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Brief History of Deep Learning (DL)

Courtesy: http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/

http://www.zdnet.com/article/caffe2-deep-learning-wide-ambitions-flexibility-scalability-and-advocacy/
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Milestones in the Development of Neural Networks

Courtesy: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html
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Understanding the Deep Learning Resurgence

Courtesy: http://www.deeplearningbook.org/contents/intro.html

• Deep Learning is a sub-set of Machine 

Learning

– But, it is perhaps the most radical and 

revolutionary subset

– Automatic feature extraction vs. hand-

crafted features

• Deep Learning

– A renewed interest and a lot of hype!

– Key success: Deep Neural Networks (DNNs)

– Everything was there since the late 80s 

except the “computability of DNNs”

http://www.deeplearningbook.org/contents/intro.html
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Deep Learning, Many-cores, and HPC

*https://blogs.nvidia.com/blog/2014/09/07/imagenet/ Performance Share 
www.top500.org

• NVIDIA GPUs are the main driving force for faster training of DL models

– The ImageNet Challenge - (ILSVRC)

– 90% of the ImageNet teams used GPUs in 2014*

– Deep Neural Networks (DNNs) like AlexNet, GoogLeNet, and VGG are used

– A natural fit for DL due to the throughput-oriented nature

• In the High Performance Computing (HPC) arena

– 126/500 Top HPC systems use NVIDIA GPUs (Nov ’18)

– CUDA-Aware Message Passing Interface (MPI)

– NVIDIA Fermi, Kepler, and Pascal architecture

– DGX-1 (Pascal) and DGX-2 (Volta)

• Dedicated DL supercomputers

https://blogs.nvidia.com/blog/2014/09/07/imagenet/
http://www.top500.org/
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Deep Learning Use Cases and Growth Trends

Courtesy: https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

So what is a Deep Neural Network?

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
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Graphical/Mathematical Intuitions for DNNs

Drawing of a Biological Neuron The Mathematical Model 

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
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• Deep Learning has two major tasks

1. Training of the Deep Neural Network

2. Inference (or deployment) that uses a trained DNN

• DNN Training

– Training is a compute/communication intensive process – can take days to weeks

– Faster training is necessary!

• Faster training can be achieved by

– Using Newer and Faster Hardware – But, there is a limit!

– Can we use more GPUs or nodes?

• The need for Parallel and Distributed Training 

Key Phases of Deep Learning
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DNN Training and Inference

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7457-william-ramey-deep%20learning%20demystified_v24.pdf

http://on-demand.gputechconf.com/gtc/2017/presentation/s7457-william-ramey-deep%20learning%20demystified_v24.pdf
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• To actually train a network, please visit: http://playground.tensorflow.org

TensorFlow playground (Quick Demo)

http://playground.tensorflow.org/
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Caption Generation, Translation, Style Transfer, and many more..

Courtesy: https://github.com/alexjc/neural-doodle

Courtesy: 
https://machinelearningmastery.com/inspiratio
nal-applications-deep-learning/

Courtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html

https://github.com/alexjc/neural-doodle
https://machinelearningmastery.com/inspirational-applications-deep-learning/
https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
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Google Translate

Courtesy: https://www.theverge.com/2015/1/14/7544919/google-translate-update-real-time-signs-conversations

https://www.theverge.com/2015/1/14/7544919/google-translate-update-real-time-signs-conversations
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Self Driving Cars

Courtesy: http://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk/

http://www.teslarati.com/teslas-full-self-driving-capability-arrive-3-months-definitely-6-months-says-musk/
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• Deep Learning frameworks have emerged 

– hide most of the nasty mathematics

– focus on the design of neural networks

• Distributed DL frameworks are being designed

– We have saturated the peak potential of a single 

GPU/CPU/KNL

– Parallel (multiple processing units in a single 

node) and/or Distributed (usually involves 

multiple nodes) frameworks are emerging

• Distributed frameworks are being developed along 

two directions

– The HPC Eco-system: MPI-based Deep Learning 

– Enterprise Eco-system: BigData-based Deep Learning

Why we need DL frameworks?

Statement and its dataflow fragment. The 
data and computing vertexes with different 

colors reside on different processes. 

