Demystifying Hardware Infrastructure Choices for Deep Learning Using MLPerf

DELLEMC

Ramesh Radhakrishnan

THE UNIVERSITY OF TEXAS AT AUSTIN

Lizy Kurian John Snehil Verma Qinzhe Wu

Bagus Hanindhito

Engineering Gunjan Jha Eugene John

The Bedrock of the Modern Data Center

Server industry trends

The need to simplify and reduce costs driving the **SOFTWARE DEFINED DATA CENTER**

Innovations in memory | Disk | GPU | FPGA WORKLOAD ACCELERATION

6X growth in AI

By 2020, 20% of the enterprise infrastructures deployed will be used for AI. Up from 3% in 2017.

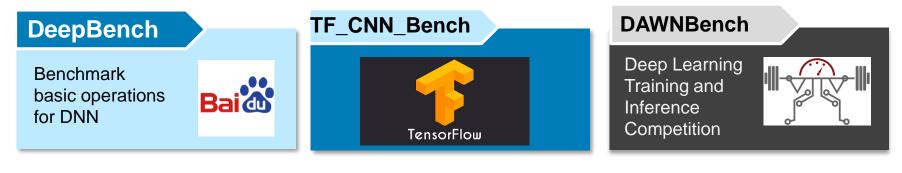
کی ML/DL

Machine learning/Deep learning emerging to provide better business insight

40X growth in edge computing

40% of large enterprises will be integrating edge computing principles into their IT projects by 2021. Up from less than 1% in 2017.

Stats from Gartner


Infrastructure Options for Deep Learning

	A LOOP	Contraction of the second			
	TITAN	QUADRO	TESLA		
Arch/Generation		← PASCAL / VOLTA / TURING →			
Form Factor		PCIe	PCIe/SXM2		
Capability	CORES MEMO	ORY FP PRECISION	MANAGEMENT S/W		
Interconnect	PCIe / N	NVLink Bridge	PCIe / NVLink		
System Design	PCIe Dom	PCIe Domain PCIe Switch NVLink Topology - multi-gpu job			
Multi-GPU Scaling	INTERCONNECT	INTERCONNECT LATENCIES & BANDWITH GPU DIRECT P2P			

We use MLPerf Benchmark suite to quantify performance impact of GPU & System technology choices

© Copyright 2019 Dell Inc.

The Evolution of Deep Learning Benchmarks

Focused on narrow domain

Uses throughput as metric (ignoring accuracy)

No governing body

synthetic data

Coverage of different DL domains Improved metrics – Time & Accuracy Reproducibility of results Representation from Industry and Academia

MLPerf enables fair comparison of competing systems yet encourages innovation to improve the state-of-the-art of ML

© Copyright 2019 Dell Inc.

MLPerf Benchmark v0.5

IMAGE CLASSIFICATION RESNET-50

LANGUAGE TRANSLATION RNN GNMT Transformer

RECOMMENDATION NCF

OBJECT DETECTION SSD MASK-RCNN

REINFORCEMENT LEARNING MINI GO

GPU platforms used in initial submission - 8 & 16 GPU Tesla V100-SXM2 NVLink Platform

Limited conclusions can be drawn about GPU technology choices

Submissions included container build files, data sets and tuning parameters used in the run

The University of Texas

© Copyright 2019 Dell Inc.

Systems Evaluated

Dell Precision and Dell EMC GPU Optimized Portfolio

Precision 5820 Quadro GV100 (2) 1CPU, 2xGV100-PCIe PowerEdge T640 Tesla V100 (4)

2CPU, 4xV100-PCIe

Dell DSS8440 Tesla V100 (4/8/10) 2CPUs, 8xV100-PCIe (PCIe Switch)

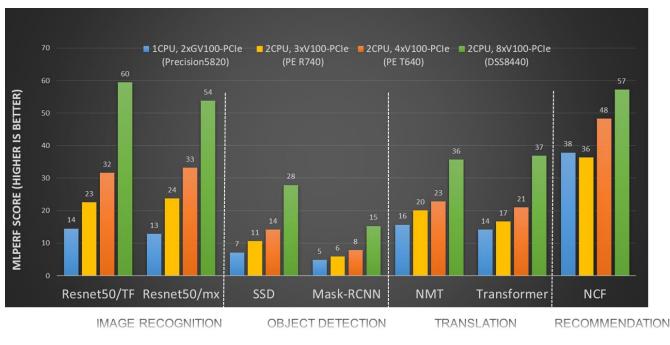
The University of Texas

© Copyright 2019 Dell Inc.

