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▪ 17+ code projects/teams/organizations
— Code development teams
— Advanced architecture and portability specialists (AAPS)
— Tool development teams
— Sierra Center of Excellence (CoE)
— Livermore Computing
— Vendors (IBM, Nvidia)

▪ 78 contributors… and counting!

▪ 4+ years preparing for Sierra

LLNL has been heavily investing in performance on GPUs

Code 
Teams

CoE AAPS

The expertise, creativity, and collaboration of our teams make technological advances like Sierra possible.
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▪ Real codes – real challenges 
— Scale: millions of lines of code in multiple 

programming languages

— Continue to provide new capabilities to users 

— Pedigree: maintain connection to prior V&V efforts

— Libraries: coordinate use of limited memory resources

▪ Portable performance
— Our codes must be fast, reliable, and accurate on 

multiple systems

Porting strategies must address more than just performance

These considerations represent at least as great a cost as computational performance

▪ Future proof(ish)

— Heterogeneity is likely here to stay … for a while anyway

— We can’t afford to do this with every new machine

— Reduce time to performance on new machines

• Greater utilization of these expensive investments

▪ Position ourselves for exascale success!

El Capitan

Sequoia/Trinity
Advanced Architectures

Workstations
DOD & Industry

Commodity
Linux Clusters

Laptops
Emergency Response 

Teams

Sierra
GPU Accelerated

Exascale

This is an opportunity to invest in future performance.
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Lightweight mini-apps are used to study algorithmic behavior 
and facilitate collaboration with vendors and academia

Mini-apps allow us to leverage vendor and academia expertise in optimizing our full production codes
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Application

Mini-App

▪ LLNL production code
— Million+ lines of code
— Multiple languages
— New features added regularly
— Multiple physical processes interacting
— Sensitive/proprietary

▪ Open source research application
— Focused and lightweight
— Single physics (few algorithms)
— Can be shared with vendors and academic collaborators

• Facilitates performance optimization
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▪ All speedup numbers are node-to-node speedup as compared with CTS-1 
— What users will generally experience

▪ Most of our codes are primarily memory-bandwidth bound on the CPU 

▪ To set expectations, compare relevant effective memory bandwidths of architectures

A note on measuring performance
CPU and GPU performance is difficult to measure

Memory bandwidth is a first-order predictor of performance (as opposed to peak FLOPS).

CTS-1
(Broadwell)

Sierra EA
(2× P8 CPU + 4× P100 GPU)

Sierra
(2× P9 CPU + 4× V100 GPU)

DRAM bandwidth per node 130 GB/s 2,200 GB/s 3,400 GB/s

L2 bandwidth per node 3,870 GB/s

Shared memory bandwidth per node 31,052 GB/s 48,320 GB/s

16.9× 1.5×

1.6×

▪ How does performance scale with relevant memory bandwidth?
— This is not a perfect measure, but it is a good place to start
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▪ Deterministic transport codes
— Ardra: particle transport

— Teton: thermal radiative transfer

▪ Porting strategy
— Teton

• OpenMP 4.5

• CUDA-C

— Ardra
• RAJA, CHAI, Umpire

▪ Enabling performant sweeps on GPUs 
was a significant challenge that had not 
previously been demonstrated

— Memory requirements and algorithmic 
dependencies create technical challenges on 
new architectures

The deterministic transport project is realizing significant
performance gains through focused refactor and porting efforts

Deterministic transport pushes memory requirements to the limits of the device.
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▪ We have ported the linear solve 
(Sweep) to GPUs
— OpenMP 4.5 and CUDA-C

▪ We have ported the non-linear solve 
to GPUs
— CUDA-C

▪ Teton is Fortran (cannot use RAJA)
— Fortran tools/compilers lag those of C/C++

Teton's computational performance is dominated by two kernels: 
Linear Solve (Sweep) and Non-linear Solve

We are exploring multiple porting strategies in full production code, including tradeoffs between CUDA-C and OpenMP 4.5.