Courtesy: https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf

https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf
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• AI Index report offers very 

detailed trends about AI and 

ML

• It also provides interesting 

statistics about open source 

DL frameworks and related 

GitHub statistics

DL Frameworks and GitHub Statistics

Courtesy: http://cdn.aiindex.org/2017-report.pdf

http://cdn.aiindex.org/2017-report.pdf
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• Define-and-run: TensorFlow, Caffe, Torch, Theano, and others

• Define-by-run

– PyTorch and Chainer 

– TensorFlow 1.5 introduced Eager Execution (Define-by-run) mode

Are Define-by-run frameworks easier than Define-and-run?

Courtesy: https://www.oreilly.com/learning/complex-neural-networks-made-easy-by-chainer

https://www.oreilly.com/learning/complex-neural-networks-made-easy-by-chainer
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• The most widely used framework open-sourced by Google

• Replaced Google’s DistBelief[1] framework

• Runs on almost all execution platforms available (CPU, GPU, TPU, 

Mobile, etc.)

• Very flexible but performance has been an issue

• Certain Python peculiarities like variable_scope etc. 

• https://github.com/tensorflow/tensorflow

Google TensorFlow (Most Popular)

Courtesy: https://www.tensorflow.org/

[1] Jeffrey Dean et al., “Large Scale Distributed Deep Networks”
https://static.googleusercontent.com/media/research.google.com/en//archive/large_deep_networks_nips2012.pdf

https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/
https://static.googleusercontent.com/media/research.google.com/en/archive/large_deep_networks_nips2012.pdf
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• Torch was written in Lua

– Adoption wasn’t wide-spread

• PyTorch is a Python adaptation of Torch

– Gaining lot of attention

• Several contributors

– Biggest support by Facebook

• There are/maybe plans to merge the PyTorch and Caffe2 efforts

• Key selling point is ease of expression and “define-by-run” approach

Facebook Torch/PyTorch - Catching up fast!

Courtesy: http://pytorch.org

http://pytorch.org/
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• ChainerMN provides multi-node parallel/distributed training using MPI

– MVAPICH2 MPI library is being used by Preferred Networks

– http://mvapich.cse.ohio-state.edu

• ChainerMN is geared towards performance

– Uses Define-by-run (Chainer, PyTorch) approach instead of Define-and-run 

(Caffe, TensorFlow, Torch, Theano) approach

– https://github.com/chainer/chainer

– Focus on Speed as well as multi-node Scaling

– Beats CNTK, MXNet, and TensorFlow for training ResNet-50 on 128 GPUs [1]

Preferred Networks Chainer/ChainerMN

1. http://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html

http://mvapich.cse.ohio-state.edu/
https://github.com/chainer/chainer
http://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html
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• Keras - https://keras.io

• MXNet - http://mxnet.io

• Theano - http://deeplearning.net/software/theano/

• Blocks - https://blocks.readthedocs.io/en/latest/

• Intel BigDL - https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-

on-apache-spark

• The list keeps growing and the names keep getting longer and weirder ;-)

– Livermore Big Artificial Neural Network Toolkit (LBANN) -

https://github.com/LLNL/lbann

– Deep Scalable Sparse Tensor Network Engine (DSSTNE) -

https://github.com/amzn/amazon-dsstne

Many Other DL Frameworks…

https://keras.io/
http://mxnet.io/
http://deeplearning.net/software/theano/
https://blocks.readthedocs.io/en/latest/
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://github.com/LLNL/lbann
https://github.com/amzn/amazon-dsstne
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• Early (2014) frameworks used a single fast GPU

– As DNNs became larger, faster and better GPUs became available

– At the same time, parallel (multi-GPU) training gained traction as well

• Today

– Parallel training on multiple GPUs is being supported by most frameworks

– Distributed (multiple nodes) training is still upcoming 

• A lot of fragmentation in the efforts (MPI, Big-Data, NCCL, Gloo, etc.)

– On the other hand, DL has made its way to Mobile and Web too!

• Smartphones - OK Google, Siri, Cortana, Alexa, etc.

• DrivePX – the computer that drives NVIDIA’s self-driving car

• Deeplearn.js – a DL framework in a web-browser

• TensorFlow playground - http://playground.tensorflow.org/

So where do we run our DL framework?

http://playground.tensorflow.org/
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Conventional Execution on GPUs and CPUs

DL	Applications	(Image	Recognition,	Speech	Processing,	etc.)

DL	Frameworks	(Caffe,	TensorFlow,	etc.)

BLAS	Libraries

Hardware

Many-core	GPU	
(Pascal	P100)

Generic	
Convolution	Layer

MKL	Optimized
Convolution	Layer

MKL	2017 cuDNN/cuBLAS

Multi-/Many-core	
(Xeon,	Xeon	Phi)

cuDNN Optimized
Convolution	Layer

Other	BLAS	Libraries

OpenBLASATLAS

Other	Processors

• My framework is faster than 

your framework!