D&LLEMC

PowerEdge C4140 Config B: Tesla V100 (4) 2CPU, 4xV100-PCIe (PCIe Switch) Config K: Tesla V100 SXM2 (4) 2CPU, 4xV100-SXM2 NVL (PCIe Switch) Config M: Tesla V100 SXM2 (4) 2CPU, 4xV100-SXM2 NVL NVLink

VLINK


PowerEdge R740 Tesla V100 (3) 2CPU, 3xV100-PCIe

BENCHMARKING

MLPerf Scores – Dell Technologies Portfolio (2GPU/3GPU/4GPU/8GPU)

Score = Speedup relative to a Pascal P100

GPUs to train a DNN model in a single work day? In 4 hours? 2 hours!

- 🔒 🥂

I like flexibility of PCIe GPUs. What is the performance difference in training times between a PCIe and NVLink system?

Impact of GPU Features and System Design

Workload Characterization	Time to Accuracy plots	-	oofline nalysis		ch Siz Accui		Framewo Performa	
GPU Comparison	Titan Quadro GPU Memor 16GB vs. 32			Clock Speed: SXM2 vs. PCle				
System Profiling	CPU and GPU GPU Ir utilization trends Utilizat		Interconne ation	ect				
GPU Scaling	2 GPU Workstation vs. 4 GPU Server vs. 8 GPU Server		1 to 8 G within a Server]		
GPU Interconnect Topology	CPU PCIe Root Complex vs. PCIe Switch configuration		NVLir PCle t					

Workload Characterization

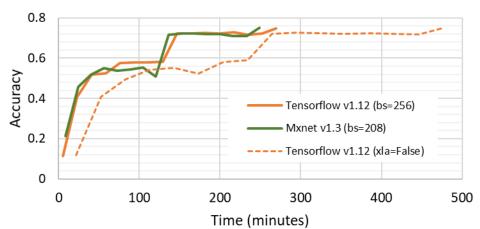


Image classification - Resnet50

Image Classification	Number of epochs	Average time per epoch (min)
TensorFlow v1.12 (Google)	61	4.42
Mxnet v1.3.0 (Nvidia)	62	4.01

GPU Kernels (Common)

volta_fp16_s884cudnn_fp16_128x128_ldg8_relu_f2f_exp_interior_nhwc_tn_v1

volta_s884cudnn_fp16_64x64_sliced1x4_ldg8_wgrad_idx_exp_interior_nhwc_nt

volta_fp16_s884cudnn_fp16_128x128_ldg8_dgrad_f2f_exp_small_nhwc_tt_v1

volta_fp16_s884cudnn_fp16_128x128_ldg8_relu_f2f_exp_small_nhwc_tn_v1

volta_s884cudnn_fp16_128x128_ldg8_wgrad_idx_exp_interior_nhwc_nt

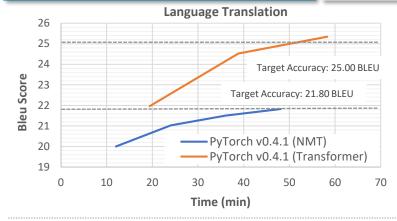
dgrad_1x1_stride_2x2

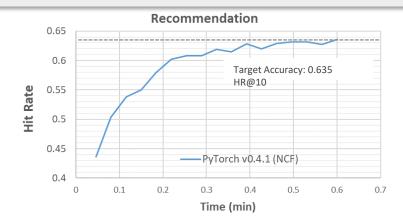
Volta_fp16_s884cudnn_fp16_256x64_ldg8_relu_f2f_exp_small_nhwc_tn_v1