Linear Solve
(Sweep)

50%-90% runtime

Grey Acceleration
5%-20% runtime

Synchronization Point

Non-Linear Solve
(Thermal Iteration)
10%-50% runtime

Check Convergence
<1% runtime

Synchronization Point

Temperature 
Iteration Loop
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▪ We accept the risk (for now) of 
maintaining separate CPU- and GPU-
specific versions of a small number 
of key algorithms
— Algorithms are tailored to the hardware 

to maximize performance

▪ Can we refactor code with a clever 
abstraction layer and maintain only 
one version?
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Speedup is being measured with criticality solve

Porting Performance Tuning Research

▪ Mini-app research
⎯ Work with Sierra CoE to optimize algorithms

▪ Develop RAJA nested loops
▪ Data structure refactor

Porting

▪ Transition code to RAJA/CHAI/Umpire
▪ Performance poor because of significant data motion
▪ Aiming for correctness, not speed

Performance Tuning

▪ All kernels running on GPU
▪ Data stays resident on GPU (except communication)
▪ Algorithms take advantage of GPU shared memory

0
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11/27/17 1/27/18 3/19/18 6/6/18 7/13/18 7/16/18 2/6/19

P100 V100

Focused and strategic porting of deterministic transport is yielding significant speedups.
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Ardra performance tracks closely with cache bandwidth
across architectures

Resources Nodes Runtime (s) Speedup (×)

36 CPU cores 1 38.76 1.0

72 cores 2 18.57 2.1

144 cores 4 8.95 4.3

288 cores 8 5.03 7.7

4 P100 GPUs 1 4.69 8.3

8 GPUs 2 2.56 15.1

16 GPUs 4 1.39 27.8

4 V100 GPUs 1 3.13 12.4

8 GPUs 2 1.73 22.4

16 GPUs 4 1.08 35.8

32 GPUs 8 0.77 50.5
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The Mercury particle transport and Imp IMC thermal radiative 
transfer capabilities have been ported to Sierra

▪ Particle (Mercury) and thermal photon (Imp) 
transport consolidated into single code base
— Built from shared infrastructural source code

— Facilitated GPU port

▪ History-based Monte Carlo transport is 
generally hostile to most advanced architectures
— Particle tracking loop is thousands of lines of 

branchy, latency-sensitive code

▪ GPU porting strategy
— CUDA "big kernel" history-based particle tracking 

with CUDA managed memory

— Exploring RAJA for more typical "loops over cells" 
code

▪ Targeting 2-3× speedup on Sierra
— Based on mini-app results
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Rank

Non-load Balanced
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Rank

Load Balanced

▪ Uses speed information from previous cycle to 
balance the particle workload among all ranks

▪ Performance limited by longest running rank

▪ Early tests show up to 3× speedup

Dynamic Heterogeneous Load Balancing

Monte Carlo transport capabilities are entering the performance tuning phase and exploring heterogeneous load balancing.



11
LLNL-PRES-769074

We are assessing Imp and Mercury performance on Sierra

▪ Crooked pipe idealized thermal radiative transfer test problem
— 2× speedup overall

— Particle tracking showing decent speedup

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 36 cores 2.53 2.27 0.26

V100+P9 4 GPUs + 36 cores 2.28 (1.11×) 1.83 (1.24×) 0.45 (0.58×)

* D. E. Cullen, C. J. Clouse, R. Procassini, R. C. Little, “Static and Dynamic Criticality: 
Are They Different,” UCRL-TR-201506 (2003)

▪ Godiva critical sphere surrounded by water, criticality solve
— 1.1× overall speedup

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 36 cores 31.67 29.61 2.05

V100+P9 4 GPUs + 36 cores 15.88 (1.99×) 11.70 (2.53×) 4.18 (0.49×)

Optically thick

Optically thinSource

Te @ 10-6 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Monte Carlo transport on GPUs is hard, but progress is being made.
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HE Performance, Lethality, Vulnerability and Safety Code

DOE: Stockpile Stewardship, 
other NNSA programs

DoD: Munitions and rocket design performance, lethality, 
vulnerabilities, and safety

Other: Additive Manufacturing DHS: Transit and structures vulnerabilities and safeguard 
designs

Rocket Motor

Glory Mission and 
Taurus XL Launch

Explosive Cookoff
Violence of Reaction

Buried Blast

Component and System-
Level Analysis

Fully Coupled 
Blast/Structural

▪ Required physics capabilities
— 3D/2D ALE hydrodynamics
— 3D arbitrarily connected hexahedral mesh
— High-explosive modeling 
— Material contact
— Advanced material models

The goal is to turn current month-long complex calculations around in a weekend (10× speedup or more).