• This needs to be understood 

in a holistic way.

• Performance depends on the 

entire execution environment 

(the full stack)

• Isolated view of performance 

is not helpful

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training
on Modern Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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• BLAS Libraries – the heart of math operations

– Atlas/OpenBLAS

– NVIDIA cuBlas

– Intel Math Kernel Library (MKL)

• Most compute intensive layers are generally optimized for a specific 

hardware

– E.g. Convolution Layer, Pooling Layer, etc.

• DNN Libraries – the heart of Convolutions!

– NVIDIA cuDNN (already reached its 7th iteration – cudnn-v7.5)

– Intel MKL-DNN (MKL 2018) – recent but a very promising development

DL Frameworks and Underlying Libraries
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Where does the Performance come from?

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training on Modern 
Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.

• The full landscape: Forward and Backward Pass -- Faster Convolutions → Faster Training

• Performance of Intel KNL == NVIDIA P100 for AlexNet Training – Volta is in a different league!

• Most performance gains are based on improvements in layer conv2 and conv3 for AlexNet
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• Why do we need Parallel Training?

• Larger and Deeper models are being proposed

– AlexNet to ResNet to Neural Machine Translation (NMT)

– DNNs require a lot of memory

– Larger models cannot fit a GPU’s memory

• Single GPU training became a bottleneck

• As mentioned earlier, community has already moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Increasing model-size generally increases accuracy

• Increasing batch-size requires tweaking hyper-

parameters to maintain accuracy

– Limits for batch-size

– Cannot make it infinitely large

– Over-fitting

• Large batch size generally helps scalability

– More work to do before the need to synchronize

• Increasing the model-size (no. of parameters)

– Communication overhead becomes bigger so scalability 

decreases

– GPU memory is precious and can only fit finite model data

Batch-size, Model-size, Accuracy, and Scalability

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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• Strong scaling CIFAR10 Training with 

OSU-Caffe (1 –> 4 GPUs) – Batch Size 2K

• Large batch size is needed for 

scalability. 

• Adding more GPUs will degrade the 

scaling efficient

Benefits of Distributed Training: An Example with Caffe

OSU-Caffe is available from the HiDL project page
(http://hidl.cse.ohio-state.edu)
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CIFAR-10 Training with OSU-Caffe

1-GPU 2-GPUs 4-GPUs

Run Command - (change $np from 1—4)

mpirun_rsh -np $np ./build/tools/caffe 
train -solver 
examples/cifar10/cifar10_quick_solver.prototxt
-scal strong

Output: I0123 21:49:24.289763 75582 caffe.cpp:351] Avg. Time Taken: 142.101

Output: I0123 21:54:03.449211 97694 caffe.cpp:351] Avg. Time Taken: 74.6679

Output: I0123 22:02:46.858219 20659 caffe.cpp:351] Avg. Time Taken: 39.8109

http://hidl.cse.ohio-state.edu/
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• What are the Parallelization Strategies

– Model Parallelism

– Data Parallelism (Received the most attention)

– Hybrid Parallelism

– Automatic Selection

Parallelization Strategies Model Parallelism

Data Parallelism

Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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• What are the Design Choices for Communication?

– Established paradigms like Message Passing Interface (MPI)

– Develop specific communication libraries like NCCL, Gloo,           

Baidu-allreduce, etc.

– Use Big-Data frameworks like Spark, Hadoop, etc.

• Still need some form of external communication for parameters (RDMA, IB, 

etc.)

• Focus on Scale-up and Scale-out

– What are the challenges and opportunities?

Communication in Distributed Frameworks
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• Scale-up: Intra-node Communication

– Many improvements like:

• NVIDIA cuDNN, cuBLAS, NCCL, etc.

