
S9551 | Mar 20, 2019 | 14:00 pm, RM 231

Turbo-boosting Neural Networks
for Object Detection
Hongyang Li

The Chinese University of Hong Kong /

Microsoft Research Asia

Hongyang

CUHK Ph.D. candidate /
Microsoft Intern

Research Timeline

Ph.D. student start

ImageNet Challenge (PAMI), Object Attributes (ICCV)

2015

2015

Multi-bias Activation (ICML)

Recurrent Design for Detection (ICCV), COCO Loss (NIPS)

2016

2017

Zoom-out-and-in Network (IJCV), Capsule Nets (ECCV)

Feature Intertwiner (ICLR), Few-shot Learning (CVPR)

2018

2019

First-author Papers

Outline

1. Introduction to Object Detection
a. Pipeline overview
b. Dataset and evaluation
c. Popular methods
d. Existing problems

2. Solution: A Feature Intertwiner Module

3. Detection in Reality
a. Implementation on GPUs
b. Efficiency and accuracy tradeoff

4. Future of Object Detection

1. Introduction to Object Detection

Object Detection: core and fundamental task in computer vision

He et al.

Mask-RCNN

ICCV 2017
Best paper

http://www.youtube.com/watch?v=OOT3UIXZztE

Object Detection is everywhere

OBJECT DETECTION

How to solve it?

A naive solution: place many boxes on top of image/feature maps and classify them!

person
Not
person

How to solve it?

And yet challenges are:

person

1. Variations in shape/appearance/size

baseball

Helmet
Cotton Hat

2. Ambiguity in cluttered scenarios

How to solve it?
(a) Place anchors as many as possible and
(b) have layers deeper and deeper.

(a) place anchors (b) network design

Popular methods at a glance

Pipeline/system design

One-stage:

YOLO and variants
SSD and variants

Two-stage:

R-CNN family
(Fast RCNN, Faster RCNN, etc)

Component/structure/loss design

Feature Pyramid Network

Focal loss (RetinaNet)

Online hard negative mining (OHEM)

Zoom-out-and-in Network (ours)

Recurrent Scale Approximation (ours)

Feature Intertwiner (ours)

Pipeline: a roadmap of R-CNN family (two-stage detector)

P_l is the feature map output at level l;
P_m is from a higher level m.

level mlevel l

...

Pipeline: a roadmap of R-CNN family (two-stage detector)

P_l is the feature map output at level l;
P_m is from a higher level m.

RoI

level mlevel l

Small anchors
cropped out of
P_l

...
RoI output
(fixed size)

Pipeline: a roadmap of R-CNN family (two-stage detector)

P_l is the feature map output at level l;
P_m is from a higher level m.

RoI

Person
detected!

level mlevel l

...

Pipeline: a roadmap of R-CNN family (two-stage detector)

P_l is the feature map output at level l;
P_m is from a higher level m.

RoI

RoI

Person
detected!

level mlevel l

Large anchors
cropped out of
P_m

...

Pipeline: a roadmap of R-CNN family (two-stage detector)

P_l is the feature map output at level l;
P_m is from a higher level m.

RoI

RoI

Person
detected!

level mlevel l

RPN loss

RPN loss

...

Side: what is RoI (region of interest) operation?

Person
detected!

RPN loss

RPN loss

...

RoI

RoI

Fixed
size

output

RoI* *Achieved by pooling;
No learned parameters here

Many variants of RoI operations

Arbitrary
size of

feature map

R-CNN family (two-stage detector) vs. YOLO (one -stage detector)

RoI

RoI

...
Two stage:
R-CNN family

RPN loss

RPN loss
RPN: Two-class cls. problem

(object or not?)

K-class cls. problem
(dog, cat, etc)

Image size can
vary

R-CNN family (two-stage detector) vs. YOLO (one -stage detector)

RoI

RoI

...

...
Multiple K-class classifiers
(dog, cat, etc)

Two stage:
R-CNN family

One stage:
YOLO/SSD

Image size can
NOT vary

RPN loss

RPN loss
RPN: Two-class cls. problem

(object or not?)

K-class cls. problem
(dog, cat, etc)

Image size can
vary

More accurate

Faster

Both R-CNN and SSD models have been tremendously
adopted in academia/industry.

In this talk, we focus on the two-stage detector
with RoI operation.

Datasets

COCO dataset
http://mscoco.org/

YouTube-8M dataset
https://research.google.com/youtube8m/

And many others
ImageNet, VisualGenome, Pascal VOC, KITTI, etc.

http://mscoco.org/
https://research.google.com/youtube8m/

Evaluation - mean AP

prediction

Ground truth

If IoU (intersection / union)
= 0.65 > threshold,
Then current prediction is counted as Correct

For category person,

Get a set of Correct/incorrect
predictions, compute the
precision/recall.

Get the average precision (AP)
from the precision/recall figure.
Done.

Get all categories,
that’s mAP (under threshold).

What is uncomfortable in current pipelines?

Assume RoI’s output is 20

RoI input 40 → 20

RoI input 7 → 20

Inaccurate features
due to up-sampling!

