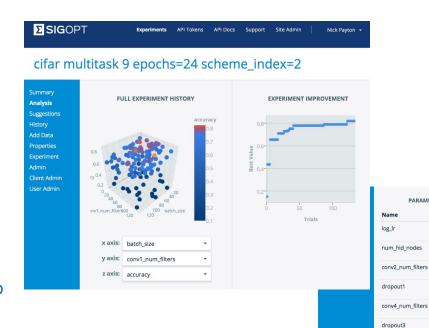
1 Install SigOpt

2 Create experiment

3 Parameterize model

4 Run optimization loop

5 Analyze experiments



PARAMETER IMPORTANCE @

dropout2

conv3_num_filters

conv1_num_filters

batch size

EXPERIMENT HISTORY

x axis: batch_size

Benefits: Better, Cheaper, Faster Model Development

90% Cost SavingsMaximize utilization of compute

https://aws.amazon.com/blogs/machine-learning/fastcnn-tuning-with-aws-apu-instances-and-sigopt/

10x Faster Time to Tune

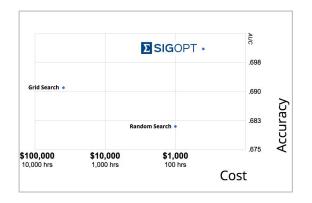
Less expert time per model

https://devblogs.nvidia.com/sigopt-deep-learning-hyp erparameter-optimization/

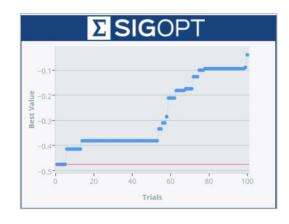
Better Performance

No free lunch, but optimize any model

https://arxiv.org/pdf/1603.09441.pdf







Overview of Features Behind SigOpt

Experiment Insights	Intuitive web dashboards	Advanced experiment visualizations	Parameter importance analysis
	Reproducibility	Cross-team permissions and collaboration	Organizational experiment analysis
Optimization Engine	Continuous, categorical, or integer parameters	Up to 10k observations, 100 parameters	Conditional parameters
	Multimetric optimization	Constraints and failure regions	Multitask optimization and high parallelism
Enterprise Platform	REST API	Black-box interface	Libraries for Python, Java, R, and MATLAB
	Infrastructure agnostic	Model agnostic	Doesn't touch data

Key:

Only HPO solution with this capability

Applied deep learning introduces unique challenges

Failed observations

Constraints

Uncertainty

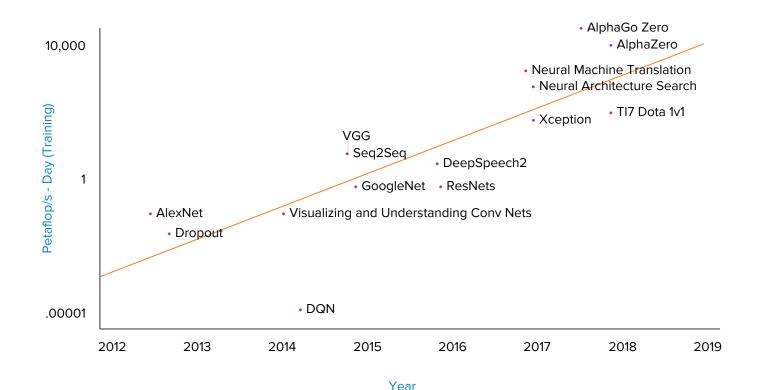
Competing objectives

Lengthy training cycles

Cluster orchestration

How do you more efficiently tune models that take days (or weeks) to train?