Blast/Impact for TBI Rail Gun
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We are making great progress enabling a wide range of physics 
capabilities

▪ Main hydro packages have been ported 
and are being optimized

▪ Strategy: RAJA/CHAI/Umpire

▪ Current focus
— Porting reactive flow models for high fidelity 

HE modeling
— Slides for material contact
— Addressing performance bottlenecks

▪ Successfully run 3D high-resolution 
problems on GPUs 

The ability to run problems like this on a small fraction of Sierra makes high-resolution 3D UQ feasible.

Triple-Point Shock Problem

▪ 3D multi-material ALE 
hydrodynamics

▪ 17B zones

▪ 512 nodes
— 2,048 GPUs

▪ Only 12% of Sierra
— Or roughly Sequoia 

Tracking performance improvements over time 
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A number of optimization opportunities have been identified

Performance bottlenecks must be overcome to achieve memory bandwidth scaling.

Resources Nodes Runtime (hours)

C
TS

-1

36 cores 1 30.7

72 cores 2 15.8

144 cores 4 8.1

288 cores 8 4.2

576 cores 16 2.2

1152 cores 32 1.1

2304 cores 64 0.6

4608 cores 128 0.3

9216 cores 256 0.2

Si
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8 GPUs 2 1.1

16 GPUs 4 0.7

32 GPUs 8 0.5

64 GPUs 16 0.3

128 GPUs 32 0.3

256 GPUs 64 0.2

Node-Node
Speedup

14.5×

▪ Up to 8M zones per GPU

▪ Identified major bottlenecks
— Kernel launch overhead
— GPU register pressure
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Ares: NIF debris, pulsed power, ICF, and HE simulation code

▪ Physics capabilities:
— ALE-AMR hydrodynamics

— High-order Eulerian hydrodynamics

— Elastic-plastic flow

— 3T plasma physics

— High-explosive (HE) modeling

— Diffusion and deterministic thermal radiative transfer

— Multiphase particle flow

— Laser ray-tracing

— MHD

— Dynamic mixing

— Non-LTE opacities

Applications:
• Inertial Confinement Fusion (ICF)
• Pulsed power
• National Ignition Facility debris
• HE experiments
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GPUs show great promise for increasing throughput for Ares 
applications

14× speedup has been achieved, but further optimizations are being explored.

Resources Nodes
Runtime 
(hours)

Speedup 
(×)
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Recent work on Sierra demonstrates that we will be able to 
study mix phenomena in ICF at unprecedented resolutions

Heroic calculations like these can be turned around in a matter of days.

Resources 
(V100s)

Nodes Zones Runtime 
(hours)

32 8 191M 1.6

256 64 1.52B 3.5

2048 512 12.2B 7.8

16384 4096 97.8B 13.05

▪ Performance scales with 
memory bandwidth

▪ Opportunities remain for further 
optimization

Rayleigh-Taylor Mixing Layer in a 
Convergent Geometry

▪ 4𝜋
▪ ALE hydrodynamics
▪ Dynamic species
▪ Idealized ICF capsule
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Kull: HED experiments simulation code

▪ Computational runtime is dominated by transport in ICF calculations
— Thermal radiative transfer can account for an overwhelming majority of the runtime

▪ Kull strategy
— Refactor code for compatibility with RAJA (in progress)

— Initially, provide an environment that facilitates maximizing transport performance

— Enable flexibility for choices made by transport algorithms
• Multiple levels of parallelism

• Provide an ecosystem that supports C++/Fortran/OpenMP/CUDA-C/CUDA-Fortran all in one code

Early performance gains will come from thermal radiative transfer gains, with hydro gains expected as refactor progresses.

Total Runtime/Speedup Teton Sweep Teton NL Solve Teton GTA/Init/Finalize

CPU (CTS-1) 52.45 / 1.0x 21.9 10.35 9.99

GPU Sweep + 
NL Solver

26.67 / 1.97× 2.75× 2.03× 0.73×
*Radiating Sphere 
Test Problem
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HYDRA physics packages being ported to run on Sierra GPUs 
using a staged approach

▪ Initial focus is on porting the most expensive physics packages 
to GPUs

— Implicit Monte Carlo Photonics (IMC)

• Evaluated porting options in mini-app

• IMC package now running on CPUs and GPUs simultaneously

— Non-Local Thermodynamic Equilibrium (NLTE)