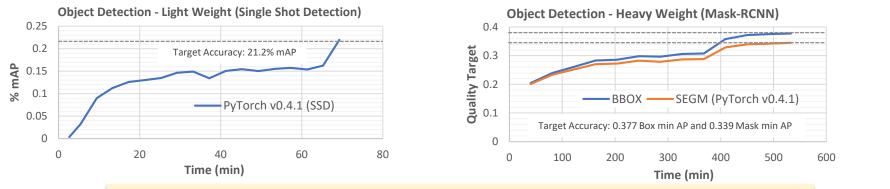
8 GPU kernels shared (CuDNN v7.4) ~34% execution time in Mxnet; ~45% execution time in TensorFlow

TensorFlow and Mxnet take advantage of optimized DNN primitives available in CuDNN (profiling shows 8 CuDNN kernels that are common across the 2 runs)

XLA Just-In-Time Compile is critical to get performance on par with Mxnet and other frameworks


The University of Texas

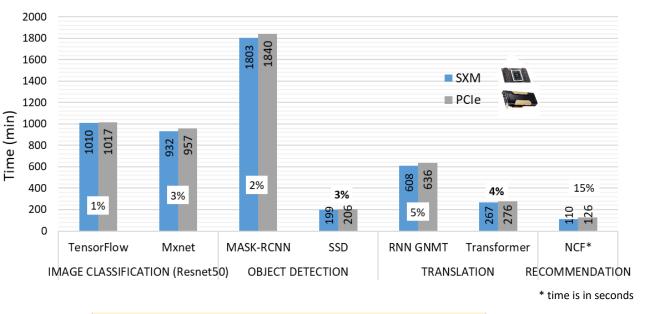

Workload Characterization


Time to Accuracy plot

4xV100-SXM2 16GB (NVLink)

DELLEMC

Training times vary from less than 1 minute (NCF) to 9 hours for Mask-RCNN on a 4 GPU server All models train in under a work day (8 hours) on a 4 GPU NVLink system

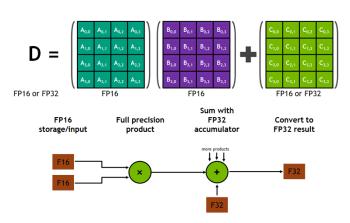

The University of Texas

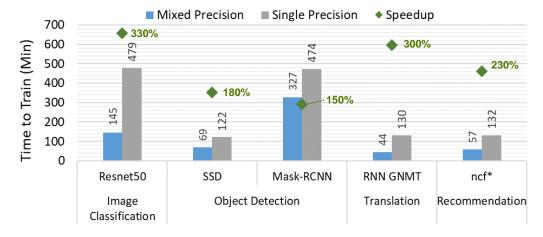
Benchmark result not verified by MLPerf. MLPerf name and logo are trademarks. See www.mlperf.org for more information

Tesla V100: PCIe vs. SXM2

1xV100-16GB

	Tesla V100 PCle	Tesla V100 SXM2	
GPU Architecture	NVIDIA Volta		
NVIDIA Tensor Cores	640		
NVIDIA CUDA® Cores	5,120		
Double-Precision Performance	7 TFLOPS	7.8 TFLOPS	
Single-Precision Performance	14 TFLOPS	15.7 TFLOPS	
Tensor Performance	112 TFLOPS	125 TFLOPS	
GPU Memory	32GB /16GB HBM2		
Memory Bandwidth	900GB/sec		
ECC	Yes		
Interconnect Bandwidth	32GB/sec	300GB/sec	
System Interface	PCIe Gen3	NVIDIA NVLink	
Form Factor	PCIe Full Height/Length	SXM2	
Max Power Comsumption	250 W	300 W	
Thermal Solution	Passive		
Compute APIs	CUDA, DirectCompute, OpenCL™, OpenACC		


