
LLNL-PRES-769074

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Lessons Learned from Porting LLNL Applications to Sierra
GTC 2019

David M. Dawson
Lawrence Livermore National Laboratory

March 19, 2019

2
LLNL-PRES-769074

▪ 17+ code projects/teams/organizations
— Code development teams
— Advanced architecture and portability specialists (AAPS)
— Tool development teams
— Sierra Center of Excellence (CoE)
— Livermore Computing
— Vendors (IBM, Nvidia)

▪ 78 contributors… and counting!

▪ 4+ years preparing for Sierra

LLNL has been heavily investing in performance on GPUs

Code
Teams

CoE AAPS

The expertise, creativity, and collaboration of our teams make technological advances like Sierra possible.

3
LLNL-PRES-769074

▪ Real codes – real challenges
— Scale: millions of lines of code in multiple

programming languages

— Continue to provide new capabilities to users

— Pedigree: maintain connection to prior V&V efforts

— Libraries: coordinate use of limited memory resources

▪ Portable performance
— Our codes must be fast, reliable, and accurate on

multiple systems

Porting strategies must address more than just performance

These considerations represent at least as great a cost as computational performance

▪ Future proof(ish)

— Heterogeneity is likely here to stay … for a while anyway

— We can’t afford to do this with every new machine

— Reduce time to performance on new machines

• Greater utilization of these expensive investments

▪ Position ourselves for exascale success!

El Capitan

Sequoia/Trinity
Advanced Architectures

Workstations
DOD & Industry

Commodity
Linux Clusters

Laptops
Emergency Response

Teams

Sierra
GPU Accelerated

Exascale

This is an opportunity to invest in future performance.

4
LLNL-PRES-769074

Lightweight mini-apps are used to study algorithmic behavior
and facilitate collaboration with vendors and academia

Mini-apps allow us to leverage vendor and academia expertise in optimizing our full production codes

Ex
p

o
rt

 C
o

n
tr

o
lle

d
/U

C
N

I
O

p
en

 S
o

u
rc

e

Application

Mini-App

▪ LLNL production code
— Million+ lines of code
— Multiple languages
— New features added regularly
— Multiple physical processes interacting
— Sensitive/proprietary

▪ Open source research application
— Focused and lightweight
— Single physics (few algorithms)
— Can be shared with vendors and academic collaborators

• Facilitates performance optimization

Le
ss

o
n

s

5
LLNL-PRES-769074

▪ All speedup numbers are node-to-node speedup as compared with CTS-1
— What users will generally experience

▪ Most of our codes are primarily memory-bandwidth bound on the CPU

▪ To set expectations, compare relevant effective memory bandwidths of architectures

A note on measuring performance
CPU and GPU performance is difficult to measure

Memory bandwidth is a first-order predictor of performance (as opposed to peak FLOPS).

CTS-1
(Broadwell)

Sierra EA
(2× P8 CPU + 4× P100 GPU)

Sierra
(2× P9 CPU + 4× V100 GPU)

DRAM bandwidth per node 130 GB/s 2,200 GB/s 3,400 GB/s

L2 bandwidth per node 3,870 GB/s

Shared memory bandwidth per node 31,052 GB/s 48,320 GB/s

16.9× 1.5×

1.6×

▪ How does performance scale with relevant memory bandwidth?
— This is not a perfect measure, but it is a good place to start

6
LLNL-PRES-769074

▪ Deterministic transport codes
— Ardra: particle transport

— Teton: thermal radiative transfer

▪ Porting strategy
— Teton

• OpenMP 4.5

• CUDA-C

— Ardra
• RAJA, CHAI, Umpire

▪ Enabling performant sweeps on GPUs
was a significant challenge that had not
previously been demonstrated

— Memory requirements and algorithmic
dependencies create technical challenges on
new architectures

The deterministic transport project is realizing significant
performance gains through focused refactor and porting efforts

Deterministic transport pushes memory requirements to the limits of the device.

7
LLNL-PRES-769074

▪ We have ported the linear solve
(Sweep) to GPUs
— OpenMP 4.5 and CUDA-C

▪ We have ported the non-linear solve
to GPUs
— CUDA-C

▪ Teton is Fortran (cannot use RAJA)
— Fortran tools/compilers lag those of C/C++

Teton's computational performance is dominated by two kernels:
Linear Solve (Sweep) and Non-linear Solve

We are exploring multiple porting strategies in full production code, including tradeoffs between CUDA-C and OpenMP 4.5.