• Currently evaluating mini-app performance on GPUs

— MHD package has been modified to support GPU parallelism

— GPU parallel version of hypre solvers undergoing testing

• Employed in multigroup diffusion, thermal transport, and charged particle diffusion

— Exploring multiple approaches (OpenMP 4.5, CUDA, RAJA/Umpire/CHAI)

▪ Sierra will enable…

— Higher throughput of high-resolution 3D simulations

— More accurate NLTE models (100× increase in configurations)

Staged porting allows for focused performance tuning on each physics package before putting it all together.
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▪ MARBL has two hydro modules

— BLAST: High-order unstructured ALE

• Lessons learned from high-order Lagrangian mini-app 
currently being transferred to BLAST

— Miranda: High-order structured Eulerian

• Mini-app helping to understand best practices for 
using OpenMP 4.5 in Fortran code

• Parallelizing Fortran array operations over thread 
teams requires addition to OpenMP standard 
(pending)

MARBL, our next-generation high-order ICF code, shows great 
promise on Sierra

High-order methods in MARBL look to be particularly well suited for performance on Sierra.
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We are exploring geometric and sampling intersection 
evaluation methods for solution mapping on the GPU

▪ Geometric (standard Overlink)
— Based on Material Interface Reconstruction (MIR)
— Near machine accuracy
— Initial studies showed not well suited to GPUs

▪ Geometric Lite (suited to GPU)
— Mixed zones are homogenized (slight loss of 

accuracy)

▪ Sampling
— 8000 samples per zone = 0.25% statistical error
— Backward map is slower for large numbers of 

mixed zones

+ =

Input: 
Variable on

“Donor” Mesh

Output: 
“Donor” Variable
on “Target” Mesh

Input: 
Cartesian 

“Target” Mesh

Transfers mesh-based data from an original donor mesh to Cartesian target mesh
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Geometric methods are proving to be superior to sampling 
methods on Sierra

Law rence Liverm ore 

Nat iona l Laborat ory LLNL-PRES-745292
13

Test for performance of Carter on GPU

    
Uniform cubic with one 
million zones.

Alternating pattern of eight 
materials, zones contain 
volume fractions for one to 
eight materials.

Average 1.67 materials
per zone.

Target mesh is 1013 with 
slightly smaller zones.
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▪ On EA, GPU Sampling was fastest

— But suffered from non-trivial error

▪ Host+GPU Geometric becomes 
competitive

— Extremely low error

▪ GPU Geometric Lite was fastest on Sierra

— Small error at mixed zones

▪ On EA, GPU Geometric was fastest

— Extremely low error

▪ On Sierra, GPU Geometric Lite was fastest

— Small error at mixed zones

▪ All methods benefit significantly from MPI 
improvements on Sierra (vs. CTS-1)

▪ Sampling was no faster than Geometric

Algorithm choice indicated by EA machine turned out NOT to be the best method on Sierra.  
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▪ Upfront research and scoping with mini-apps is invaluable to developing a deep 
understanding of algorithmic behavior and selecting an appropriate porting strategy

▪ Challenges continue in production codes and multi-physics contexts

▪ Having computer scientists co-located between tools teams and applications teams 
has been vital

— Co-development of tools

— Feature requirements and feature development often by the same personnel

— Facilitates implementation and adoption

— Easy access to RAJA/CHAI/Umpire expertise

Team structure and plan for porting is important

Rapid dissemination of experience and best practices between teams have been essential.
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LLNL Abstractions – RAJA/CHAI/Umpire

▪ RAJA provides excellent portability with 
little performance loss
— Performance gap continues to close with help 

from vendors

▪ CHAI provides a hardware-agnostic 
automated data transfer solution

▪ Umpire across host/library codes allows for 
cohesive memory management with pools

▪ Architecture-specific implementations are 
suitable for complex kernels or if a small 
number of kernels dominate runtime

Abstraction layers can provide excellent performance and 
portability

OpenMP 4.5+

▪ Useful abstraction tool for Fortran codes

▪ OpenMP support in Nvidia tools is 
problematic
— Hampers debugging and performance 

profiling

▪ No way to catch runtime errors with 
OpenMP
— Makes debugging painful

Our assumption that there would be a significant tradeoff between performance and portability was wrong.
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▪ CHAI
— Hardware-agnostic automatic data migration
— Good performance but large upfront 

investment
— Compile time correctness checking

▪ Unified Memory (UM)
— Essentially no upfront cost
— Automatic memory migration is almost always 

slow
— Automatic eviction when GPU runs out of 

memory
— UM allows memory management to be treated 

as a performance optimization
• Facilitating porting

▪ Umpire
— Hardware-agnostic memory management 

abstraction
— Provides memory pools
— Memory introspection for better decision 

making
• Where is this pointer?
• How big is the allocation?
• What allocator is used?
• How much memory is being used on this 

resource?

