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1. Introduction to Object Detection



Object Detection: core and fundamental task in computer vision

He et al.

Mask-RCNN

ICCV 2017
Best paper

http://www.youtube.com/watch?v=OOT3UIXZztE


Object Detection is everywhere

OBJECT DETECTION



How to solve it?

A naive solution: place many boxes on top of image/feature maps and classify them!

person
Not 
person



How to solve it?

And yet challenges are:

person

1. Variations in shape/appearance/size

baseball

Helmet
Cotton Hat

2. Ambiguity in cluttered scenarios



How to solve it? 
(a) Place anchors as many as possible and 
(b) have layers deeper and deeper.

(a) place anchors (b) network design



Popular methods at a glance

Pipeline/system design 

One-stage:

YOLO and variants
SSD and variants

Two-stage:

R-CNN family
(Fast RCNN, Faster RCNN, etc)

Component/structure/loss design 

Feature Pyramid Network

Focal loss (RetinaNet)

Online hard negative mining (OHEM)

Zoom-out-and-in Network (ours)

Recurrent Scale Approximation (ours) 

Feature Intertwiner (ours)



Pipeline: a roadmap of R-CNN family (two-stage detector)

P_l is the feature map output at level l; 
P_m is from a higher level m.

level mlevel l

...
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Pipeline: a roadmap of R-CNN family (two-stage detector)

P_l is the feature map output at level l; 
P_m is from a higher level m.

RoI

RoI

Person
detected!

level mlevel l

RPN loss

RPN loss

...



Side: what is RoI (region of interest) operation?

Person
detected!

RPN loss

RPN loss

...

RoI

RoI

Fixed 
size 

output

RoI* *Achieved by pooling;
No learned parameters here

Many variants of RoI operations

Arbitrary 
size of 

feature map



R-CNN family (two-stage detector) vs. YOLO (one -stage detector)

RoI

RoI

...
Two stage:
R-CNN family

RPN loss

RPN loss
RPN: Two-class cls. problem 

(object or not?)

K-class cls. problem 
(dog, cat, etc)

Image size can 
vary



R-CNN family (two-stage detector) vs. YOLO (one -stage detector)

RoI

RoI

...

...
Multiple K-class classifiers 
(dog, cat, etc)

Two stage:
R-CNN family

One stage:
YOLO/SSD

Image size can 
NOT vary

RPN loss

RPN loss
RPN: Two-class cls. problem 

(object or not?)

K-class cls. problem 
(dog, cat, etc)

Image size can 
vary

More accurate 

Faster



Both R-CNN and SSD models have been tremendously 
adopted in academia/industry.

In this talk, we focus on the two-stage detector 
with RoI operation.



Datasets 

COCO dataset
http://mscoco.org/  

 

YouTube-8M dataset
https://research.google.com/youtube8m/ 

 

And many others
ImageNet, VisualGenome, Pascal VOC, KITTI, etc.

http://mscoco.org/
https://research.google.com/youtube8m/


Evaluation - mean AP

prediction

Ground truth

If IoU (intersection / union)
= 0.65 > threshold,
Then current prediction is counted as Correct

For category person,

Get a set of Correct/incorrect 
predictions, compute the 
precision/recall.

Get the average precision (AP) 
from the precision/recall figure.
Done.

Get all categories,
that’s mAP (under threshold).



What is uncomfortable in current pipelines?

Assume RoI’s output is 20

RoI input 40 → 20

RoI input 7 → 20

Inaccurate features 
due to up-sampling!

Accurate features in 
down-sampling!

Large objects

Small objects



What percentage of objects suffer from this?

Table 3 in our paper.
Proposal assignment on each level before RoI operation. 
‘below #’ indicates how many proposals are there whose 

size is below the size of RoI output.

We define small set to be the anchors on current level and 
large set to be all anchors above current level.



2. Solution: A Feature Intertwiner Module



Our assumption

Visual feature

Semantic  feature

The semantic features among instances (large or 
small) within the same class should be the same.

same!!!



Our motivation

Inaccurate 
maps/features

Intuition: let reliable features 
supervise/guide the learning of the 
less reliable ones.

Naive feature 
intertwiner concept:

Suppose we have two sets of features already - 
one is from large objects and the other is from small ones.