Linear Solve
(Sweep)

50%-90% runtime

Grey Acceleration
5%-20% runtime

Synchronization Point

Non-Linear Solve
(Thermal Iteration)
10%-50% runtime

Check Convergence
<1% runtime

Synchronization Point

Temperature
Iteration Loop

N
o

vel So
lu

tio
n

 A
lgo

rith
m

▪ We accept the risk (for now) of
maintaining separate CPU- and GPU-
specific versions of a small number
of key algorithms
— Algorithms are tailored to the hardware

to maximize performance

▪ Can we refactor code with a clever
abstraction layer and maintain only
one version?

0

2

4

6

8

10

2D 3D

Sweep Non-Linear Other Overall

8
LLNL-PRES-769074

Speedup is being measured with criticality solve

Porting Performance Tuning Research

▪ Mini-app research
⎯ Work with Sierra CoE to optimize algorithms

▪ Develop RAJA nested loops
▪ Data structure refactor

Porting

▪ Transition code to RAJA/CHAI/Umpire
▪ Performance poor because of significant data motion
▪ Aiming for correctness, not speed

Performance Tuning

▪ All kernels running on GPU
▪ Data stays resident on GPU (except communication)
▪ Algorithms take advantage of GPU shared memory

0

5

10

15

20

25

11/27/17 1/27/18 3/19/18 6/6/18 7/13/18 7/16/18 2/6/19

P100 V100

Focused and strategic porting of deterministic transport is yielding significant speedups.

9
LLNL-PRES-769074

Ardra performance tracks closely with cache bandwidth
across architectures

Resources Nodes Runtime (s) Speedup (×)

36 CPU cores 1 38.76 1.0

72 cores 2 18.57 2.1

144 cores 4 8.95 4.3

288 cores 8 5.03 7.7

4 P100 GPUs 1 4.69 8.3

8 GPUs 2 2.56 15.1

16 GPUs 4 1.39 27.8

4 V100 GPUs 1 3.13 12.4

8 GPUs 2 1.73 22.4

16 GPUs 4 1.08 35.8

32 GPUs 8 0.77 50.5

0.4

4

40

3.E+03 3.E+04 3.E+05

R
u

n
ti

m
e

(s
)

Aggregate memory bandwidth (GB/s)

Runtime vs. Bandwidth

Ideal

Broadwell (L2)

P100 (Shared)

V100 (Shared)

Criticality search solver

C
TS

-1
 (

B
ro

ad
w

el
l)

EA
 (

P
8

+P
1

0
0

)
Si

er
ra

 (
P

9
+V

1
0

0
)

10
LLNL-PRES-769074

The Mercury particle transport and Imp IMC thermal radiative
transfer capabilities have been ported to Sierra

▪ Particle (Mercury) and thermal photon (Imp)
transport consolidated into single code base
— Built from shared infrastructural source code

— Facilitated GPU port

▪ History-based Monte Carlo transport is
generally hostile to most advanced architectures
— Particle tracking loop is thousands of lines of

branchy, latency-sensitive code

▪ GPU porting strategy
— CUDA "big kernel" history-based particle tracking

with CUDA managed memory

— Exploring RAJA for more typical "loops over cells"
code

▪ Targeting 2-3× speedup on Sierra
— Based on mini-app results

0

1

2

3

4

5

6

0 1 2 3 4

W
al

l T
im

e
 (

s)

Rank

Non-load Balanced

0 1 2 3 4

Rank

Load Balanced

▪ Uses speed information from previous cycle to
balance the particle workload among all ranks

▪ Performance limited by longest running rank

▪ Early tests show up to 3× speedup

Dynamic Heterogeneous Load Balancing

Monte Carlo transport capabilities are entering the performance tuning phase and exploring heterogeneous load balancing.