1-5% speedup for single GPU training jobs 30 minutes on a 30 hour training job



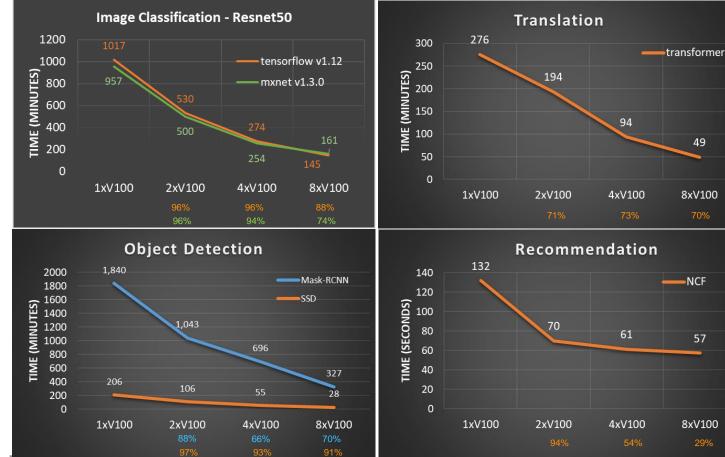
GPU Comparison

- Training method that uses different numerical precisions (FP16 & FP32)
- Decrease Memory consumption (2x)
- Reduce training & inference times by using WMMA (tensor cores)

NVIDIA Deep Learning SDK

https://docs.nvidia.com/deeplearning/sdk/mixed-precisiontraining/index.html

Automatic Mixed Precision (AMP) NGC 19.03 release https://developer.nvidia.com/automatic-mixed-precision 150-330% speedup across benchmarks tested 330 minutes reduction for Resnet50 (70% reduction in training time)


The University of Texas

* time is in seconds

GPU Scaling

1 to 8 GPU Scaling

Scaling efficiency is shown with 1 GPU as the baseline

At 8 GPUs, scaling efficiency is over 80% for Resnet50 (TF) & SSD

At 4 GPUs, Resnet50 (TF & Mx) and SSD exhibit scaling efficiency over 80%

At 2 GPUs, Resnet50 (TF & Mx), SSD, Mask-RCNN and NCF exhibit scaling efficiency over 80%

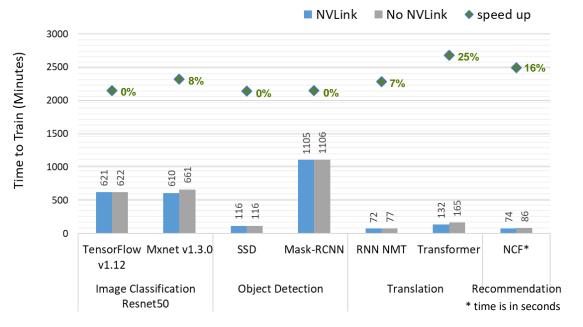
The University of Texas

Benchmark result not verified by MLPerf. MLPerf name and logo are trademarks. See www.mlperf.org for more information