Accurate features in
down-sampling!

Large objects

Small objects

What percentage of objects suffer from this?

Table 3 in our paper.
Proposal assignment on each level before RoI operation.
‘below #’ indicates how many proposals are there whose

size is below the size of RoI output.

We define small set to be the anchors on current level and
large set to be all anchors above current level.

2. Solution: A Feature Intertwiner Module

Our assumption

Visual feature

Semantic feature

The semantic features among instances (large or
small) within the same class should be the same.

same!!!

Our motivation

Inaccurate
maps/features

Intuition: let reliable features
supervise/guide the learning of the
less reliable ones.

Naive feature
intertwiner concept:

Suppose we have two sets of features already -
one is from large objects and the other is from small ones.

The Feature Intertwiner

For current level l

Cls. loss
Reg. loss (bbox)

Make-up layer:
fuel back the lost information during RoI and
compensate necessary details for small instances.
(one conv. layer)

For small objects

The Feature Intertwiner

For current level l

Cls. loss
Reg. loss (bbox)

Intertwiner
loss

Input to
Intertwiner

Critic layer:
transfer features to a larger channel size and reduce
spatial size to one. (two conv. layers)

For large objects

The Feature Intertwiner

Cls. loss
Reg. loss (bbox)

Intertwiner
loss

Input to
Intertwiner

Total loss = (Intertwiner+cls.+reg.) for all levelsFor current level l

The Feature Intertwiner

Anchors are placed at various levels.
What if there are no large instances in this mini-batch,
for the current level?

We define small set to be the anchors on current level and
large set to be all anchors above current level.

The Feature Intertwiner - class buffer

We use a class buffer to store the accurate feature set from large instances.

How to generate the buffer?

One simple idea is to

Take the average of features of all
large objects during training.

Feature
Intertwiner

For level l For all levels

Level 2

Level 3
...

Historical logger

Inter. loss

Discussions on Feature Intertwiner

● the intertwiner is proposed to optimize feature
learning of the less reliable set. During test, the
green part will be removed.

● can be seen as a teacher-student guidance in the
self-supervised domain.

● detach the gradient update in buffer will obtain
better results. “Soft targets”, similarly as in RL
(replay memory).

● The buffer is level-agnostic. Improvements over all
levels/sizes of objects are observed.

Historical logger

Inter. loss

For inference

The Feature Intertwiner - choosing optimal feature maps

How to choose the appropriate maps for large objects? as input to intertwiner

One simple solution is to

(a) Use the feature map directly on
current level.

This is inappropriate.
why?

For level l For all levels

Inter. loss

We define small set to be the anchors on current level and
large set to be all anchors above current level.

The Feature Intertwiner - choosing optimal feature maps

How to choose the appropriate maps for large objects? as input to intertwiner

Other options are

(b) use the feature maps on higher level.

(c) upsample higher-level maps to current
level, with learnable parameters (or not).

We will empirically analyze these later.

The Feature Intertwiner - choosing optimal feature maps

How to choose the appropriate maps for large objects? as input to intertwiner

Our final option is based on (c)

(d), build a better alignment between the
upsampled feature map with current map.

The Feature Intertwiner - choosing optimal feature maps

How to choose the appropriate maps for large objects? as input to intertwiner

The approach is
Optimal transport (OT).

In a nutshell, OT is to optimally move one distribution
(P_m|l) to the other (P_l).

Our final option is based on (c)

(d), build a better alignment between the
upsampled feature map with current map.

The Feature Intertwiner - choosing optimal feature maps

How to choose the appropriate maps for large objects? as input to intertwiner

The approach is
Optimal transport (OT).

In a nutshell, OT is to optimally move one distribution
(P_m|l) to the other (P_l).

Q is a cost matrix (distance)
P is a proxy matrix satisfying some constraint.

Our final option is based on (c)

(d), build a better alignment between the
upsampled feature map with current map.

The Feature Intertwiner - choosing optimal feature maps

How to choose the appropriate maps for large objects? as input to intertwiner

How to compute
Optimal transport (OT). =

Pm F

H

Q Cost matrix

P Sinkhorn iterate

OT loss

The Feature Intertwiner - choosing optimal feature maps

How to choose the appropriate maps for large objects? as input to intertwiner

How to compute
Optimal transport (OT). =

Components
Pm F

H

Q Cost matrix

P Sinkhorn iterate

OT loss

P

H->Q

The Feature Intertwiner - choosing optimal feature maps

Why Optimal transport (OT) is better than others?

Hence, the final loss:

● OT metric converges while other variants (KL or JS) don’t

● Provides sensible cost functions when learning distributions
supported by low-dim manifolds (p_l and p_m|l)

Summary of our method

Experiments

Setup

● Evaluate our algorithm on COCO dataset

● Train set: trainval-35k, test set: minival

● Network structure: resNet-50 or resNet-101 with FPN

● Based on Mask-RCNN framework without seg. Branch

● Evaluation metric: meanAP under different thresholds and sizes

The rest of details are stated in Sec. 6.5 in the paper.