11
LLNL-PRES-769074

We are assessing Imp and Mercury performance on Sierra

▪ Crooked pipe idealized thermal radiative transfer test problem
— 2× speedup overall

— Particle tracking showing decent speedup

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 36 cores 2.53 2.27 0.26

V100+P9 4 GPUs + 36 cores 2.28 (1.11×) 1.83 (1.24×) 0.45 (0.58×)

* D. E. Cullen, C. J. Clouse, R. Procassini, R. C. Little, “Static and Dynamic Criticality:
Are They Different,” UCRL-TR-201506 (2003)

▪ Godiva critical sphere surrounded by water, criticality solve
— 1.1× overall speedup

Resources CPU / GPU
Total Time
[minutes]

Particle Time
[minutes]

Init/Final Time
[minutes]

CTS-1 36 cores 31.67 29.61 2.05

V100+P9 4 GPUs + 36 cores 15.88 (1.99×) 11.70 (2.53×) 4.18 (0.49×)

Optically thick

Optically thinSource

Te @ 10-6 s

Pt 1 Pt 2

Pt 3

Pt 4 Pt 5

Monte Carlo transport on GPUs is hard, but progress is being made.

12
LLNL-PRES-769074

HE Performance, Lethality, Vulnerability and Safety Code

DOE: Stockpile Stewardship,
other NNSA programs

DoD: Munitions and rocket design performance, lethality,
vulnerabilities, and safety

Other: Additive Manufacturing DHS: Transit and structures vulnerabilities and safeguard
designs

Rocket Motor

Glory Mission and
Taurus XL Launch

Explosive Cookoff
Violence of Reaction

Buried Blast

Component and System-
Level Analysis

Fully Coupled
Blast/Structural

▪ Required physics capabilities
— 3D/2D ALE hydrodynamics
— 3D arbitrarily connected hexahedral mesh
— High-explosive modeling
— Material contact
— Advanced material models

The goal is to turn current month-long complex calculations around in a weekend (10× speedup or more).

Blast/Impact for TBI Rail Gun

13
LLNL-PRES-769074

We are making great progress enabling a wide range of physics
capabilities

▪ Main hydro packages have been ported
and are being optimized

▪ Strategy: RAJA/CHAI/Umpire

▪ Current focus
— Porting reactive flow models for high fidelity

HE modeling
— Slides for material contact
— Addressing performance bottlenecks

▪ Successfully run 3D high-resolution
problems on GPUs

The ability to run problems like this on a small fraction of Sierra makes high-resolution 3D UQ feasible.

Triple-Point Shock Problem

▪ 3D multi-material ALE
hydrodynamics

▪ 17B zones

▪ 512 nodes
— 2,048 GPUs

▪ Only 12% of Sierra
— Or roughly Sequoia

Tracking performance improvements over time

14
LLNL-PRES-769074

A number of optimization opportunities have been identified

Performance bottlenecks must be overcome to achieve memory bandwidth scaling.

Resources Nodes Runtime (hours)

C
TS

-1

36 cores 1 30.7

72 cores 2 15.8

144 cores 4 8.1

288 cores 8 4.2

576 cores 16 2.2

1152 cores 32 1.1

2304 cores 64 0.6

4608 cores 128 0.3

9216 cores 256 0.2

Si
er

ra

8 GPUs 2 1.1

16 GPUs 4 0.7

32 GPUs 8 0.5

64 GPUs 16 0.3

128 GPUs 32 0.3

256 GPUs 64 0.2

Node-Node
Speedup

14.5×

▪ Up to 8M zones per GPU

▪ Identified major bottlenecks
— Kernel launch overhead
— GPU register pressure

0.01

0.1

1

10

100

100 1000 10000 100000 1000000

Theory

CTS-1 (Broadwell)

2xP9+4xV100

15
LLNL-PRES-769074

Ares: NIF debris, pulsed power, ICF, and HE simulation code

▪ Physics capabilities:
— ALE-AMR hydrodynamics

— High-order Eulerian hydrodynamics

— Elastic-plastic flow

— 3T plasma physics

— High-explosive (HE) modeling

— Diffusion and deterministic thermal radiative transfer

— Multiphase particle flow

— Laser ray-tracing

— MHD

— Dynamic mixing

— Non-LTE opacities

Applications:
• Inertial Confinement Fusion (ICF)
• Pulsed power
• National Ignition Facility debris
• HE experiments

16
LLNL-PRES-769074

GPUs show great promise for increasing throughput for Ares
applications

14× speedup has been achieved, but further optimizations are being explored.