• CUDA 9 Co-operative Groups

• Scale-out: Inter-node Communication

– DL Frameworks – most are optimized for 

single-node only

– Distributed (Parallel) Training is an 

emerging trend

• OSU-Caffe – MPI-based

• Microsoft CNTK – MPI/NCCL2

• Google TensorFlow – gRPC-based/MPI/NCCL2

• Facebook Caffe2 – Hybrid (NCCL2/Gloo/MPI)

Scale-up and Scale-out

Sc
al

e
-u

p
 P

e
rf

o
rm

an
ce

Scale-out Performance

cuDNN

gRPC

Hadoop

MPI

MKL-DNN

Desired

NCCL2
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Data Parallel Deep Learning and MPI Collectives
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packed_redu
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ApplyUpdates

MPI_Reduce (GPU 0)

Loop {}• Major MPI Collectives

involved in Designing 

distributed frameworks

• MPI_Bcast – required for 

DNN parameter exchange

• MPI_Reduce – needed for 

gradient accumulation from 

multiple solvers

• MPI_Allreduce – use just 

one Allreduce instead of 

Reduce and Broadcast

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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Drivers of Modern HPC Cluster Architectures

• Multi-core/many-core technologies

• Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

• Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD

• Accelerators (NVIDIA GPGPUs)

• Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Accelerators
high compute density, high 

performance/watt
>1 TFlop DP on a chip 

High Performance Interconnects -
InfiniBand

<1usec latency, 100Gbps Bandwidth>

Multi-/Many-core 
Processors

SSD, NVMe-SSD, NVRAM

K - ComputerSunway TaihuLightSummit Sierra
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• Hardware

– Interconnects – InfiniBand, RoCE, Omni-Path, etc.

– Processors – GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), 

FPGAs,  etc.

• Communication Middleware

– Message Passing Interface (MPI)

• CUDA-Aware MPI, Many-core Optimized MPI runtimes (KNL-specific optimizations)

– NVIDIA NCCL

HPC Technologies
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• High-Performance Computing (HPC) has adopted advanced interconnects and protocols 

– InfiniBand (IB)

– Omni-Path

– High Speed Ethernet 10/25/40/50/100 Gigabit Ethernet/iWARP

– RDMA over Converged Enhanced Ethernet (RoCE)

• Very Good Performance

– Low latency (few micro seconds)

– High Bandwidth (200 Gb/s with HDR InfiniBand)

– Low CPU overhead (5-10%)

• OpenFabrics software stack with IB, Omni-Path, iWARP and RoCE interfaces are driving HPC systems

• Many such systems in Top500 list

Overview of High Performance Interconnects
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Ethernet (1979 - ) 10 Mbit/sec

Fast Ethernet (1993 -) 100 Mbit/sec

Gigabit Ethernet (1995 -) 1000 Mbit /sec

ATM (1995 -) 155/622/1024 Mbit/sec

Myrinet (1993 -) 1 Gbit/sec

Fibre Channel (1994 -) 1 Gbit/sec

InfiniBand (2001 -) 2 Gbit/sec (1X SDR)

10-Gigabit Ethernet (2001 -) 10 Gbit/sec

InfiniBand (2003 -) 8 Gbit/sec (4X SDR)

InfiniBand (2005 -) 16 Gbit/sec (4X DDR)

24 Gbit/sec (12X SDR)

InfiniBand (2007 -) 32 Gbit/sec (4X QDR)

40-Gigabit Ethernet (2010 -) 40 Gbit/sec

InfiniBand (2011 -) 54.6 Gbit/sec (4X FDR)

InfiniBand (2012 -) 2 x 54.6 Gbit/sec (4X Dual-FDR)

25-/50-Gigabit Ethernet (2014 -) 25/50 Gbit/sec

100-Gigabit Ethernet (2015 -) 100 Gbit/sec

Omni-Path (2015 - ) 100 Gbit/sec

InfiniBand (2015 - ) 100 Gbit/sec (4X EDR)

InfiniBand (2018 - ) 200 Gbit/sec (4X HDR)

Network Speed Acceleration with IB and HSE

100 times in the last 17 years
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• Intel® Nervana™ Neural Network Processors (NNP)

– formerly known as “Lake Crest”

• Recently announced as part of Intel’s strategy for 

next-generation AI systems

• Purpose built architecture for deep learning

• 1 TB/s High Bandwidth Memory (HBM)

• Spatial Architecture

• FlexPoint format

– Similar performance (in terms of accuracy) to FP32 while 

using 16 bits of storage

Intel Neural Network Processor (NNP)

Courtesy: https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/

https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/
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• New processor that’s the first to be 

specifically designed for machine 

intelligence workloads – an Intelligence 

Processing Unit (IPU)

– Massively parallel

– Low-precision floating-point compute 

– Higher compute density

• UK-based Startup

• Early benchmarks show 10-100x 

speedup over GPUs

– Presented at NIPS 2017

GraphCore – Intelligence Processing Unit (IPU)

Courtesy: https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications

https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications
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• Hardware

– Interconnects – InfiniBand, RoCE, Omni-Path, etc.