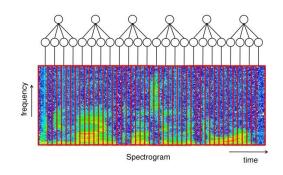
AlexNex to AlphaGo Zero: 300,000x Increase in Compute

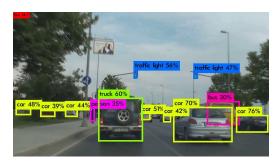


Speech Recognition

Deep Reinforcement Learning

Computer Vision





Training Resnet-50 on ImageNet takes 10 hours
Tuning 12 parameters requires at least 120 distinct models
That equals **1,200 hours, or 50 days, of training time**

Running optimization tasks in parallel is critical to tuning expensive deep learning models

Complexity of Deep Learning DevOps

Basic Case

Training One Model, No Optimization

Advanced Case

Multiple Users

Concurrent Optimization Experiments

Concurrent Model Configuration Evaluations

Multiple GPUs per Model

Cluster Orchestration

1 Spin up and share training clusters

3 Integrate with the optimization API

2 Schedule optimization experiments

4 Monitor experiment and infrastructure

Problems:

Infrastructure, scheduling, dependencies, code, monitoring

Solution:

SigOpt Orchestrate is a CLI for managing training infrastructure and running optimization experiments

How it Works

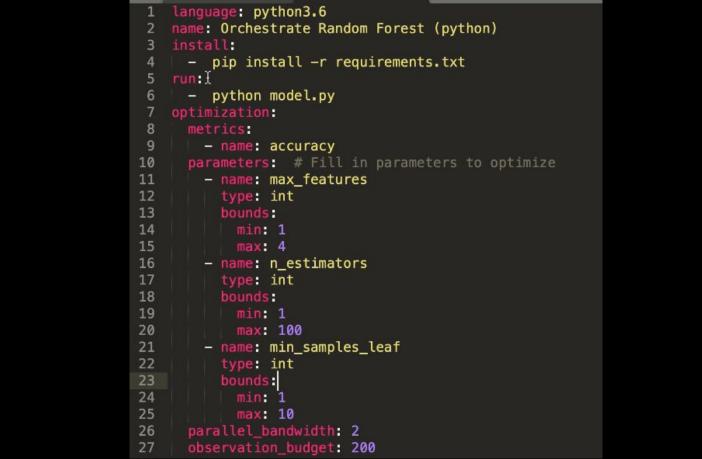
```
13
    def evaluate model(X, y):
14
      classifier = RandomForestClassifier(
15
        n_estimators=orchestrate.io.assignment('n_estimators', default=3),
16
        max features=orchestrate.io.assignment('max features', default=3),
        min_samples_leaf=orchestrate.io.assignment('min_samples_leaf', default=80)
17
18
19
      cv_accuracies = cross_val_score(classifier, X, y, cv=5)
20
      return (numpy.mean(cv accuracies), numpy.std(cv accuracies))
21
22
    if __name__ == "__main__":
23
      (X, y) = load_data()
```

(mean, std) = evaluate model(X=X, y=y

orchestrate.io.log_metric('accuracy', mean, std)

24

25 26



Easily Define Optimization Experiments

```
(venv) → random_forest git:(master) x sigopt run -f orchestrate.yml
/Users/benhsu/Developer/sigopt-examples/orchestrate/venv/lib/python3.7/site-packages/requests/__i
.4) doesn't match a supported version!
 RequestsDependencyWarning)
Containerizing your model and starting your experiment, this may take a few minutes...
Step 1/5: FROM orchestrate/python-3.6:0.2.2
 ---> 623143becd6e
Step 2/5 : LABEL orchestrate-user-created=true
 ---> Using cache
 ---> 4ccb928a7baf
Step 3/5 : ADD "." "/"
---> Using cache
 ---> 88871a43efa4
Step 4/5: WORKDIR /orchestrate
 ---> Using cache
 ---> aa76b5f6c620
Step 5/5: RUN pip install -r requirements.txt
 ---> Using cache
 ---> 5185e635022d
Successfully built 5185e635022d
Successfully tagged orchestrate/random-forest:latest
Uploading the model environment to Amazon ECR, this may be limited by your connection speed...
```

Easily Kick Off Optimization Experiment Jobs

```
(venv) → random_forest git:(master) x sigopt status 55471
Job Name: orchestrate-55471
Job Status: Not Complete
Experiment Name: Orchestrate Random Forest (python)
8 / 200 Observations
0 Observation(s) failed
                                       1
Pod status:
Pod Name
                        Status
                                                                                 Failed
                                                         Success
orchestrate-55471-cd5f2 Running
orchestrate-55471-pv4hs Running
View more at: https://app.sigopt.com/experiment/55471
```

