

S9551 | Mar 20, 2019 | 14:00 pm, RM 231

Turbo-boosting Neural Networks for Object Detection

Hongyang Li

The Chinese University of Hong Kong /

Microsoft Research Asia

Hongyang

CUHK Ph.D. candidate / Microsoft Intern

Research Timeline

2015	Ph.D. student start
2015	ImageNet Challenge (PAMI), Object Attributes (ICCV)
2016	Multi-bias Activation (ICML)
2017	Recurrent Design for Detection (ICCV), COCO Loss (NIPS)
2018	Zoom-out-and-in Network (IJCV), Capsule Nets (ECCV)
2019	Feature Intertwiner (ICLR), Few-shot Learning (CVPR)

Outline

1. Introduction to Object Detection

- a. Pipeline overview
- b. Dataset and evaluation
- c. Popular methods
- d. Existing problems

2. Solution: A Feature Intertwiner Module

3. Detection in Reality

- a. Implementation on GPUs
- b. Efficiency and accuracy tradeoff

4. Future of Object Detection

1. Introduction to Object Detection

Object Detection: core and fundamental task in computer vision

Object Detection is everywhere

AI Cities

Al for Public Good

Healthcare

Robotics

Self-Driving Cars

Retail

How to solve it?

A naive solution: place many boxes on top of image/feature maps and classify them!

How to solve it?

And yet challenges are:

Cotton Hat

1. Variations in shape/appearance/size

2. Ambiguity in cluttered scenarios

How to solve it?

(a) Place anchors as many as possible and(b) have layers deeper and deeper.

(a) place anchors

Feature Pyramid Network

(b) network design

Popular methods at a glance

Pipeline/system design

One-stage:

YOLO and variants SSD and variants

Two-stage:

R-CNN family (Fast RCNN, Faster RCNN, etc)

Feature Pyramid Network Focal loss (RetinaNet) Online hard negative mining (OHEM) Zoom-out-and-in Network (ours) Recurrent Scale Approximation (ours) Feature Intertwiner (ours)

Side: what is **Rol** (region of interest) operation?

R-CNN family (two-stage detector) vs. YOLO (one -stage detector)

R-CNN family (two-stage detector) vs. **YOLO** (one -stage detector)

Both R-CNN and SSD models have been tremendously adopted in academia/industry.

In this talk, we focus on the *two-stage detector* with Rol operation.

Datasets

COCO dataset http://mscoco.org/

đe

YouTube-8M dataset

https://research.google.com/youtube8m/

And many others

ImageNet, VisualGenome, Pascal VOC, KITTI, etc.

Vehicle (415890)

 \bigcirc

而

Evaluation - mean AP

For category person,

Get a set of Correct/incorrect predictions, compute the precision/recall.

Get the average precision (AP) from the precision/recall figure. Done.

Get all categories, that's **mAP** (under *threshold*).

If IoU (intersection / union)
= 0.65 > threshold,
Then current prediction is counted as Correct

What is uncomfortable in current pipelines?

Assume Rol's output is 20

What percentage of objects suffer from this?

level l	2	3	4	5
proposal # (perc.)	302 (75%)	36 (9%)	54 (14%)	8 (2%)
threshold	0.012	0.0479	0.1914	0.7657
below # / above #	263 / 39	25/11	34/20	8/0

Table 3 in our paper.

Proposal assignment on each level before Rol operation. 'below #' indicates how many proposals are there whose size is **below** the size of Rol output.

We define **small set** to be the anchors on current level and **large set** to be all anchors <u>*above*</u> current level.

2. Solution: A Feature Intertwiner Module

Our assumption

The semantic features among instances (large or small) within the same class should be **the same**.

Suppose we have two sets of features already - one is from large objects and the other is from small ones.

Naive feature intertwiner concept:

For small objects

For current level I

For current level I

Total loss = (Intertwiner+cls.+reg.) for *all* levels

For current level I

We define **small set** to be the anchors on current level and **large set** to be all anchors <u>*above*</u> current level.

The Feature Intertwiner - class buffer

Discussions on Feature Intertwiner

For inference

- the intertwiner is proposed to optimize feature learning of the less reliable set. During test, the green part will be removed.
- can be seen as a **teacher-student guidance** in the self-supervised domain.
- **detach** the gradient update in buffer will obtain better results. "Soft targets", similarly as in RL (replay memory).
- The buffer is **level-agnostic**. Improvements over all levels/sizes of objects are observed.

How to choose the appropriate maps for large objects? as input to intertwiner

GPU TECHNO

We define **small set** to be the anchors on current level and **large set** to be all anchors <u>above</u> current level.