Memory management and migration is a significant 
performance factor

You will have to put in work, at one end or the other, to make memory management performant.
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Performance

▪ Kernel launch overhead
— Can be hidden using asynchronous kernel launches

▪ Data transfer between memory spaces
— Needs to be avoided or hidden behind other kernels

▪ Memory allocation is significantly more expensive 
on the GPU
— Necessitates the usage of memory pools

GPUs have performance overheads that we don’t see on CPUs 
that must be managed

Library Coordination

▪ Different porting strategies/timelines

▪ Un-ported libraries can result in costly CPU/GPU 
data transfer

▪ The GPU can be considered a communal resource 
with multiple competing stakeholders
— Memory pools can help

Tools

▪ Debugging: CUDA memcheck, CUDA GDB, 
Totalview, good ol’ print statements

▪ Performance: NVProf, Archer: Thread Sanitizer

▪ Common source (via abstractions) provides access 
to wider range of tools

Achieving performance requires a deeper understanding of our codes/algorithms, which will yield dividends in the future.
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▪ Our code teams have undertaken careful and detailed evaluations of porting and 
execution strategies to optimize our codes for Sierra and maintain portable 
performance.

▪ A wide range of physics capabilities have been ported to GPUs and are either in the 
process of exploring optimization strategies or have achieved game-changing 
speedup.

▪ Maintaining speedup in complex calculations is challenging.

▪ We are exploring multiple porting strategies where appropriate.

▪ Abstraction layers provide excellent performance and portability with minimal 
tradeoff between the two.

Summary
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▪ Increased physics and geometric fidelity
— Increased resolution
— Fewer compromises on physics models

▪ Pose questions on the scale of hours instead of days or weeks (or even months)
— This fundamentally changes what questions you ask and how you ask them

▪ Improved turnaround of large 3D calculations
— 3D Uncertainty Quantification becomes feasible

▪ Hero calculations become practical
— Extremely high-resolution calculations in 2 days instead of 45

We are well positioned to use Sierra for high-fidelity 3D studies 
in what were previously considered “heroic” calculations

What will “heroic” look like on Sierra ?
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Questions ?
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▪ A typical code has O(10k) execution loops, but only 0(10) 
loop types
— Provides optimized backend for common loop types

▪ Portability and maintainability
— Algorithms don't change with backend
— Leverage vendor optimizations in all codes

▪ Future proofing
— RAJA PerfSuite and Kripke are part of the CORAL-2 benchmark

• Reduce "time-to-performance" on future hardware

▪ RAJA is not a universal solution
— Does not support Fortran
— Requires C++ll and Lambdas
— Does not yet concisely address some of our application use cases

RAJA provides portable performance and was co-designed
with our application requirements

Sequential

OpenMP

?

?

CPU

Nvidia 
GPU

AMD 
GPU

Future 
Hardware

Code
RAJA
Loops

RAJA
Backends

Hardware

Backend can change as technologies wax and wane without modifying algorithms
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▪ CHAI (Copy Hiding Abstraction 
Interface)
— Smart pointer type detects execution 

location and ensures data locality

▪ Simplifies porting
— No explicit memory copying needed
— Errors caught at compile-time
— Umpire backend

CHAI automatically handles runtime data transfers

▪ Portability and future proofing
— Portable to machines that lack UM

▪ Disadvantages
— Additional changes necessary relative to UM
— Eviction policies and/or asynchronous data 

transfers needed for additional performance 
optimizations (in progress)

Provides robust portability and performance but requires additional initial porting investment relative to UM.
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▪ Portability, backend based

▪ Easily manage memory throughout complex 
memory hierarchy
— Allocate/deallocate/copy /move

▪ Memory pools
— More efficient allocation/deallocation of memory
— Facilitates sharing memory pool between code 

components
• More efficient use of memory (larger problems)

▪ Memory introspection for better decision 
making
— Where is this pointer?
— How big is the allocation?
— What allocator was used?
— How much memory is being used on this resource?

