
Mark Ren, Miloni Mehta

USING MACHINE LEARNING FOR VLSI 
TESTABILITY AND RELIABILITY



2

TAKE-HOME MESSAGES

• Machine learning can improve approximate solutions for hard 
problems.

• Machine learning can accurately predict and replace brute force 
methods for computational expensive problems.
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PART 1

Testability Prediction and Test Point Insertion with Graph 
Convolutional Network (GCN)

Mark Ren, Brucek Khailany, Harbinder 
Sikka, Lijuan Luo, Karthikeyan Natarajan

Yuzhe Ma, Bei Yu

“High Performance Graph Convolutional Networks with Applications in Testability Analysis”, to appear in Proceedings of Design Automation Conference, 2019
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PART 2

Full Chip FinFET Self-heat Prediction using Machine Learning

Miloni Mehta, Chi Keung Lee, Chintan Shah, Kirk Twardowski
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PART 1 OUTLINE

Introduction

Learning model for testability analysis and enhancement

Practical issues

Scalability 

Data imbalance
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HOW DO WE TEST A CHIP
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TESTABILITY PROBLEM
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MOTIVATION

Test Point Insertion Problem:

Pick the smallest number of test points to achieve the largest testability enhancement

Number of test points → chip area cost

Number of test patterns → test time

Hard problem, only approximate solutions exist

Commercial solution: Synopsys TetraMax

Can we improve it with Machine Learning? 

Predict testability

Select test points
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ML BASED TESTABILITY PREDICTION

Given a circuit, predict which gate outputs are difficult-to-test (DT)

Gate Features: [logic level, SCOAP_C0, SCOAP_C1, SCOAP_OB]

Gate Label: DT (0 or 1) generated by TetraMax

Input Features

N1: 0,0,1,1
N2: 1,0,1,0
N3: 2,0,1,1

.

.

.

Output classification

N1: 0
N2: 1
N3: 0

.

.

.

ML Model
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BASIC MACHINE LEARNING MODELING
Did not fully leverage the inductive bias of circuit structure 
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GRAPH CONVOLUTIONAL NETWORK (GCN)
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GCN BASED TESTABILITY PREDICTION

Weighted sum 
& Relu(R4 

→ R32)
Weighted sum 
& Relu(R32 

→ R64)

1

0

1

0

00

Layer 1 Layer 2 Layer 3 Fully Connected Layers

Weighted sum 
& Relu(R64 

→ R128)
(64,64,128,2)



14

ACCURACY IMPACT OF GCN LAYERS (K)
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EMBEDDING VISUALIZATION

K=1 K=2 K=3

• Embeddings looks more discriminative as stage increase;
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MODEL COMPARISON ON BALANCED DATASET 

Compare with basic ML modeling: LR, RF, MLP, SVM 

N=500 nodes in fanin cone and 500 nodes in 

fanout cone, a total of 1000 nodes

Compare to 3-layer GCN

Less than 1000 nodes influence each node, 

comparable with the baseline

GCN has the best accuracy (93%).
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TEST POINT INSERTION WITH GCN MODEL

An iterative process to select TPs 

enabled by GCN model

Select TP candidate based on 

predicted impact
Number of reduced DTs in the 

fanin cone of TP

GraphCircuit GCN Model

Graph 
Modification

GCN Model

Impact 
Estimation

Point Selection

Graph 
Modification

Done?
N

Y

TP Candidates

new TP

new TP

Final TPs
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TEST POINT INSERTION RESULTS COMPARISON

11% less test points with 6% less test pattern under same coverage vs TetraMax.

Machine learning can improve approximate solutions for hard problems
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MODEL SCALABILITY 

Choices of model implementation

Batch processing: Recursion

Full graph: Sparse matrix multiplication

𝐸𝑘 = 𝑅𝑒𝐿𝑈((𝐴 ∗ 𝐸𝑘−1) ∗ 𝑊𝑘)

Tradeoff

Memory vs speed

1M nodes/second on Volta GPU
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MULTI GPU TRAINING

Training dataset has multiple million gates designs that can not fit on one GPU

Data parallelism, each GPU computes one design/graph

Replicate models across multiple GPUs

Leverage PyTorch DataParallel module

Trained with 4 Tesla V100 GPUs on DGX1

Shared model
GPU1

Shared model
GPU2

Graph1

Graph2

Shared model
GPU3

Shared model
GPU4

Graph3

Graph4

Δ
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IMBALANCE ISSUE

It is very common to have much more non-DTs (negative class) than DTs (positive class), 
imbalance ratio more than 100X

Predict: 0 Predict: 1

Fact: 0 133576 290

Fact: 1 3681 432

Classifier 1: ok precision, low recall 

Predict: 0 Predict: 1

Fact: 0 100919 32927

Fact: 1 114 4069

Classifier 2: high recall, low precision

Recall: 10.5%
Precision: 59.8%

Recall: 97.3%
Precision: 11.0%
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MULTI-STAGE CLASSIFICATION