D&LLEMC

GPU Interconnect Topology

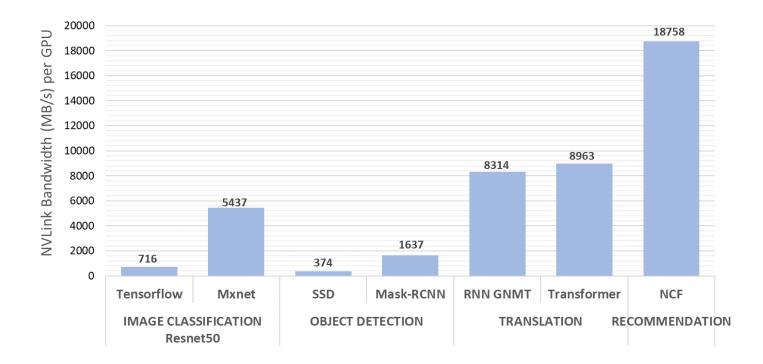
NVLink Bridge


nvidia-smi topo -m

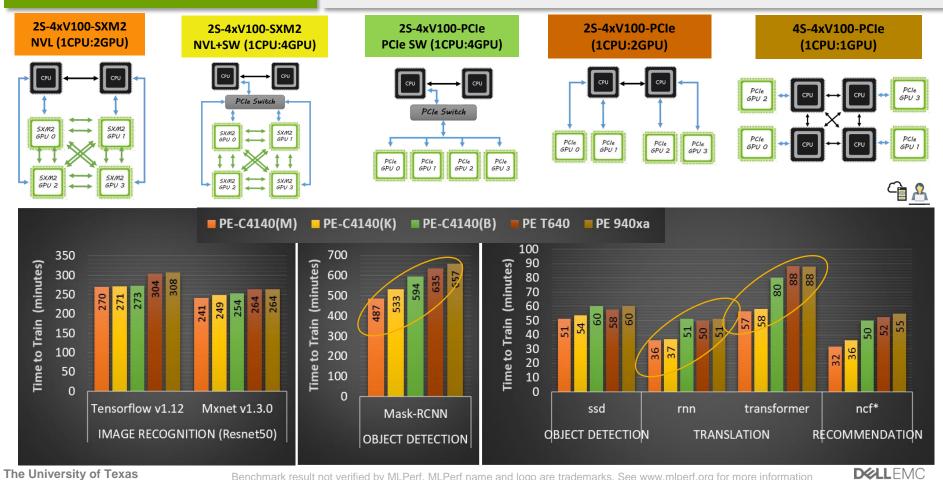
	GPU0	GPU1	CPU Affinity
GPU0	Х	NV4	0-35
GPU1	NV4	Х	0-35

For a 2 GPU training job, the performance gains from NVLink ranges from 0%-25%

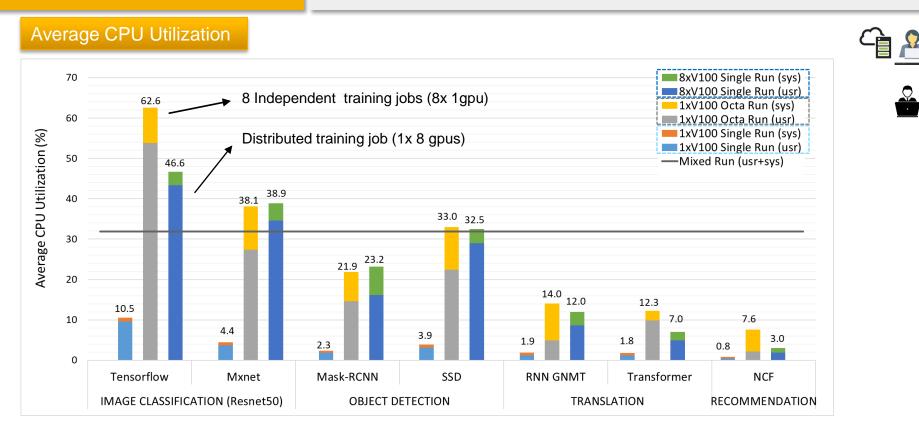
This translates as a 50 minute savings in training time on Resnet50 (Mxnet) @ 8% speedup


33 minutes on Transformer (25% speedup)

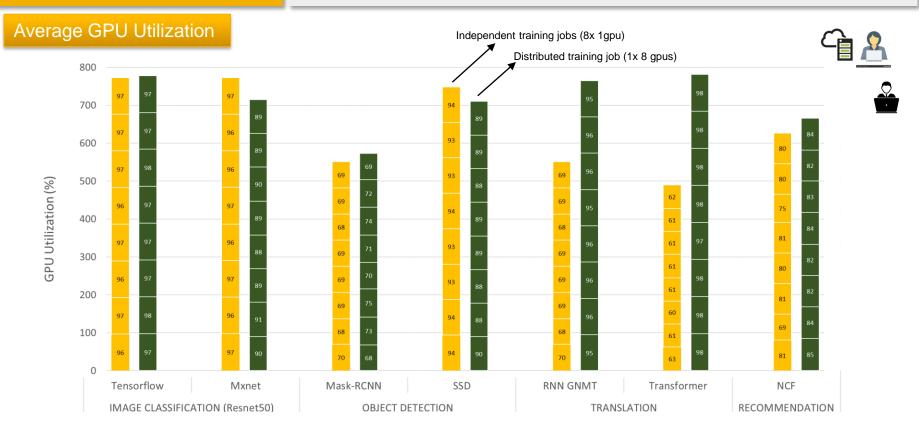
The University of Texas


GPUDirect P2P bandwidth is highest for Resnet50/Mxnet, Translation and Recommendation benchmarks