Resources Nodes
Runtime
(hours)

Speedup
(×)

C
TS

-1

B
ro

ad
w

el
l 576 cores 16 15.2 1.00

1152 cores 32 7.6 2.00

2304 cores 64 4.0 3.80

4608 cores 128 2.1 7.24

Si
er

ra
 E

A
P

8
 +

 P
1

0
0 32 P100

GPUs
8 2.2 6.91

64 P100
GPUs

16 1.4 10.86

Si
er

ra
P

9
 +

 V
1

0
0 32 V100

GPUs
8 1.6 9.5

64 V100
GPUs

16 1.1 13.82

0.1

1

10

100

1000 10000 100000

R
u

n
ti

m
e

(s
)

Aggregate memory bandwidth (GB/s)

Runtime vs. Bandwidth

Ideal

Broadwell (L2)

P100 (Shared)

V100 (Shared)

17
LLNL-PRES-769074

Recent work on Sierra demonstrates that we will be able to
study mix phenomena in ICF at unprecedented resolutions

Heroic calculations like these can be turned around in a matter of days.

Resources
(V100s)

Nodes Zones Runtime
(hours)

32 8 191M 1.6

256 64 1.52B 3.5

2048 512 12.2B 7.8

16384 4096 97.8B 13.05

▪ Performance scales with
memory bandwidth

▪ Opportunities remain for further
optimization

Rayleigh-Taylor Mixing Layer in a
Convergent Geometry

▪ 4𝜋
▪ ALE hydrodynamics
▪ Dynamic species
▪ Idealized ICF capsule

18
LLNL-PRES-769074

Kull: HED experiments simulation code

▪ Computational runtime is dominated by transport in ICF calculations
— Thermal radiative transfer can account for an overwhelming majority of the runtime

▪ Kull strategy
— Refactor code for compatibility with RAJA (in progress)

— Initially, provide an environment that facilitates maximizing transport performance

— Enable flexibility for choices made by transport algorithms
• Multiple levels of parallelism

• Provide an ecosystem that supports C++/Fortran/OpenMP/CUDA-C/CUDA-Fortran all in one code

Early performance gains will come from thermal radiative transfer gains, with hydro gains expected as refactor progresses.

Total Runtime/Speedup Teton Sweep Teton NL Solve Teton GTA/Init/Finalize

CPU (CTS-1) 52.45 / 1.0x 21.9 10.35 9.99

GPU Sweep +
NL Solver

26.67 / 1.97× 2.75× 2.03× 0.73×
*Radiating Sphere
Test Problem

19
LLNL-PRES-769074

HYDRA physics packages being ported to run on Sierra GPUs
using a staged approach

▪ Initial focus is on porting the most expensive physics packages
to GPUs

— Implicit Monte Carlo Photonics (IMC)

• Evaluated porting options in mini-app

• IMC package now running on CPUs and GPUs simultaneously

— Non-Local Thermodynamic Equilibrium (NLTE)

• Currently evaluating mini-app performance on GPUs

— MHD package has been modified to support GPU parallelism

— GPU parallel version of hypre solvers undergoing testing

• Employed in multigroup diffusion, thermal transport, and charged particle diffusion

— Exploring multiple approaches (OpenMP 4.5, CUDA, RAJA/Umpire/CHAI)

▪ Sierra will enable…

— Higher throughput of high-resolution 3D simulations

— More accurate NLTE models (100× increase in configurations)

Staged porting allows for focused performance tuning on each physics package before putting it all together.

20
LLNL-PRES-769074

▪ MARBL has two hydro modules

— BLAST: High-order unstructured ALE

• Lessons learned from high-order Lagrangian mini-app
currently being transferred to BLAST

— Miranda: High-order structured Eulerian

• Mini-app helping to understand best practices for
using OpenMP 4.5 in Fortran code

• Parallelizing Fortran array operations over thread
teams requires addition to OpenMP standard
(pending)

MARBL, our next-generation high-order ICF code, shows great
promise on Sierra

High-order methods in MARBL look to be particularly well suited for performance on Sierra.