The networks on initial stages only filter out negative data points with high confidence

High recall, low precision

Positive predictions are sent to the network on the next stage

Network 1 Network 2 Network 3

-
+

-
+ - +
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MULTI-STAGE CLASSIFICATION RESULT
Balanced Recall and Precision

Pred: 0 Pred: 1

Fact: 0 100919 32927

Fact: 1 114 4069

Pred: 0 Pred: 1

Fact: 0 26935 5992

Fact: 1 221 3848

Pred: 0 Pred: 1

Fact: 0 5207 785

Fact: 1 309 3539

Pred: 0 Pred: 1

Fact: 0 133061 785

Fact: 1 574 3539

Overall

Recall: 86.0%

Precision: 81.8% 

Stage 1
Recall: 97.3%
Precision: 11.0% 

Stage 2
Recall:94.6%
Precision: 39.1% 

Stage 3
Recall: 92.05
Precision: 81.8%
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PART 1 - SUMMARY

Machine learning can improve VLSI design testability beyond the existing solution

Predictive power of ML model

Graph based model is suitable for VLSI problems

Practical issues such as scalability and data imbalance need to be dealt with
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PART 2

Full Chip FinFET Self-heat Prediction using Machine Learning

Miloni Mehta, Chi Keung Lee, Chintan Shah, Kirk Twardowski
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SEMICONDUCTOR RELIABILITY

Source: https://semiengineering.com/improving-automotive-reliability/



28

RELIABILITY

Active power in transistors dissipated as heat to the 
surroundings

FinFETs are more sensitive to SH than planar devices

Why do we care?

Exacerbates Electro-migration (EM) on interconnects

Transistor threshold voltage (Vt) shifts

Time dependent dielectric breakdown (TDDB)

DEVICE SELF-HEAT (SH)
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SH METHODOLOGIES SO FAR

No sign-off tool that can handle full chip SH 
analysis

Limitations using Spice simulations

Impractical to run on billions of transistors

Teams review high power density cells

2D Look-up Table approach

Based on frequency and capacitive loading for 
different clock drivers

Reduced run time by more than 90% over full Spice 
simulations

Pessimistic wrt Spice

LUT

SPICE

2D LUT vs Spice comparison
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SELF-HEAT TRENDS

Frequency ∝ SH

Capacitive 
loading ∝ SH

Cell size ∝ 1/SH

Resistance ∝
1/SH (non-
linear)
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MOTIVATION TO USE ML

Identify problematic cells in the design without exhaustive Spice simulations

Complex relationship between design and SH

Design database available for several projects

Reusability across projects 

Focus

Clock inverters and buffers

Quick, easy, light-weight 

Rank cells above certain SH threshold for thorough analysis
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MACHINE LEARNING MODEL
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Equation:
Y^ = ?

Ytraining
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DATASET SELECTION 

Cover a wide range of frequencies

Cover different types of standard cell sizes

Prevent duplication in training data due to replicated partitions/chiplets

Outliers in the design chosen

Labels obtained through Spice simulations (supported from foundry spice models)

TSMC 16nm FinFET training model used 4300 training samples with 9 features
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DNN REGRESSOR MODEL

Xn1

Xn2

Xn9

Input Layer
hidden 
layer 1

hidden 
layer 2

hidden 
layer 3

Output 
layer

Predicted 
Self-Heat
 Yn^ 

X11 X12 . . . X19
X21 X22 . . . X29

.

.

.
Xn1 Xn2 . . . Xn9

Cost = Σ (Ypred- Y)2

Features:
Output Capacitance
Frequency
Cell size
Net resistance
Input slew
Output slew
# of output loads
Input Capacitance of loads
Avg transition on load

N
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MINIMIZING COST FUNCTION

Gradient descent 

Adam optimizer which has adaptive learning rate

Exponential Linear Unit (ELU) used as activation 
function  

300,000 training steps
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RESULTS

Xavier CPU 2000 validation samples

Good correlation between DNN 
prediction and Spice SH

Average err % wrt Spice = 6.5%

MSE = 0.05 Spice SH
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QUANTITATIVE BENEFITS

Trained model is deployed for inference on millions of clock cells

Training time: 37 minutes (DGX1 used)

Inference time: <1min 

>99% cells filtered from Spice simulations!

Top 1000 prediction results simulated and verified

Found small clock tree cells had highest SH

Outlier detection improved inference by 2.65% in Turing
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COMPARISON TO PRIOR WORK

Instance #
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PART 2 - SUMMARY

FinFET Self-Heat is a growing reliability concern

Proposed supervised ML model using DNN 

Accurately predict Self-heat

100x runtime improvement

Displayed techniques to select representative dataset for training

Model deployed for Xavier and Turing projects

Use ML techniques to improve productivity and solve challenging problems in VLSI