– Processors – GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs,  

etc.

• Communication Middleware

– Message Passing Interface (MPI)

• CUDA-Aware MPI, Many-core Optimized MPI runtimes (KNL-specific optimizations)

– NVIDIA NCCL

HPC Technologies
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Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Logical shared memory

Shared Memory Model

SHMEM, DSM

Distributed Memory Model 

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

OpenSHMEM, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems

– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving 

importance
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• Element-wise Sum data from all processes and sends to all processes

Allreduce Collective Communication Pattern

int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype, 

MPI_Op operation, MPI_Comm comm)

Input-only Parameters

Parameter Description

sendbuf Starting address of send buffer

recvbuf Starting address of recv buffer

type Data type of buffer elements

count Number of elements in the buffers

operation Reduction operation to be performed (e.g. sum)

comm Communicator handle

Input/Output Parameters

Parameter Description

recvbuf Starting address of receive buffer

T1 T2 T3 T4

Sendbuf (Before)

1
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4
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2

3

4

1

2

3

4

1

2

3

4

T1 T2 T3 T4

Recvbuf (After)

4

8

12

16

4

8

12

16

4

8

12

16

4

8

12

16



GTC ’19 49Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,975 organizations in 86 countries

– More than 528,000 (> 0.5 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘18 ranking)

• 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at  NSC, Wuxi, China

• 14th, 556,104 cores (Oakforest-PACS) in Japan

• 17th, 367,024 cores (Stampede2) at TACC

• 27th, 241,108-core (Pleiades) at NASA and many others

– Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

Partner in the upcoming TACC Frontera System

http://mvapich.cse.ohio-state.edu/
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At Sender:

At Receiver:

MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GDR 
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10x

9x

Optimized MVAPICH2-GDR Design 
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• Collective Communication with a caveat!

– GPU buffer exchange 

– Dense Multi-GPU systems 

(Cray CS-Storm, DGX-1)

– MPI-like – but not MPI standard compliant

• NCCL (pronounced Nickel)

– Open-source Communication Library by NVIDIA

– Topology-aware, ring-based (linear) collective 

communication library for GPUs

– Divide bigger buffers to smaller chunks

– Good performance for large messages 

• Kernel-based threaded copy (Warp-level Parallel) 

instead of cudaMemcpy

NCCL Communication Library

https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/

https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in HPC Technologies

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges  

• Conclusion 

Outline
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How to efficiently scale-out a 

Deep Learning (DL) framework and take 

advantage of heterogeneous 

High Performance Computing (HPC) 

resources?

Broad Challenge: Exploiting HPC for Deep Learning



GTC ’19 55Network Based Computing Laboratory

1. What are the fundamental 

issues in designing DL 

frameworks?

– Memory Requirements

– Computation Requirements

– Communication Overhead

2. Why do we need to support 

distributed training?

– To overcome the limits of 

single-node training

– To better utilize hundreds of 

existing HPC Clusters

Research Challenges to Exploit HPC Technologies

InfiniBand GPUCPU

CNTK

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes to support 
Distributed Training

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

1

2
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3. What are the new design challenges 

brought forward by DL frameworks for 

Communication runtimes?

– Large Message Collective

Communication and Reductions

– GPU Buffers (CUDA-Awareness)

4. Can a Co-design approach help in achieving 

Scale-up and Scale-out efficiently?

– Co-Design the support at Runtime 

level and Exploit it at the DL 

Framework level

– What performance benefits can be 

observed? 

– What needs to be fixed at the 

communication runtime layer?

5. 

Research Challenges to Exploit HPC Technologies (Cont’d)

CUDA-
Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-Point
Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

3

4 Co-Design 
Opportunities
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• Introduction

• Overview of Execution Environments 

• Parallel and Distributed DNN Training

• Latest Trends in HPC Technologies

• Challenges in Exploiting HPC Technologies for Deep Learning

• Solutions and Case Studies

• Open Issues and Challenges  

• Conclusion 

Outline
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• NVIDIA NCCL/NCCL2

• Baidu-allreduce

• Facebook Gloo

• Co-design MPI runtimes and 

DL Frameworks

• Distributed Training for 

TensorFlow

• Scaling DNN Training on 

Multi-/Many-core CPUs

• PowerAI DDL

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
Aggregation

Model Propagation
Forward

Backward

Deep Learning and Machine Learning Frameworks

Caffe/
OSU-Caffe

Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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• NCCL is a collective communication library