How to choose the appropriate maps for large objects? as input to intertwiner

Other options are (b) use the feature maps on higher level.

$$P^{(\texttt{large},l)} = P_m$$

$$\left(\begin{array}{c} (b) \\ P_l \end{array}\right) \rightarrow \left(\begin{array}{c} P_l \\ P_m \end{array}\right)$$

(c) upsample higher-level maps to current level, with learnable parameters (or not).

$$P^{(\texttt{large},l)} = P_{m|l} \triangleq \mathcal{F}(P_m)$$

We will empirically analyze these later.

How to choose the appropriate maps for large objects? as input to intertwiner

Our final option is based on (c) (d), **build a better alignment** between the upsampled feature map with current map.

 $P^{(\texttt{large},l)} = \mathbf{OT}(P_l, P_{m|l})$

How to choose the appropriate maps for large objects? as input to intertwiner

Our final option is based on (c) (d), **build a better alignment** between the upsampled feature map with current map.

 $P^{(\texttt{large},l)} = \mathbf{OT}(P_l, P_{m|l})$

The approach is

Optimal transport (OT).

In a nutshell, OT is to **optimally** move one distribution $(P_m|I)$ to the other (P_I) .

Optimal transportation matrix

Continuous optimal transport

$$\mathcal{W}_Q(\mathbb{P}_{\psi}, \mathbb{P}_r) = \inf_{\gamma \in \Gamma(\mathbb{P}_{\psi}, \mathbb{P}_r)} \mathbb{E}\bigg[\int_{\mathcal{U} \times \mathcal{U}} Q(u', u) d\gamma(u', u)\bigg],$$

How to choose the appropriate maps for large objects? as input to intertwiner

Our final option is based on (c) (d), **build a better alignment** between the upsampled feature map with current map.

 $P^{(\texttt{large},l)} = \mathsf{OT}(P_l, P_{m|l})$

The approach is

Optimal transport (OT).

In a nutshell, OT is to **optimally** move one distribution $(P_m|I)$ to the other (P_I) .

$$\operatorname{OT}(P_l, P_{m|l}) \triangleq \mathcal{W}_Q(\mathbb{P}_{\psi}, \mathbb{P}_r) \xleftarrow{\operatorname{discrete}} \min_{P \in \mathbb{R}^{C_2 \times C_1}_+} \langle Q, P \rangle,$$

Q is a cost matrix (distance) P is a proxy matrix satisfying some constraint. **Optimal transportation matrix**

How to choose the appropriate maps for large objects? as input to intertwiner

How to choose the appropriate maps for large objects? as input to intertwiner

How to compute Optimal transport (OT). $P^{(\texttt{large},l)} = \texttt{OT}(P_l, P_{m|l}) = \min_{P \in \mathbb{R}^{C_2 \times C_1}_+} \langle Q, P \rangle,$

Input:	Feature maps on current and higher levels, P_l , P_m The generator network \mathcal{F} and the critic unit in OT module \mathcal{H}	Cor	nponents
Output:	Sinkhorn loss $\mathcal{W}_Q^l(P_l, P_m) = \operatorname{OT}(P_l, P_m _l)$		
Upsample	e via generator $P_{m l} = \mathcal{F}(P_m)$		
Feed both $\forall (x, y)$ in	in inputs into critic $p_l = \mathcal{H}(P_l), p_{m l} = \mathcal{H}(P_{m l})$ $p_l, p_{m l}$, define the ground cost $Q_{x,y} = \texttt{cosine_dist}(p_l, p_{m l})$	>Q	
Initialize c Compute C	oefficients $b^{(0)} = 1_C$ Bibbs kernel $K_{x,y} = \exp(-Q_{x,y}/\varepsilon)$		
for $l = 0$ for $a^{(l+1)}$ end for	$:= \frac{1_C}{K^{T} b^{(l)}}, b^{(l+1)} := \frac{1_C}{K a^{(l)}},$	Ρ	
Compute t	he proxy matrix $P^{(L)} = \operatorname{diag}(b^{(L)}) \cdot K \cdot \operatorname{diag}(a^{(L)})$		

Hence, the final loss:
$$\mathcal{L} = \mathcal{L}_{inter} + \sum_{l} \mathcal{W}_{Q}^{(l)}(P_{l}, P_{m}) + \mathcal{L}_{standard},$$

Why Optimal transport (OT) is better than others?