Ablation on module design
Table 2 in the paper

gray background is the chosen default

Different anchor
placements

Observation #1:
Feature Intertwiner Module is better than baseline.

~2% mAP increase
Large objects also improve.
Why?

Does the intertwiner module work better?

Ablation on module design
Table 2 in the paper

gray background is the chosen default

Observation #2:
By optimizing the make-up layer; the linearly combined features
would further boost performance.

How does the intertwiner module affect feature learning?

Gradient flow

Ablation on module design
Table 2 in the paper

gray background is the chosen default

Observation #3:
Recording all history of the large/reliable set would achieve
better results (and save mem); one unified buffer is enough.

Does buffer size matter? Unified or level-based buffer?

How to design the buffer?

Ablation on OT unit

Table 1 in the paper

Different input sources for the reliable set

Visualization on samples within class

w/o intertwiner with intertwiner

Comparison with state-of-the-arts (I)

Figure 4 in the paper

Improvement per category after embedding the feature intertwiner

32.8 (baseline) vs 35.2 (ours) Most small-sized objects get improved!

Comparison with state-of-the-arts (I)

The most distinctive improvements are
Microwave, truck, cow, car, zebra

Zoom in

Comparison with state-of-the-arts (I)

Dropped!

Some categories witness a drop of performance
Couch, baseball bat, broccoli

Couch

The feature set of large
couch is less accurate due
to noises (of other classes).

Comparison with state-of-the-arts (II)

Fast-RCNN
variants 36.8

44.2

Same backbone 39.1

SSD 33.2

Proposed

Table 4 in the paper

Single-model performance (bounding box AP)

This work is published at ICLR 2019

Paper:

https://openreview.net/f
orum?id=SyxZJn05YX

Check out our poster at GTC!

P9108

AI/Deep Learning Research

Near the gear store

Code:

https://github.com/hli2020/featu
re_intertwiner

https://openreview.net/forum?id=SyxZJn05YX
https://openreview.net/forum?id=SyxZJn05YX
https://github.com/hli2020/feature_intertwiner
https://github.com/hli2020/feature_intertwiner

3. Detection in Reality

Practical issues on multi-GPUs

1. Batch normalization
Standard Implementations of BN in public frameworks (suck as Caffe, MXNet, Torch, TF, PyTorch) are
unsynchronized, which means that the data are normalized within each GPU.

https://hangzhang.org/PyTorch-Encoding/notes/syncbn.html

Synchronized BN

https://hangzhang.org/PyTorch-Encoding/notes/syncbn.html

Practical issues on multi-GPUs

1. Batch normalization

Does it matter? As long as bs on each GPU is
not too few, unsynchronized BN is ok.

Note that bs in the “deeper” part is the # of RoIs/boxes on each card;
Batch size in the backbone is the # of image!

Another rule of thumb: fixed BN in the backbone
when finetune the network on your task.

Practical issues on multi-GPUs

2. Wrap up the loss computation into forward() on each card
Otherwise GPU 0 would take too much memory in some cases, causing mem
imbalance and decrease utility of other GPUs.

loss loss loss loss loss

Practical issues on multi-GPUs

3. Different images must have same size of targets as input

4. What if the utility of GPUs is low?
- Dataloader is slow
- Move op. to Tensor
- …
- Or change to another workstation
- (often during inference, utility is low)

Trade-off between accuracy and efficiency

Additional model capacity increase in our method:

● Critic/make-up layers
● Buffer
● OT module

But these new designs only have light-weight effect.
FPN

SSD

Better
area

Trade-off between accuracy and efficiency

More facts:

Training: 8 GPUs, batch size=8, 3.4 days

Mem cost 9.6G/gpu, baseline 8.3G

Test (input 800 on Titan X):

325 ms/image, baseline 308 ms/image

FPN

SSD

Better
area

Mask-RCNN (39.2)

InterNet (42.5)

4. Future of Object Detection

Any alternatives? to abandon current anchor-based pipeline

Idea:
Current solution are all based on anchors (one-stage or two-stage).
Is bounding box really accurate to detector all objects?

How about detect objects using bottom-up approaches?
Like pixel-wise segmentation? In this way, we can
walkaround the box detection pipeline.

Densely cluttered persons

Take-away Messages

1. Object detection is the basic and core task of other high-level vision problems.

2. Feature engine (backbone) and detector design (domain knowledge) are important.

3. Beyond current pipeline (dense anchors):
solve detection via bottom-up approaches or 3D structure of objects.

 4. Beyond detection only - one model to learn them all:
 detection, segmentation, pose estimation, captioning,

zero-shot detection, curriculum learning, ...

Thank you! Questions?

Collaborators:

Yu Liu Bo Dai Xiaoyang Shaoshuai Wanli Xiaogang

Email: yangli@ee.cuhk.edu.hk

Slides at: http://www.ee.cuhk.edu.hk/~yangli/ twitter @francislee2020

mailto:yangli@ee.cuhk.edu.hk
http://www.ee.cuhk.edu.hk/~yangli/