The Feature Intertwiner

For current level l

Cls. loss
Reg. loss (bbox)

Make-up layer: 
fuel back the lost information during RoI and 
compensate necessary details for small instances.
(one conv. layer) 

For small objects



The Feature Intertwiner

For current level l

Cls. loss
Reg. loss (bbox)

Intertwiner
loss

Input to 
Intertwiner

Critic layer: 
transfer features to a larger channel size and reduce 
spatial size to one. (two conv. layers) 

For large objects



The Feature Intertwiner

Cls. loss
Reg. loss (bbox)

Intertwiner
loss

Input to 
Intertwiner

Total loss = (Intertwiner+cls.+reg.) for all levelsFor current level l



The Feature Intertwiner

Anchors are placed at various levels.
What if there are no large instances in this mini-batch, 
for the current level?

We define small set to be the anchors on current level and 
large set to be all anchors above current level.



The Feature Intertwiner - class buffer

We use a class buffer to store the accurate feature set from large instances.

How to generate the buffer?

One simple idea is to 

Take the average of features of all 
large objects during training.

Feature
Intertwiner

For level l For all levels

Level 2

Level 3
...

Historical logger

Inter. loss



Discussions on Feature Intertwiner

● the intertwiner is proposed to optimize feature 
learning of the less reliable set. During test, the 
green part will be removed. 

● can be seen as a teacher-student guidance in the 
self-supervised domain.

● detach the gradient update in buffer will obtain 
better results. “Soft targets”, similarly as in RL 
(replay memory).

● The buffer is level-agnostic. Improvements over all 
levels/sizes of objects are observed.

Historical logger

Inter. loss

For inference



The Feature Intertwiner - choosing optimal feature maps 

How to choose the appropriate maps for large objects? as input to intertwiner

One simple solution is to 

(a) Use the feature map directly on 
current level. 

This is inappropriate. 
why?

For level l For all levels

Inter. loss

We define small set to be the anchors on current level and 
large set to be all anchors above current level.



The Feature Intertwiner - choosing optimal feature maps 

How to choose the appropriate maps for large objects? as input to intertwiner

Other options are 

(b) use the feature maps on higher level. 

(c) upsample higher-level maps to current 
level, with learnable parameters (or not). 

We will empirically analyze these later.



The Feature Intertwiner - choosing optimal feature maps 

How to choose the appropriate maps for large objects? as input to intertwiner

Our final option is based on (c)

(d), build a better alignment between the 
upsampled feature map with current map.
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The approach is 
Optimal transport (OT). 

In a nutshell, OT is to optimally move one distribution 
(P_m|l) to the other (P_l).

Q is a cost matrix (distance)
P is a proxy matrix satisfying some constraint. 
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The Feature Intertwiner - choosing optimal feature maps 

How to choose the appropriate maps for large objects? as input to intertwiner

How to compute 
Optimal transport (OT). =

Components 
Pm F

H

Q Cost matrix

P Sinkhorn iterate

OT loss

 

 
P

H->Q



The Feature Intertwiner - choosing optimal feature maps 

Why Optimal transport (OT) is better than others?

Hence, the final loss:

● OT metric converges while other variants (KL or JS) don’t

● Provides sensible cost functions when learning distributions 
supported by low-dim manifolds (p_l and p_m|l)



Summary of our method



Experiments



Setup 

● Evaluate our algorithm on COCO dataset

● Train set: trainval-35k, test set: minival

● Network structure: resNet-50 or resNet-101 with FPN

● Based on Mask-RCNN framework without seg. Branch

● Evaluation metric: meanAP under different thresholds and sizes

The rest of details are stated in Sec. 6.5 in the paper.



Ablation on module design
Table 2 in the paper

gray background is the chosen default

Different anchor
placements

Observation #1: 
Feature Intertwiner Module is better than baseline.

~2% mAP increase
Large objects also improve.
Why?

Does the intertwiner module work better?



Ablation on module design
Table 2 in the paper

gray background is the chosen default

Observation #2: 
By optimizing the make-up layer; the linearly combined features 
would further boost performance.

How does the intertwiner module affect feature learning?

Gradient flow



Ablation on module design
Table 2 in the paper

gray background is the chosen default

Observation #3:
Recording all history of the large/reliable set would achieve 
better results (and save mem); one unified buffer is enough.   

Does buffer size matter? Unified or level-based buffer?

How to design the buffer?



