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Brief History of Deep Learning (DL)

ARTIFICIAL

INTELLIGENCE

MACHINE
LEARNING

DEEP

¥ S LEARNING

A

1950’s 1960's 1970's 1980°'s 1990’s 2000's 2010’s
Courtesy: http: . . i - - ing-wide-ambitions-flexibility-scalability-and-advocac
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Milestones in the Development of Neural Networks

Deep Neural Network

Pretraini
Multi-layered m : y L
A

XOR Perceptron
e (Backpropagation)
'\ A
4
Perceptron
Golden Age Dark Age (Al Winter”)
Electronic Brain
1943 1957 1960 1969 1986 1995 2006

1990

S. McCulloch - W. Pitts D. Rumelhart - G. Hinton - R. Wiliams V. Vapnik - C. Cortes G. Hinton - S. Ruslan
XAND Y XORY NOT X Foward Activity ) -
o1 41 -2 PORPS B . RN - o
x/ vI \.\ -/ er \} ! ——— Backward Ermor
« Adjustable Weughts » Learnable Weights and Threshold « XOR Problem + Solution to nonlinearly separable problems « Limitations of leaming prior knowledge * Hierarchical feature Leaming
* Weights are not Learned « Big computation, local optima and overfitting * Kemel function: Human Intervention

Courtesy: https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_partl.html
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Understanding the Deep Learning Resurgence

e Deep Learning is a sub-set of Machine
Learning

— But, it is perhaps the most radical and

revolutionary subset

Deep learning Example:
Shallow

autoencoders

— Automatic feature extraction vs. hand-

Example:
Knowledge

Example:
Logistic
regression

Example:

crafted features MLPs

hases

e Deep Learning

Hepresentation learning

— A renewed interest and a lot of hype!

Machine learning

— Key success: Deep Neural Networks (DNNs)

— Everything was there since the late 80s
except the “computability of DNNs”

Courtesy: http://www.deeplearningbook.org/contents/intro.html
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Deep Learning, Many-cores, and HPC

e NVIDIA GPUs are the main driving force for faster training of DL models
— The ImageNet Challenge - (ILSVRC)
— 90% of the ImageNet teams used GPUs in 2014*
— Deep Neural Networks (DNNs) like AlexNet, GooglLeNet, and VGG are used

— A natural fit for DL due to the throughput-oriented nature

@ Nvidia Pascal

e Inthe High Performance Computing (HPC) arena ® NVIDIA Volta

— 126/500 Top HPC systems use NVIDIA GPUs (Nov '18)

Nvidia Kepler
— CUDA-Aware Message Passing Interface (MPI) @ Intel Xeon Phi
NVIDIA F i Kepl dP | hitect @ Nvidia Fermi
— ermi, Kepler, and Pascal architecture ® PEZV-SC
— DGX-1 (Pascal) and DGX-2 (Volta) @ Hybrid

e Dedicated DL supercomputers @ Matrix-2000

*https://blogs.nvidia.com/blog/2014/09/07 /imagenet/ Performance Share

www.top500.org
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Deep Learning Use Cases and Growth Trends

1.1 Artificial ,ﬂfE”.I"gEHCE Reven ue, World Markets: 2016-2025 7.2 Artificial Intelligence Revenue, Top 10 Use Cases, World Markets: 2025

$4-ﬂ,ﬂ'00 Contract analysis

Object detection and classification -
avoidance, navigation

$35.000

Object identification. detection.
classification, tracking from geospatial

images

Automated geophysical feature detection

$25,000
Text query of images

$20,000
Content distribution on social media

$15,000
Predictive maintenance

$10,000
Efficient, scalable processing of patient data

$5.000
. Static image recognition, classification, and

tagging
— = W

8-
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 Algorithmic trading strategy performance

improvement

$30,000

($ Millions)

5- $500 $1,000 %1.500 $2,000 %£2,500 $£3,000
(% Millions)

Courtesy: https://www.top500.0org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
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So what is a Deep Neural Network?