Check the Status of Active and Completed Experiments

```
[orchestrate-55471-cd5f2] /usr/local/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarnir
y module and should not be imported. It will be removed in a future NumPy release.
[orchestrate-55471-cd5f2] from numpy.core.umath_tests import inner1d
[orchestrate-55471-cd5f2] Observation data: {"suggestion": "21807868", "values": [{"name": "accuracy", "value": 0.95333333
}], "failed": false, "metadata": {"pod_name": "orchestrate-55471-cd5f2"}}
[orchestrate-55471-pv4hs] /usr/local/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarnir
y module and should not be imported. It will be removed in a future NumPy release.
[orchestrate-55471-pv4hs] from numpy.core.umath_tests import inner1d
[orchestrate-55471-pv4hs] Observation data: {"suggestion": "21807869", "values": [{"name": "accuracy", "value": 0.96, "val
false, "metadata": {"pod_name": "orchestrate-55471-pv4hs"}}
[orchestrate-55471-cd5f2] /usr/local/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarnir
y module and should not be imported. It will be removed in a future NumPy release.
[orchestrate-55471-cd5f2] from numpy.core.umath_tests import inner1d
[orchestrate-55471-cd5f2] Observation data: {"suggestion": "21807870", "values": [{"name": "accuracy", "value": 0.94666666
}], "failed": false, "metadata": {"pod_name": "orchestrate-55471-cd5f2"}}
[orchestrate-55471-pv4hs] /usr/local/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarnir
y module and should not be imported. It will be removed in a future NumPy release.
[orchestrate-55471-pv4hs] from numpy.core.umath_tests import inner1d
[orchestrate-55471-cd5f2] /usr/local/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarnir
y module and should not be imported. It will be removed in a future NumPy release.
[orchestrate-55471-cd5f2] from numpy.core.umath_tests import inner1d
[orchestrate-55471-pv4hs] Observation data: {"suggestion": "21807871", "values": [{"name": "accuracy", "value": 0.94666666
}], "failed": false, "metadata": {"pod_name": "orchestrate-55471-pv4hs"}}
[orchestrate-55471-cd5f2] Observation data: {"suggestion": "21807872", "values": [{"name": "accuracy", "value": 0.95333333
}], "failed": false, "metadata": {"pod_name": "orchestrate-55471-cd5f2"}}
[orchestrate-55471-pv4hs] /usr/local/lib/python3.6/site-packages/sklearn/ensemble/weight_boosting.py:29: DeprecationWarnir
```

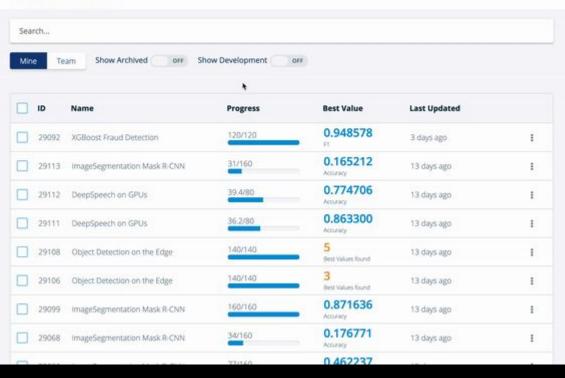
View Experiment Logs Across Multiple Workers

Experiments API Tokens API Docs

Support

Enable Site Admin

Experiments



Track Metadata and Monitor Your Results

Automated Cluster Management

Training Resnet-50 on ImageNet takes 10 hours

Tuning 12 parameters requires at least 120 distinct models

That equals **1,200 hours**, or **50 days**, of training time

While training on **20 machines**, wall-clock time is 50 days <u>2.5 days</u>

Failed Observations

Constraints

Uncertainty

Competing Objectives

Lengthy Training Cycles

Cluster Orchestration

Try SigOpt Orchestrate: https://sigopt.com/orchestrate

Free access for Academics & Nonprofits: https://sigopt.com/edu

Solution-oriented program for the Enterprise: https://sigopt.com/pricing

Leading applied optimization research: https://sigopt.com/research

... and we're hiring! https://sigopt.com/careers

Thank you!

patrick@sigopt.com for additional questions.