Umpire provides a unified memory management API

memkind

SICM tcmalloc

cnmem

cudaMalloc

Umpire

DDR GDDR

API

Implementations

Hardware

Provides portable memory management and convenient memory pools
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Mini-app research has been key to the planning and design
of Armus and the success of Ardra on GPUs

Initial Investigations -> Armus Framework Armus Framework -> 1st GPU Run 1st GPU Run -> 15x Speedup

21 Months 8 Months 13 Months

Research
Mini-app research, initial Armus development, 

RAJA nested loops, early Ardra refactor

Porting
Adopt Armus data structures,

transition to RAJA, first GPU run

Performance Tuning
Performance analysis, tuning, use GPU shared 

memory

• Developed Kripke mini-app to explore data 
structures and programming models

• Worked with CORAL CoE to develop CUDA 
version of Kripke

• Started development of nested loop 
abstractions in RAJA

• Developed requirements for a deterministic 
transport framework, and created Armus

• Started refactoring Ardra to accommodate 
GPU compatible data structures

• Focus porting activities on 3D static 
criticality solver

• Ported code to Arm us data structures

• Transitioned code to RAJA

• Continued development of RAJA based on 
issues encountered in Kripke and Ardra

• First GPU run "worked" but had significant 
robustness issues

• Converted vector kernels to use CUDA

• Ported remaining kernels to RAJA

• Fixed correctness and robustness issues

• Started performance analysis and tuning of 
major kernels

• Started to take advantage of GPU shared 
memory

Ardra took an ambitious multi-pronged approach to investing in current and future performance, yielding significant speedup. 
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▪ Mercury/Imp have 
heterogeneous CPU/GPU 
load balancing
— Assumes MPI only for now
— libQuo or thread-based 

balancing can be explored

▪ Uses speed information from 
the previous cycle to balance 
the particle workload

▪ Performance limited by 
longest running rank

▪ 3.2X Speedup
— 1 zone thermal emission test 

problem

Monte Carlo Transport project has implemented heterogeneous 
CPU/GPU load balancing
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We are exploring geometric and sampling intersection 
Evaluation methods for solution mapping on the GPU

▪ Geometric (standard Overlink)
— Based on Material Interface Reconstruction 

(MIR)
— Near machine accuracy
— Initial studies showed not well suited to GPUs*

▪ Geometric Lite (Suited to GPU)
— Mixed zones are homogenized (slight loss of 

accuracy)

▪ Sampling
— 8000 samples per zone= 0.25% statistical error
— Backward map is slower for large numbers of 

mixed zones
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▪ What modes of execution are best for performance?
— CPU vs. GPU
— How many MPI processes

▪ What about multiphysics?
— If some phases use one MPI process per GPU, can we productively use remaining CPU cores?
— If some phases use one MPI process per CPU core, can we use multiple MPI process per GPU for the 

accelerated phases?

There are a lot of questions around how to best utilize the
resources at our disposal

We are beginning to investigate some of these questions, but there are many opportunities to explore.
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▪ Perform initialization on all CPUs

▪ Re-decompose (costly)

▪ Compute on GPUs

Accommodating different modes within a single simulation

▪ Example: 196M zone problem on 8 nodes 
of EA system
— 2.58x speedup for generation including 

redistribution cost
— Saved an hour of runtime (~13% total speedup)

GPU GPU

CPU

Modest speedup for generation phase of problem. This gets even better when oversubscribing the GPU.

GPUGPU

CPU
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▪ Divide work via uneven domain decomposition
— Very difficult to get the load balancing right

▪ Proof of concept implemented in Ares
— RAJA provides same source code for CPU and GPU

▪ 10% performance improvement over GPU only

Heterogeneous execution or oversubscribing the GPU may
yield valuable performance gains

▪ More CPU cores leads to better CPU memory 
bandwidth utilization

▪ More MPI processes = more communication

▪ Multi-Process Service (MPS) allows kernels 
launched from different MPI processes to be 
processed concurrently on the same GPU
— Can result in better utilization of SMs

Oversubscribing the GPU may prove beneficial if improvements in load balance outweigh additional MPI cost.

CPU

GPUGPU GPUGPU

CPU