The University of Texas


GPU Interconnect Topology

NVLink and PCIe Topology Comparisons



The University of Texas

Benchmark result not verified by MLPerf. MLPerf name and logo are trademarks. See www.mlperf.org for more information

Distributed Training vs. Single GPU Compare 8xV100-PCIe

DELLEMC

Key Messages

MLPerf is a <u>valuable tool</u> to evaluate impact of GPU technologies and its impact on Deep Learning Training workloads

 Performance improvements in Frameworks/Libraries already being accelerated due to MLPerf

- Dave the Data Scientist
 - Use <u>Nvidia tools to monitor GPU utilization and Scaling Efficiency</u>
 - Single node performance sufficient to train complex models in a single workday (Tesla V100)
 - Mixed-Precision has significant impact on training performance (150%-330%)

CPU utilization varies considerably between the different benchmarks

- increases with #GPUs and type of DNN
- Offload to GPUs is an option for some DL pipelines
- Choose GPU platforms that meet power, cost, density & flexibility requirements for your training workloads
 - For tests that involve substantial inter-GPU communication, NVLink improves performance (up to 40%) for distributed training scenarios
 - Advances in PCIe topology closing the gap for some use cases

The University of Texas

© Copyright 2019 Dell Inc.

CPU

 $\mathbf{\Omega}$

Serial Tasks

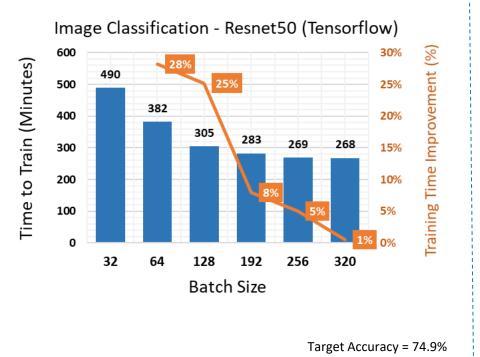
GPU Accelerato

Acknowledgements

- Guy Laporte, Liz Raymond, April Berman, Rengan Xu, Frank Han, Shreya Shah Dell EMC
- Marc Hammons, David Patschke Dell Inc
- Paulius Micikevicius, Aman Arora, Michael Andersch Nvidia
- Sreepathi Pai Univ of Rochester