- OT metric converges while other variants (KL or JS) don't
- Provides sensible cost functions when learning distributions supported by low-dim manifolds (*p*_l and *p*_m|l)

Summary of our method

- Evaluate our algorithm on COCO dataset
- Train set: trainval-35k, test set: minival
- Network structure: resNet-50 or resNet-101 with FPN
- Based on Mask-RCNN framework without seg. Branch
- Evaluation metric: meanAP under different thresholds and sizes

		proposal split	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
		by RoI size	30.9	53.7	35.1	10.8	34.7	46.6
	baseline	more on higher	31.3	54.0	35.8	11.4	35.1	47.5
		default *	32.8	55.3	37.2	12.7	36.8	49.3
Different and	hor	by RoI size	33.7	56.1	37.6	13.5	37.4	50.8
placements	intertwiner	more on higher	32.3	55.7	37.1	12.9	36.2	49.5
placements		default **	35.2	57.6	38.0	15.3	38.7	51.1
	incre	ase from * to **	+2.4	+2.1	+0.8	+2.6	+1.9	+0.8

~2% mAP increase <u>Large</u> objects also improve. **Why?**

(a) **Baseline and proposal assignment strategy**: intertwiner increases detection of both small and large objects compared to baseline. Putting more proposals on lower level brings more gain.

Does the intertwiner module work better?

Observation #1: Feature Intertwiner Module is better than baseline.

How does the intertwiner module affect feature learning?

Observation #2: By optimizing the make-up layer; the linearly combined features would further boost performance.

	AP	AP ₅₀	AP ₇₅
separate	34.0	57.1	37.3
naive add		— fail —	-
linear	35.2	57.6	38.0

(c) Boosted detection feature source: merging f_{critic} into the detection followup pipeline increases result.

Does buffer size matter? Unified or level-based buffer?

Observation #3:

Recording all history of the large/reliable set would achieve better results (and save mem); one unified buffer is enough.

	size/weight	AP	AP ₅₀	AP ₇₅
nortial	2000	37.3	58.5	44.7
partial	15k (epoch)	38.8	59.9	46.1
allhistowy	decay weight	39.2	60.6	45.4
an instory	equal weight	40.5	62.8	47.6

How to design the buffer?

	yes?	AP	AP_{50}	AP ₇₅
multiple B	1	40.58	62.83	47.62
muniple D	×	40.54	62.81	47.61
datach h	1	40.5	62.8	47.6
uetach o _i	X	40.1	62.4	47.3

(d) **Buffer choice design** (101-layer): buffer taking in all history with equal weight ensures best accuracy. Longer size in 'partial' block enhances result and yet possesses more parameters.

(e) Workflow design (101-layer): applying different buffers on each level barely matters; detaching b_i during back-propagation is better.

Ablation on **OT unit**

option	variant	AP	AP ₅₀	AP ₇₅	AP_S	AP_M	AP_L
(a) use P_l		35.1	54.9	40.7	20.2	38.3	48.5
(b) use P	m (baseline)	40.5	62.8	47.6	23.7	45.2	53.1
(a) P	\mathcal{F} bilinear	40.6	62.9	47.6	23.9	45.4	53.1
$(C) \Gamma_m l$	\mathcal{F} neural net*	41.3	63.5	48.5	24.6	46.3	53.8
	increase from (b) to (c)*	+0.8	+0.7	+0.9	+0.9	+1.1	+0.7
	KL, \mathcal{F} neural net	41.0	63.1	48.2	24.5	45.7	53.4
$(\mathbf{d}) \mathbf{D}$	l_2, \mathcal{F} neural net	41.8	64.2	48.9	24.7	46.0	53.8
(u) $\Gamma_m l$	optimal transport (OT)**	42.5	65.1	49.4	25.4	46.6	54.3
	biased version of OT	42.5	65.3	48.6	25.3	46.8	54.3
	increase from (b) to (d)**	+2.0	+2.3	+1.8	+1.7	+1.4	+1.2

Table 1 in the paper Different input sources for the reliable set

Visualization on samples within class

Most small-sized objects get improved!

Figure 4 in the paper Improvement <u>per category</u> after embedding the feature intertwiner

Comparison with state-of-the-arts (I)

The most distinctive improvements are Microwave, truck, cow, car, zebra

Comparison with state-of-the-arts (I)

Some categories witness a drop of performance Couch, baseball bat, broccoli

The feature set of large couch is less accurate due to noises (of other classes).

Comparison with state-of-the-arts (II)

	backbone	AP	AP ₅₀	AP75	APS	AP_M	AP_L
	One-stage detector						
	YOLOv2 (Redmon & Farhadi, 2016) DarkNet-19	21.6	44.0	19.2	5.0	22.4	35.5
	SSD513 (Liu et al., 2015) ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
SSD	DSSD513 (Fu et al., 2017) ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
	Two-stage detector						
	F-R-CNN+++ (He et al., 2016) ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Fast-RCN	F-R-CNN w FPN (Lin et al., 2017a) ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
variants	F-R-CNN by G-RMI (Huang et al., 2017) InceptResNet-v2	34.7	55.5	36.7	13.5	38.1	52.0
variance	F-R-CNN w TDM (Shrivastava et al., 2016) InceptResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
	R-FCN (Dai et al., 2016) ResNet-101	29.9	51.9		10.8	32.8	45.0
	Mask RCNN (He et al., 2017) ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Same back	bone RetinaNet (Lin et al., 2017b) ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
	Mask RCNN, updated in (He et al., 2017) ResNetX-101-FPN	43.5	65.9	47.2	-	-	-
-	InterNet (ours) ResNet-101-FPN	42.5	65.1	49.4	25.4	46.6	54.3
Proposed	InterNet (ours) multi-scale ResNet-101-FPN	44.2	67.5	51.1	27.2	50.3	57.7

