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Our Motivation
Solving Coulomb problem for Molecular Dynamics

Task: Compute all pairwise interactions of N particles

N-body problem: O(N2) → O(N) with FMM

Why is that an issue?

MD targets < 1ms runtime per time step

MD runs millions or billions of time steps

not compute-bound, but synchronization bound

no libraries (like BLAS) to do the heavy lifting

We might have to look under the hood ... and get our hands dirty.
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Parallelization Potential

Classical
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Classical Approach

Lots of independent parallelism
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Parallelization Potential

FMM
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Fast Multipole Method (FMM)

Many dependent phases

Varying amount of parallelism
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Coarse-Grained Parallelization

Input P2M M2M M2L L2L L2P P2P Output

synchronization

points

Different amount of available loop-level parallelism within each phase

Some phases contain sub-dependencies

Synchronizations might be problematic
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FMM Algorithmic Flow
Multipole to multipole (M2M), shifting multipoles upwards
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Dataflow – Fine-grained Dependencies
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FMM Algorithmic Flow
Multipole to local (M2L), translate remote multipoles into local taylor moments
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FMM Algorithmic Flow
Local to local (L2L), shifting Taylor moments downwards
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FMM Algorithmic Flow
Local to local (L2L), shifting Taylor moments downwards
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CPU Tasking Framework

Core

ThreadingWrapper
Thread

Scheduler

Queue

⋯

Dispatcher

TaskFactory

LoadBalancer
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CPU Tasking Framework
Task life-cycle per thread

Dispatcher

TaskFactory LoadBalancer

�

Queues

� Task execution

� new task

Tasks can be prioritized by task type

Only ready-to-execute tasks are stored in queue

Workstealing from other threads is possible
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Tasking Without Workstealing
103 680 Particles on 2×Intel Xeon E5-2680 v3 (2×12 cores)
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GPU Tasking
Goal

Provide same features as CPU tasking:

Static and dynamic load balancing

Priority queues

Ready-to-execute tasks
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GPU Tasking
Uniform Programming Model for CPUs and GPUs
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Pitfalls
Performance Portability

Diverse GPU programming approaches:

OpenCL

CUDA

SYCL

Our requirements:

Strong subset of C++11

Portability between GPU vendors

Tasking features

Maturity

(Intermediate) Solution

Use CUDA for reasons of performance, specific tasking features and maturity. Take the loss of not being

portable out of the box.
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Pitfalls
Performance Portability

For performance portability we consider diverse GPU programming approaches:

OpenCL

CUDA

SYCL

Unsatisfying (Intermediate) Solution

Use CUDA for reasons of performance and specific features. Take the loss of not being portable out of the

box.
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Pitfalls
Architectural Differences

Pitfalls for Load Balancing

No thread pinning

No cache coherency

Pitfalls for Mutual Exclusion

Weak memory consistency

Missing forward progress guarantees

Member of the Helmholtz Association March 21, 2019 Slide 20



Pitfalls
Load Balancing

No possibility to pin threads to streaming multiprocessors

No direct access to shared memory of other streaming multiprocessors

Work stealing requires multi-producer multi-consumer queues → Mechanism for mutual exclusion?
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Pitfalls
Mutual Exclusion

Weak memory consistency

Warp-synchronous deadlocks due to lock step

How to prove thread safety?
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Pitfalls
Mutex Implementation

class Mutex

{

__inline__ __device__ void lock()

{

while (atomicCAS(&mutex, 0, 1) != 0)

__threadfence();

};

__inline__ __device__ void unlock()

{

__threadfence();

atomicExch(&mutex, 0);

};

int mutex = 0;

};
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Very First Evaluation
Conditions

Tasking with global queue only

Measurements without work load to determine enqueue and dequeue overhead

Measurements on P100 with 56 thread blocks with 1024 threads each

Measurements on V100 with 80 thread blocks with 1024 threads each
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First Evaluation
Tasking Overhead on P100 and V100
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GPU Tasking
Conclusion

Fine-grained task parallelism pays off on CPUs

Developed mapping between CPU and GPU concepts

(Partly) overcome pitfalls:

Lock-based mutual exclusion

Reusability of CPU tasking code

Architectural differences between CPU and GPU

Successfully transferred parts of CPU tasking to GPUs
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Next Steps
Analyze and solve performance issues in dependency resolution

Use memory pool for dynamic allocations

Implement hierarchical queues

Transfer priority queue to GPU

Exploit data-parallelism through warps

Consider the use of lock-free data structures

Implement FMM based on GPU tasking
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Thank You to Our Sponsor!

NVIDIA Tesla V100 and NVIDIA Tesla P100 where provided by

Member of the Helmholtz Association March 21, 2019 Slide 28



The Rocky Road To Tasking

March 21, 2019 Ivo Kabadshow, Laura Morgenstern Jülich Supercomputing Centre

Member of the Helmholtz Association