– NCCL 1.x is only for Intra-node communication on a 

single-node

• NCCL 2.0 supports inter-node communication 

as well

• Design Philosophy

– Use Rings and CUDA Kernels to perform efficient 

communication

• NCCL is optimized for dense multi-GPU 

systems like the DGX-1 and DGX-1V

NVIDIA NCCL

Courtesy: https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/

https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/


GTC ’19 60Network Based Computing Laboratory

NCCL 2: Multi-node GPU Collectives

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf

http://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf
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MVAPICH2-GDR vs. NCCL2 – Allreduce Operation

• Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs
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MVAPICH2-GDR vs. NCCL2 – Allreduce on DGX-2

• Optimized designs in MVAPICH2-GDR 2.3.1 offer better/comparable performance for most cases 

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)
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• NVIDIA NCCL

• Baidu-allreduce

• Facebook Gloo

• Co-design MPI runtimes and 

DL Frameworks

• Distributed Training for 

TensorFlow

• Scaling DNN Training on 

Multi-/Many-core CPUs

• PowerAI DDL

Solutions and Case Studies: Exploiting HPC for DL

CUDA-
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(Baidu-allreduce)
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Deep Learning and Machine Learning Frameworks

Caffe/
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Caffe2 TensorFlow MXNet

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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Baidu’s Ring-Allreduce in TensorFlow

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7543-andrew-gibiansky-effectively-scakukbg-deep-learning-frameworks.pdf

http://on-demand.gputechconf.com/gtc/2017/presentation/s7543-andrew-gibiansky-effectively-scakukbg-deep-learning-frameworks.pdf
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• 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

*Available since MVAPICH2-GDR 2.3a

~30X better

MV2 is ~2X better 

than Baidu

~10X better OpenMPI is ~5X slower 

than Baidu

~4X better
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• NVIDIA NCCL

• Baidu-allreduce

• Facebook Gloo

• Co-design MPI runtimes and 

DL Frameworks

• Distributed Training for 

TensorFlow

• Scaling DNN Training on 

Multi-/Many-core CPUs

• PowerAI DDL

Solutions and Case Studies: Exploiting HPC for DL
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• Caffe2 (by Facebook) allows the use of multiple communication back-ends

– Gloo – Multi-node design from the beginning

– NCCL – Multi-node support added recently in v2

• Gloo – Performance evaluation studies not available yet

• Design principles are similar to MPI and NCCL

• In essence, Gloo is an application level implementation of collective 

algorithms for Reduce, Allreduce, etc.

• Details and code available from: https://github.com/facebookincubator/gloo

Facebook Caffe2

https://github.com/facebookincubator/gloo
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Courtesy: https://research.fb.com/publications/imagenet1kin1h/

Facebook: Training ImageNet in 1 Hour

• Near-linear Scaling for ~256 Pascal GPUs (Facebook Big Basin Servers with 8 GPUs/node)

• Explored large batch-size training  with ResNet-50

– 8K batch-size seems to be the sweet-spot.

https://research.fb.com/publications/imagenet1kin1h/
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• NVIDIA NCCL

• Baidu-allreduce

• Facebook Gloo

• Co-design MPI runtimes and DL 

Frameworks

• Distributed Training for TensorFlow

• Scaling DNN Training on Multi-/Many-

core CPUs

• PowerAI DDL

Solutions and Case Studies: Exploiting HPC for DL
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• To address the limitations of Caffe and existing MPI runtimes, we 

propose the OSU-Caffe (S-Caffe) framework

• At the application (DL framework) level

– Develop a fine-grain workflow – i.e. layer-wise communication instead 

of communicating the entire model

• At the runtime (MPI) level

– Develop support to perform reduction of very-large GPU buffers

– Perform reduction using GPU kernels 

S-Caffe: Proposed Co-Design Overview

OSU-Caffe is available from the HiDL project page
(http://hidl.cse.ohio-state.edu)

http://hidl.cse.ohio-state.edu/
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• Caffe : A flexible and layered Deep Learning 

framework.