21
LLNL-PRES-769074

We are exploring geometric and sampling intersection
evaluation methods for solution mapping on the GPU

▪ Geometric (standard Overlink)
— Based on Material Interface Reconstruction (MIR)
— Near machine accuracy
— Initial studies showed not well suited to GPUs

▪ Geometric Lite (suited to GPU)
— Mixed zones are homogenized (slight loss of

accuracy)

▪ Sampling
— 8000 samples per zone = 0.25% statistical error
— Backward map is slower for large numbers of

mixed zones

+ =

Input:
Variable on

“Donor” Mesh

Output:
“Donor” Variable
on “Target” Mesh

Input:
Cartesian

“Target” Mesh

Transfers mesh-based data from an original donor mesh to Cartesian target mesh

22
LLNL-PRES-769074

Geometric methods are proving to be superior to sampling
methods on Sierra

Law rence Liverm ore

Nat iona l Laborat ory LLNL-PRES-745292
13

Test for performance of Carter on GPU

Uniform cubic with one
million zones.

Alternating pattern of eight
materials, zones contain
volume fractions for one to
eight materials.

Average 1.67 materials
per zone.

Target mesh is 1013 with
slightly smaller zones.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Host Geometric GPU Sampling GPU Geometric Host+GPU
Geometric

GPU Geometric
Lite

Forward Map (Unstructured to Cartesian)

CTS-1 EA Sierra

0

1

2

3

4

5

Host Geometric GPU Sampling GPU Geometric Host+GPU
Geometric

GPU Geometric
Lite

Backward Map (Cartesian to Unstructured)

CTS-1 EA Sierra

▪ On EA, GPU Sampling was fastest

— But suffered from non-trivial error

▪ Host+GPU Geometric becomes
competitive

— Extremely low error

▪ GPU Geometric Lite was fastest on Sierra

— Small error at mixed zones

▪ On EA, GPU Geometric was fastest

— Extremely low error

▪ On Sierra, GPU Geometric Lite was fastest

— Small error at mixed zones

▪ All methods benefit significantly from MPI
improvements on Sierra (vs. CTS-1)

▪ Sampling was no faster than Geometric

Algorithm choice indicated by EA machine turned out NOT to be the best method on Sierra.

23
LLNL-PRES-769074

▪ Upfront research and scoping with mini-apps is invaluable to developing a deep
understanding of algorithmic behavior and selecting an appropriate porting strategy

▪ Challenges continue in production codes and multi-physics contexts

▪ Having computer scientists co-located between tools teams and applications teams
has been vital

— Co-development of tools

— Feature requirements and feature development often by the same personnel

— Facilitates implementation and adoption

— Easy access to RAJA/CHAI/Umpire expertise

Team structure and plan for porting is important

Rapid dissemination of experience and best practices between teams have been essential.

24
LLNL-PRES-769074

LLNL Abstractions – RAJA/CHAI/Umpire

▪ RAJA provides excellent portability with
little performance loss
— Performance gap continues to close with help

from vendors

▪ CHAI provides a hardware-agnostic
automated data transfer solution

▪ Umpire across host/library codes allows for
cohesive memory management with pools

▪ Architecture-specific implementations are
suitable for complex kernels or if a small
number of kernels dominate runtime

Abstraction layers can provide excellent performance and
portability

OpenMP 4.5+

▪ Useful abstraction tool for Fortran codes

▪ OpenMP support in Nvidia tools is
problematic
— Hampers debugging and performance

profiling

▪ No way to catch runtime errors with
OpenMP
— Makes debugging painful

Our assumption that there would be a significant tradeoff between performance and portability was wrong.

25
LLNL-PRES-769074

▪ CHAI
— Hardware-agnostic automatic data migration
— Good performance but large upfront

investment
— Compile time correctness checking

▪ Unified Memory (UM)
— Essentially no upfront cost
— Automatic memory migration is almost always

slow
— Automatic eviction when GPU runs out of

memory
— UM allows memory management to be treated

as a performance optimization
• Facilitating porting

▪ Umpire
— Hardware-agnostic memory management

abstraction
— Provides memory pools
— Memory introspection for better decision

making
• Where is this pointer?
• How big is the allocation?
• What allocator is used?
• How much memory is being used on this

resource?

Memory management and migration is a significant
performance factor

You will have to put in work, at one end or the other, to make memory management performant.