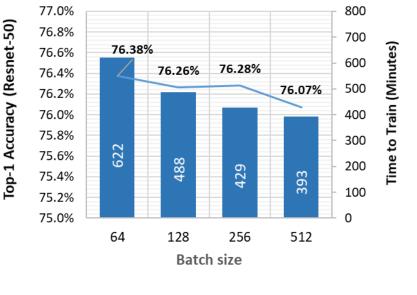
BACKUP

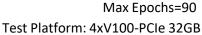
MLPerf Benchmark v0.5


The Univ

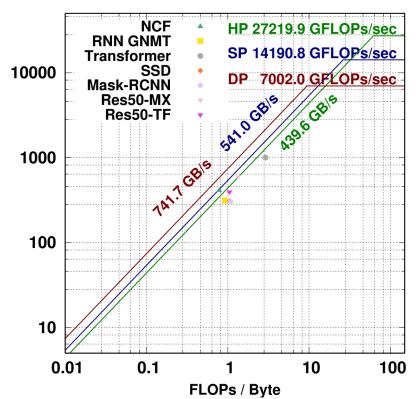
https://www.mlper with the second se	• Open v • Cloud v	ories s. Closed rs. On-Premise	Metrics • Metrics to capture both performance and quality • Cloud Scale • Variance	Code • Docker containers for reproducibility • Agile development model for rapid iteration • peer review process
Domain	Model	Dataset	Performance Metric	Use Cases
Image Classification	Resnet-50	ImageNet	Top-1 Classification Accuracy	Google Shopper, Facebook, Google Goggles, Xbox 360
Object detection	SSD, Mask RCNN	Microsoft COCO	mAP	Video surveillance, Pedestrian detection, Anomaly detection
Translation	RNN GNMT, Transformer	WMT17	BLEU scores	Google Translate, Skype
Recommendation	Neural Collaborative Filtering	e MovieLens 20 Million (ml-20m)	Hit Rate	Product recommendation by Amazon, Netfix recommendations, Spotify
Reinforcement Learning	Minigo	Data from games played during benchmarking	# of correct predictions / # of predictions attempted	Traffic Light Control, Robotics, Bidding and Advertising, AlphaGo Zero

LLEMC


Workload Characterization


Batch Size

Test Platform: 4xV100-SXM2 16GB NVLink



Benchmadoppriselizate Destrifted by MLPerf. MLPerf name and logo are trademarks. See www.mlperf.org for Destriction

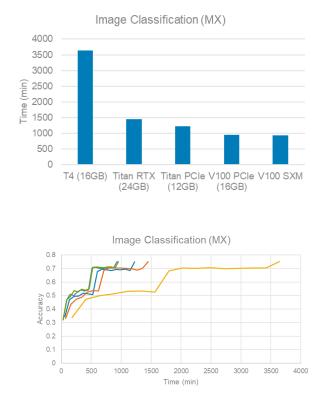
Roofline can be used to assess the quality of attained performance

- Arithmetic Intensity is the ratio of total floating-point operations to total data movement
- Kernels near the roofline are making good use of computational resources
- Translation (Transformer) has highest data reuse
- RNN, SSD, Mask-RCNN have similar characteristics

Empirical Roofline

The University of Texas

© Copyright 2019 Dell Inc.


GFLOPs / sec

D&LLEMC

GPU Comparison

Titan, Quadro and Tesla Compare

Time (min)

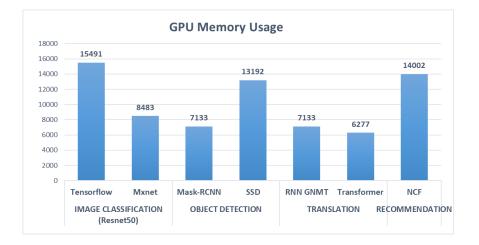
V100 PCle (16GB)

- Titan PCle (12GB)

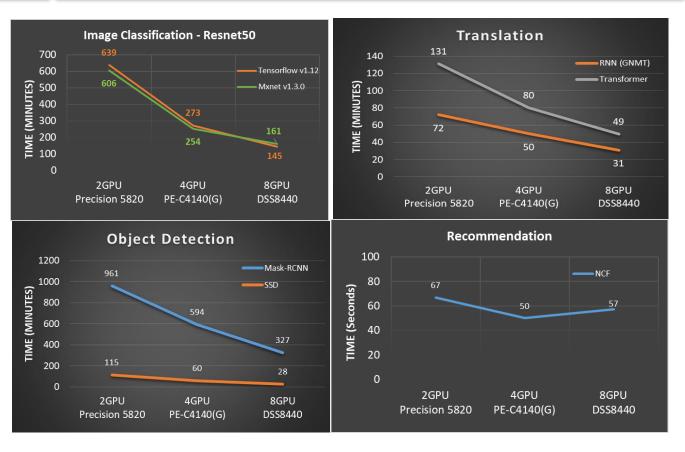
2000 1500 1000 500 0 lmage lmage SSD Classification (TF) (MX) Tesla Titan