• Benefits and Weaknesses

– Multi-GPU Training within a single node

– Performance degradation for GPUs across different sockets 

– Limited Scale-out

• OSU-Caffe: MPI-based Parallel Training 

– Enable Scale-up (within a node) and Scale-out (across multi-

GPU nodes)

– Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-

10 dataset

– Scale-out on 128 GPUs for training GoogLeNet network on 

ImageNet dataset

OSU-Caffe: Scalable Deep Learning
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A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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• NVIDIA NCCL

• Baidu-allreduce

• Facebook Gloo

• Co-design MPI runtimes and 

DL Frameworks

• Distributed Training for 

TensorFlow

• Scaling DNN Training on 

Multi-/Many-core CPUs

• PowerAI DDL
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• TensorFlow is the most popular DL 

framework

• gRPC is the official distributed 

training runtime

– Many problems for HPC use-cases

• Community efforts - Baidu and 

Uber’s Horovod have added MPI 

support to TF across nodes

• Need to understand several 

options currently available →

Distributed Training using TensorFlow (TF)

Distributed 
TensorFlow

gRPC
Accelerated 

gRPC

gRPC+X

gRPC+MPI

gRPC+Verbs

gRPC+GDR

No-gRPC

Baidu-MPI

Horovod

MPI

NCCL

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and 
CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, (To be presented) CCGrid ‘19. 
https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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• Efficient Allreduce is crucial for Horovod’s 

overall training performance

– Both MPI and NCCL designs are available

• We have evaluated Horovod extensively 

and compared across a wide range of 

designs using gRPC and gRPC extensions

• MVAPICH2-GDR achieved up to 90%

scaling efficiency for ResNet-50 Training 

on 64 Pascal GPUs

Scalable TensorFlow using Horovod, MPI, and NCCL
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A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed 
DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and 
Performance Evaluation”, (To be presented) CCGrid ‘19. 
https://arxiv.org/abs/1810.11112

https://arxiv.org/abs/1810.11112
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• NVIDIA NCCL

• Baidu-allreduce

• Facebook Gloo

• Co-design MPI runtimes and 

DL Frameworks

• Distributed Training for 

TensorFlow

• Scaling DNN Training on 

Multi-/Many-core CPUs

• PowerAI DDL
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OMP_NUM_THREADS=44 OMP_NUM_THREADS=1

batch 
size

Intel® MKL
(images/sec)

Eigen BLAS
(images/sec)

Intel® MKL
(images/sec)

Eigen BLAS
(images/sec)

1 173.4 5.2 28.6 5.1

32 1500.2 29.3 64.6 15.4

64 1596.3 35.3 66.0 15.5

256 1735.2 44.9 67.3 16.2

Caffe2 Performance Optimization with Intel MKL

Courtesy: https://software.intel.com/en-us/blogs/2017/04/18/intel-and-facebook-collaborate-to-boost-caffe2-performance-on-intel-cpu-s

https://software.intel.com/en-us/blogs/2017/04/18/intel-and-facebook-collaborate-to-boost-caffe2-performance-on-intel-cpu-s
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TensorFlow Optimization for Intel CPUs

Courtesy: https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture

https://software.intel.com/en-us/articles/tensorflow-optimizations-on-modern-intel-architecture
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• Intel MLSL is built on top of MPI primitives

– https://github.com/01org/MLSL

• Works across various interconnects: Intel(R) Omni-Path Architecture, InfiniBand*, and 

Ethernet

• Common API to support Deep Learning frameworks (Caffe*, Theano*, Torch*, etc.)

Intel Machine Learning Scaling Library (MLSL)

Courtesy: https://github.com/01org/MLSL

https://github.com/01org/MLSL
https://github.com/01org/MLSL


GTC ’19 79Network Based Computing Laboratory

• NVIDIA NCCL

• LLNL Aluminum

• Baidu-allreduce

• Facebook Gloo

• Co-design MPI runtimes and 

DL Frameworks

• Distributed Training for 

TensorFlow

• Scaling DNN Training on 

Multi-/Many-core CPUs

• PowerAI DDL
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IBM PowerAI DDL 

Courtesy: https://www.hpcwire.com/2017/08/08/ibm-raises-bar-distributed-deep-learning/

https://www.hpcwire.com/2017/08/08/ibm-raises-bar-distributed-deep-learning/
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PowerAI DDL Performance

Caffe with PowerAI DDL on ResNet-50 model using the ImageNet-1K data set on 64 Power8 servers

Courtesy: 
https://www.ibm.com/blogs/research/2017/08/distributed-deep-learning/
https://arxiv.org/pdf/1708.02188.pdf

https://www.ibm.com/blogs/research/2017/08/distributed-deep-learning/
https://arxiv.org/pdf/1708.02188.pdf
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Outline



GTC ’19 83Network Based Computing Laboratory

• Convergence of DL and HPC

• Scalability and Large batch-size training?

• DL Benchmarks and Thoughts on Standardization

Open Issues and Challenges  
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• Is Deep Learning an HPC Problem?