Ablation on OT unit

Table 1 in the paper

Different input sources for the reliable set



Visualization on samples within class 

w/o intertwiner with intertwiner



Comparison with state-of-the-arts (I)

Figure 4 in the paper

Improvement per category after embedding the feature intertwiner

32.8 (baseline) vs 35.2 (ours) Most small-sized objects get improved!



Comparison with state-of-the-arts (I)

The most distinctive improvements are
Microwave, truck, cow, car, zebra 

Zoom in



Comparison with state-of-the-arts (I)

Dropped!

Some categories witness a drop of performance
Couch, baseball bat, broccoli 

Couch

The feature set of large 
couch is less accurate due 
to noises (of other classes).



Comparison with state-of-the-arts (II)

Fast-RCNN 
variants 36.8

44.2

Same backbone 39.1

SSD 33.2

Proposed

Table 4 in the paper

Single-model performance (bounding box AP)



This work is published at ICLR 2019

Paper:

https://openreview.net/f
orum?id=SyxZJn05YX 

Check out our poster at GTC!

P9108

AI/Deep Learning Research

Near the gear store

Code:

https://github.com/hli2020/featu
re_intertwiner 

https://openreview.net/forum?id=SyxZJn05YX
https://openreview.net/forum?id=SyxZJn05YX
https://github.com/hli2020/feature_intertwiner
https://github.com/hli2020/feature_intertwiner


3. Detection in Reality



Practical issues on multi-GPUs

1. Batch normalization
Standard Implementations of BN in public frameworks (suck as Caffe, MXNet, Torch, TF, PyTorch) are 
unsynchronized, which means that the data are normalized within each GPU. 

https://hangzhang.org/PyTorch-Encoding/notes/syncbn.html 

Synchronized BN

https://hangzhang.org/PyTorch-Encoding/notes/syncbn.html


Practical issues on multi-GPUs

1. Batch normalization

Does it matter? As long as bs on each GPU is 
not too few, unsynchronized BN is ok.

Note that bs in the “deeper” part is the # of RoIs/boxes on each card;  
Batch size in the backbone is  the # of image!

Another rule of thumb: fixed BN in the backbone 
when finetune the network on your task.



Practical issues on multi-GPUs

2. Wrap up the loss computation into forward() on each card
Otherwise GPU 0 would take too much memory in some cases, causing mem 
imbalance and decrease utility of other GPUs.

loss loss loss loss loss



Practical issues on multi-GPUs

3. Different images must have same size of targets as input

4. What if the utility of GPUs is low?
- Dataloader is slow
- Move op. to Tensor
- …
- Or change to another workstation
- (often during inference, utility is low)



Trade-off between accuracy and efficiency

Additional model capacity increase in our method:

● Critic/make-up layers
● Buffer
● OT module

But these new designs only have light-weight effect.
FPN

SSD

Better
area



Trade-off between accuracy and efficiency

More facts:

Training: 8 GPUs, batch size=8, 3.4 days

Mem cost 9.6G/gpu, baseline 8.3G

Test (input 800 on Titan X):

325 ms/image, baseline 308 ms/image 

FPN

SSD

Better
area

Mask-RCNN (39.2)

InterNet (42.5)



4. Future of Object Detection



Any alternatives? to abandon current anchor-based pipeline

Idea: 
Current solution are all based on anchors (one-stage or two-stage).
Is bounding box really accurate to detector all objects?

How about detect objects using bottom-up approaches? 
Like pixel-wise segmentation? In this way, we can 
walkaround the box detection pipeline.

Densely cluttered persons 



Take-away Messages

1. Object detection is the basic and core task of other high-level vision problems.

2. Feature engine (backbone) and detector design (domain knowledge) are important.

3. Beyond current pipeline (dense anchors): 
solve detection via bottom-up approaches or 3D structure of objects. 

 4. Beyond detection only - one model to learn them all:
 detection, segmentation, pose estimation, captioning, 

zero-shot detection, curriculum learning, ...

 



Thank you! Questions?

Collaborators:

Yu Liu Bo Dai Xiaoyang Shaoshuai Wanli Xiaogang

Email: yangli@ee.cuhk.edu.hk 

Slides at: http://www.ee.cuhk.edu.hk/~yangli/  twitter @francislee2020  

mailto:yangli@ee.cuhk.edu.hk
http://www.ee.cuhk.edu.hk/~yangli/