Tesla vs. Titan

The University of Texas

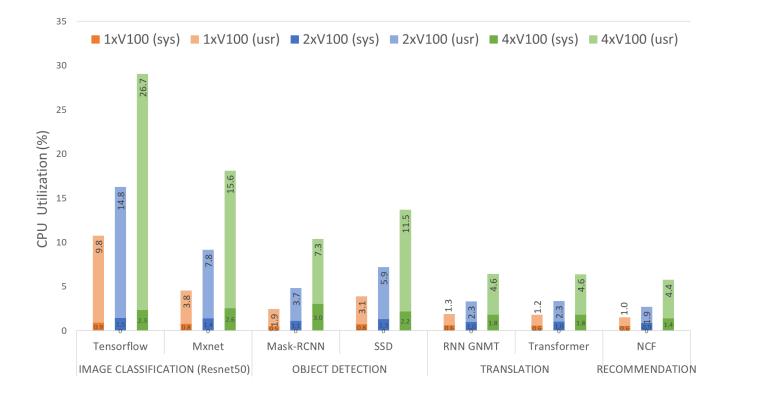

----- Titan RTX (24GB)

Benchm@doppright2013 Destrificed by MLPerf. MLPerf name and logo are trademarks. See www.mlperf.org for Portuger


GPU Comparison

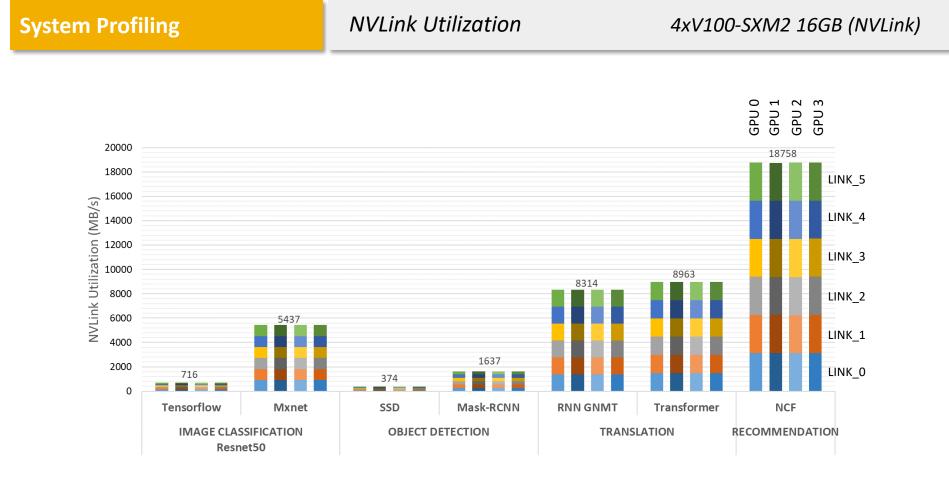
Tesla V100-PCIe: 16GB vs. 32GB

- We compare V100 16GB and 32GB
- T640 Resnet50/TensorFlow Results (256 vs. 512 Batch size)
 - 18260 vs16781
- RNN 512 vs. 256 vs 128
 - 2993 vs. 2656 vs. 8551
- 940xa
 - Mxnet Result (1664 vs 832 Batch Size)
 -) 16663 vs 15994
 - RNN_Translation(512 vs 256)
 - 3000 vs 2656)
 - Translation 10240 vs. 5120 (batch size)
 - > 4188 vs 5321
 - RCNN
 - 33202 vs. 39460
- Object Detection
 - Images=4 vs. images=8
 - 4xV100 33698 vs 28164


Workstation	1U Server	4U Server				
System						
2xGV100	4xV100	8xV100				
DL TFL	DL TFLOPs (mixed-precision)					
237	480	960				
Total HBM2 Memory						
64GB	64GB	128GB				
GPU-GPU Bandwidth						
200 GB/s	32 GB/s	32 GB/s				
GPU TDP						
500W	1000W 2000W					

The University of Texas

Benchmark result not verified by MLPerf. MLPerf name and logo are trademarks. See www.mlperf.org for more information


D&LLEMC

4xV100-SXM2 16GB (NVLink)

##