– Distributed DNN Training is definitely an HPC problem

– Inference – not yet an HPC problem

• Why HPC can help?

– Decades of research for communication models and performance optimizations

– MPI, PGAS, and other upcoming programming models and communication runtimes can 

help for “data-parallel” training

• Some of the needs for DNN training are an exact match

– Compute intensive problem

• Some needs are new for distributed/parallel communication runtimes

– Large Message Communication

– CUDA-Aware Communication

Convergence of DL and HPC
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• Large batch-size helps improve the scalability

– Lesser communication and more compute before synchronization

– Limits to large batch-size

• DL community is actively exploring this area

• HPC community can also investigate overlap and latency-hiding techniques

• Is there a limit to DNN size?

– Noam Shazeer’s Outrageously Large Model (137 Billion Parameters) 

– https://arxiv.org/pdf/1701.06538.pdf

• Out-of-core Training for GPUs?

– NVIDIA’s vDNN - https://arxiv.org/pdf/1602.08124.pdf

– Prune the network or selectively allocate/de-allocate memory on GPUs

– OC-DNN and OC-Caffe

Scalability and Large batch-size training?

https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1602.08124.pdf
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Scalability and Large (Out-of-core) Models?
• Large DNNs cannot be trained on GPUs due to memory limitation!

– ResNet-50 for Image Recognition but current frameworks can 

only go up to a small batch size of 45

– Next generation models like Neural Machine Translation (NMT) 

are ridiculously large, consists of billions of parameters, and 

require even more memory

– Can we design Out-of-core DNN training support using new 

software features in CUDA 8/9 and hardware mechanisms in 

Pascal/Volta GPUs? 

• General intuition is that managed allocations “will be” slow!

– The proposed framework called OC-Caffe (Out-of-Core Caffe)

shows the potential of managed memory designs that can 

provide performance with negligible/no overhead.

• OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for 

ResNet-50 training on the Volta V100 GPU with CUDA9 and CUDNN7
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• Can we have a standardized interface?

– Are we there yet?

– Deep Learning Interface (DLI)? Inspired by Message Passing Interface (MPI)

• What can be a good starting point?

• Will it come from the HPC community or the DL community?

• Can there be a collaboration across communities?

• What about standard benchmarks? Is there a need?

– State-of-the-art

• HKBU benchmarks - http://dlbench.comp.hkbu.edu.hk

• Soumith Chintala’s benchmarks - https://github.com/soumith/convnet-benchmarks

• DAWN Bench – https://dawn.cs.stanford.edu/benchmark/

• MLPerf – https://www.mlperf.org -- Latest and Widely Promoted now!

DL Benchmarks and Thoughts on Standardization

http://dlbench.comp.hkbu.edu.hk/
https://github.com/soumith/convnet-benchmarks
https://dawn.cs.stanford.edu/benchmark/
https://www.mlperf.org/
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• Exponential growth in Deep Learning frameworks

• Provided an overview of issues, challenges, and opportunities for 

communication runtimes 

– Efficient, scalable, and hierarchical designs are crucial for DL frameworks

– Co-design of communication runtimes and DL frameworks will be essential

• OSU-Caffe

• TensorFlow (Baidu, Uber’s Horovod, etc.)

• Neon and Nervana Graph

• Need collaborative efforts to achieve the full potential

• Standardization may help remove fragmentation in DL frameworks

Conclusion
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Please join us for more events..

Monday, March 18 Tuesday, March 19 Wednesday, March 20 

Research Poster

1. P9243 - Exploiting CUDA 
Unified Memory for Efficient 
Out-of-Core DNN Training

2. P9242 - Exploiting GPUDirect 
Technology and Hardware 
Multicast for Streaming and 
Deep Learning Applications

Talk

S9476 - MVAPICH2-GDR: 
High-Performance and 
Scalable CUDA-Aware 
MPI Library for HPC and 
AI

Instructor-Led Training

L9121 - How to Boost 
the Performance of 
HPC/AI Applications 
Using MVAPICH2 
Library

SJCC Upper Concourse

06:00 PM - 08:00 PM

SJCC Room 211A 
(Concourse Level)
03:00 PM - 03:50 PM

SJCC Room LL21D 
(Lower Level) 
08:00 AM - 10:00 AM
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Thank You!

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

panda@cse.ohio-state.edu

awan.10@osu.edu

subramon@cse.ohio-state.edu

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
mailto:awan.10@osu.edu
mailto:subramon@cse.ohio-state.edu