26
LLNL-PRES-769074

Performance

▪ Kernel launch overhead
— Can be hidden using asynchronous kernel launches

▪ Data transfer between memory spaces
— Needs to be avoided or hidden behind other kernels

▪ Memory allocation is significantly more expensive
on the GPU
— Necessitates the usage of memory pools

GPUs have performance overheads that we don’t see on CPUs
that must be managed

Library Coordination

▪ Different porting strategies/timelines

▪ Un-ported libraries can result in costly CPU/GPU
data transfer

▪ The GPU can be considered a communal resource
with multiple competing stakeholders
— Memory pools can help

Tools

▪ Debugging: CUDA memcheck, CUDA GDB,
Totalview, good ol’ print statements

▪ Performance: NVProf, Archer: Thread Sanitizer

▪ Common source (via abstractions) provides access
to wider range of tools

Achieving performance requires a deeper understanding of our codes/algorithms, which will yield dividends in the future.

27
LLNL-PRES-769074

▪ Our code teams have undertaken careful and detailed evaluations of porting and
execution strategies to optimize our codes for Sierra and maintain portable
performance.

▪ A wide range of physics capabilities have been ported to GPUs and are either in the
process of exploring optimization strategies or have achieved game-changing
speedup.

▪ Maintaining speedup in complex calculations is challenging.

▪ We are exploring multiple porting strategies where appropriate.

▪ Abstraction layers provide excellent performance and portability with minimal
tradeoff between the two.

Summary

28
LLNL-PRES-769074

▪ Increased physics and geometric fidelity
— Increased resolution
— Fewer compromises on physics models

▪ Pose questions on the scale of hours instead of days or weeks (or even months)
— This fundamentally changes what questions you ask and how you ask them

▪ Improved turnaround of large 3D calculations
— 3D Uncertainty Quantification becomes feasible

▪ Hero calculations become practical
— Extremely high-resolution calculations in 2 days instead of 45

We are well positioned to use Sierra for high-fidelity 3D studies
in what were previously considered “heroic” calculations

What will “heroic” look like on Sierra ?

29
LLNL-PRES-769074

Questions ?

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

31
LLNL-PRES-769074

▪ A typical code has O(10k) execution loops, but only 0(10)
loop types
— Provides optimized backend for common loop types

▪ Portability and maintainability
— Algorithms don't change with backend
— Leverage vendor optimizations in all codes

▪ Future proofing
— RAJA PerfSuite and Kripke are part of the CORAL-2 benchmark

• Reduce "time-to-performance" on future hardware

▪ RAJA is not a universal solution
— Does not support Fortran
— Requires C++ll and Lambdas
— Does not yet concisely address some of our application use cases

RAJA provides portable performance and was co-designed
with our application requirements

Sequential

OpenMP

?

?

CPU

Nvidia
GPU

AMD
GPU

Future
Hardware

Code
RAJA
Loops

RAJA
Backends

Hardware

Backend can change as technologies wax and wane without modifying algorithms

32
LLNL-PRES-769074

▪ CHAI (Copy Hiding Abstraction
Interface)
— Smart pointer type detects execution

location and ensures data locality

▪ Simplifies porting
— No explicit memory copying needed
— Errors caught at compile-time
— Umpire backend

CHAI automatically handles runtime data transfers

▪ Portability and future proofing
— Portable to machines that lack UM

▪ Disadvantages
— Additional changes necessary relative to UM
— Eviction policies and/or asynchronous data

transfers needed for additional performance
optimizations (in progress)

Provides robust portability and performance but requires additional initial porting investment relative to UM.

33
LLNL-PRES-769074

▪ Portability, backend based

▪ Easily manage memory throughout complex
memory hierarchy
— Allocate/deallocate/copy /move

▪ Memory pools
— More efficient allocation/deallocation of memory
— Facilitates sharing memory pool between code

components
• More efficient use of memory (larger problems)

▪ Memory introspection for better decision
making
— Where is this pointer?
— How big is the allocation?
— What allocator was used?
— How much memory is being used on this resource?