Table 4 in the paper Single-model performance (bounding box AP)

This work is published at ICLR 2019

Paper:

Code:

https://openreview.net/f orum?id=SyxZJn05YX https://github.com/hli2020/featu re_intertwiner Check out our poster at GTC! P9108 Al/Deep Learning Research Near the gear store

3. Detection in Reality

1. Batch normalization

Standard Implementations of BN in public frameworks (suck as Caffe, MXNet, Torch, TF, **PyTorch**) are **unsynchronized**, which means that the data are normalized **within each GPU**.

1. Batch normalization

Does it matter? As long as bs on each GPU is not too few, unsynchronized BN is ok.

Note that bs in the "deeper" part is the **#** of Rols/boxes on each card; Batch size in the backbone is the **#** of image!

Another rule of thumb: fixed BN in the backbone when finetune the network on your task.

2. Wrap up the loss computation into forward() on each card

Otherwise GPU 0 would take too much memory in some cases, causing mem imbalance and decrease utility of other GPUs.

Practical issues on multi-GPUs

3. Different images must have same size of targets as input

4. What if the utility of GPUs is low?

- Dataloader is slow
- Move op. to Tensor
- ...
- Or change to another workstation
- (often during inference, utility is low)

NVID	IA-SMI 39	0.42	v Insert		Driver Vers	ion: 390.	42 Help All c	
GPU	Name	rf	Persiste	ence-MI	Bus-Id	Disp.A L	Volatile (Jncorr. EC
Fan	Temp Pe		Pwr:Usag	ge/CapI	Memor	y-Usage T	GPU-Util	Compute M
0	GeForce	GTX	TIT	0n	00000000:04:0	0.0 Off	0%	N/.
22%	25C	P8	15W /	250W	0MiB / 1	2212MiB		Defaul
1 22%	GeForce	GTX P8	TIT 16W /	0n 250W	00000000:05:0 0MiB / 1	0.0 Off 2212MiB	0%	N// Defaul
2	GeForce	GTX	TIT	0n	00000000:08:0	0.0 Off	ages must ha	ve same <mark>N</mark> //
22%	29C	P8	15W /	250W	0MiB / 1	2212MiB		Defaul
3	GeForce	GTX	TIT	0n	00000000:09:0	0.0 Off	tility of GPU	Js is low? _{N/}
22%	28C	P8	15W /	250W	0MiB / 1	2212MiB	0%	Defaul
4	GeForce	GTX	TIT	0n	00000000:85:0	0.0 Off	0%	N//
22%	28C	P8	15W /	250W	0MiB / 1	2212MiB		Defaul

Trade-off between accuracy and efficiency

Additional model capacity increase in our method:

- Critic/make-up layers
- Buffer
- OT module

But these new designs only have light-weight effect.

Trade-off between accuracy and efficiency

More facts:

Training: 8 GPUs, batch size=8, **3.4 days**

Mem cost 9.6G/gpu, baseline 8.3G

Test (input 800 on Titan X):

325 ms/image, baseline 308 ms/image

4. Future of Object Detection

Idea:

Current solution are all based on anchors (one-stage or two-stage). Is bounding box really accurate to detector all objects?

How about detect objects **using bottom-up approaches? Like pixel-wise segmentation?** In this way, we can walkaround the box detection pipeline.

Take-away Messages

- 1. Object detection is the **basic and core** task of other high-level vision problems.
- 2. Feature engine (backbone) and detector design (domain knowledge) are important.
- 3. <u>Beyond current pipeline (dense anchors)</u>: solve detection via bottom-up approaches or 3D structure of objects.
- 4. <u>Beyond</u> detection only one model to learn them all: detection, segmentation, pose estimation, captioning, zero-shot detection, curriculum learning, ...

Thank you! Questions?

Slides at: <u>http://www.ee.cuhk.edu.hk/~yangli/</u> twitter @francislee2020

Email: yangli@ee.cuhk.edu.hk

Collaborators:

Yu Liu

Bo Dai

Xiaoyang

Shaoshuai

Wanli

Xiaogang