Umpire provides a unified memory management API

memkind

SICM tcmalloc

cnmem

cudaMalloc

Umpire

DDR GDDR

API

Implementations

Hardware

Provides portable memory management and convenient memory pools

34
LLNL-PRES-769074

Mini-app research has been key to the planning and design
of Armus and the success of Ardra on GPUs

Initial Investigations -> Armus Framework Armus Framework -> 1st GPU Run 1st GPU Run -> 15x Speedup

21 Months 8 Months 13 Months

Research
Mini-app research, initial Armus development,

RAJA nested loops, early Ardra refactor

Porting
Adopt Armus data structures,

transition to RAJA, first GPU run

Performance Tuning
Performance analysis, tuning, use GPU shared

memory

• Developed Kripke mini-app to explore data
structures and programming models

• Worked with CORAL CoE to develop CUDA
version of Kripke

• Started development of nested loop
abstractions in RAJA

• Developed requirements for a deterministic
transport framework, and created Armus

• Started refactoring Ardra to accommodate
GPU compatible data structures

• Focus porting activities on 3D static
criticality solver

• Ported code to Arm us data structures

• Transitioned code to RAJA

• Continued development of RAJA based on
issues encountered in Kripke and Ardra

• First GPU run "worked" but had significant
robustness issues

• Converted vector kernels to use CUDA

• Ported remaining kernels to RAJA

• Fixed correctness and robustness issues

• Started performance analysis and tuning of
major kernels

• Started to take advantage of GPU shared
memory

Ardra took an ambitious multi-pronged approach to investing in current and future performance, yielding significant speedup.

35
LLNL-PRES-769074

▪ Mercury/Imp have
heterogeneous CPU/GPU
load balancing
— Assumes MPI only for now
— libQuo or thread-based

balancing can be explored

▪ Uses speed information from
the previous cycle to balance
the particle workload

▪ Performance limited by
longest running rank

▪ 3.2X Speedup
— 1 zone thermal emission test

problem

Monte Carlo Transport project has implemented heterogeneous
CPU/GPU load balancing

0

1

2

3

4

5

6

0 1 2 3 4

Rank

Wall Time (seconds)

0 1 2 3 4

Rank

Wall Time (seconds)

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

0 1 2 3 4

Rank

Segments

0 1 2 3 4

Rank

Segments

36
LLNL-PRES-769074

We are exploring geometric and sampling intersection
Evaluation methods for solution mapping on the GPU

▪ Geometric (standard Overlink)
— Based on Material Interface Reconstruction

(MIR)
— Near machine accuracy
— Initial studies showed not well suited to GPUs*

▪ Geometric Lite (Suited to GPU)
— Mixed zones are homogenized (slight loss of

accuracy)

▪ Sampling
— 8000 samples per zone= 0.25% statistical error
— Backward map is slower for large numbers of

mixed zones

37
LLNL-PRES-769074

▪ What modes of execution are best for performance?
— CPU vs. GPU
— How many MPI processes

▪ What about multiphysics?
— If some phases use one MPI process per GPU, can we productively use remaining CPU cores?
— If some phases use one MPI process per CPU core, can we use multiple MPI process per GPU for the

accelerated phases?

There are a lot of questions around how to best utilize the
resources at our disposal

We are beginning to investigate some of these questions, but there are many opportunities to explore.

38
LLNL-PRES-769074

▪ Perform initialization on all CPUs

▪ Re-decompose (costly)

▪ Compute on GPUs

Accommodating different modes within a single simulation

▪ Example: 196M zone problem on 8 nodes
of EA system
— 2.58x speedup for generation including

redistribution cost
— Saved an hour of runtime (~13% total speedup)

GPU GPU

CPU

Modest speedup for generation phase of problem. This gets even better when oversubscribing the GPU.

GPUGPU

CPU

39
LLNL-PRES-769074

▪ Divide work via uneven domain decomposition
— Very difficult to get the load balancing right

▪ Proof of concept implemented in Ares
— RAJA provides same source code for CPU and GPU

▪ 10% performance improvement over GPU only

Heterogeneous execution or oversubscribing the GPU may
yield valuable performance gains

▪ More CPU cores leads to better CPU memory
bandwidth utilization

▪ More MPI processes = more communication

▪ Multi-Process Service (MPS) allows kernels
launched from different MPI processes to be
processed concurrently on the same GPU
— Can result in better utilization of SMs

Oversubscribing the GPU may prove beneficial if improvements in load balance outweigh additional MPI cost.

CPU

GPUGPU GPUGPU

CPU