e Example of a 3-layer Deep Neural Network (DNN) — (input layer is not counted)

iInput layer
hidden layer 1 hidden layer 2

Courtesy: http://cs231n.github.io/neural-networks-1/
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Graphical/Mathematical Intuitions for DNNs

impulses carried
toward cell body

branches
dendrites of axon
nucleus
impulses carried
away from cell body
cell body

axon
terminals

L0 wo
@
axon from a neuron LTI
woTo
cell body f(Zwi$i+b)
N o )
i : R output axon
activation
Wo o function

Drawing of a Biological Neuron

Courtesy: http://cs231n.github.io/neural-networks-1/

The Mathematical Model
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Key Phases of Deep Learning

e Deep Learning has two major tasks

1. Training of the Deep Neural Network

2. Inference (or deployment) that uses a trained DNN

e DNN Training

— Training is a compute/communication intensive process — can take days to weeks

— Faster training is necessary!
e Faster training can be achieved by

— Using Newer and Faster Hardware — But, there is a limit!

— Can we use more GPUs or nodes?

e The need for Parallel and Distributed Training

Network Based Computing



DNN Training and Inference

Untrained

Courtesy: http:
Network Based Computing Laboratory

Framework

TRAINING

N exsiing dathy

TRAINING
DATASET
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Xt
5 ? .
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,"
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»
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GTC’19
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http://on-demand.gputechconf.com/gtc/2017/presentation/s7457-william-ramey-deep%20learning%20demystified_v24.pdf

TensorFlow playground (Quick Demo)

e To actually train a network, please visit: http://playground.tensorflow.org

Epoct Learning rate Activation Reqularizatior Regularization rate Problem type
>l
O ° OOO,1 10 0.03 v Tanh v None v 0 v Classification
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties Test loss 0.006

ur | want 1m cn? Ao vou want to — GRS g

you want 1o use do you want to = 3 = fraining loss 0.005
feed In?

P 4 neurons 2 neurons
= -
x' o E el s
\ ~ o
— ~ - - - &
&
~ < // .
N . (‘p
~
S— P &
x D m.A---.“—"—‘ 7 ./—. “-- ’
— -‘
Ratio of training to . /’ 22 sl
/ .
' ' " an 4 ”~
esl gala: ou / ’, L
/
—) 7 M 4
N
" ’ 7’ mxed
v i
Nois o weights
vOIS -
Py —
d )
’

Batch size: 10
DaiCh siZe . X ¥ This is the outpu
_. from one neuron

REGENERATE
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Caption Generation, Translation, Style Transfer, and many more..

Synthesized Image !

#NeuralDoodle /‘»

- 22
‘man in black shirt is playing ‘construction worker in orange “two young girls are playing with
guitar.” safety vest is working on road." lego toy."

“girl in pink dress is jumping in "black and white dog jumps over “young girl in pink shirt is
air" bar! swinging on swing.’

0 R DA
| \Chiklad - Y MOL IS | ‘CHOCOLATE Ile Courtesy:

- -~ T« ' . . . . . .
XL CO()kies(/' ' Ly Mork — Dark XLCOOKlES) ' https://machinelearningmastery.com/inspiratio

m nal-applications-deep-learning/

Courtesy: https://research.googleblog.com/2015/07/how-google-translate-squeezes-deep.html
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Google Translate

Courtesy: . . 1/14/7544919/google-translate-update-real-time-signs-conversations
GTC’19
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Self Driving Cars

LEFT REARWARD VEHICILE CAMERA =

MEDIUM RANGE VEHICLE CAMERA

MOTION FLOW LANE LINES LANE LINES ROAD FLOW IN-PATH OBJECTS ROAD LIGHTS OBJECTS ROAD SIGNS RIGHT REARWARD UEHICLE CAMERA

Courtesy: : . I. teslas-full-self-drivin
Network Based Computing Laboratory
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Why we need DL frameworks?

e Deep Learning frameworks have emerged Math: y= +r»|
I+E_ e
— hide most of the nasty mathematics U
. Minerva Program:
— focus on the design of neural networks Matrix y = (W*x + b).Map(&Sigmoid)
e Distributed DL frameworks are being designed \U/
. . i .
— We have saturated the peak potential of a single 4 ! v
I
GPU/CPU/KNL m[:}=]+f : M M
— Parallel (multiple processing units in a single + +
b.1 b.2
node) and/or Distributed (usually involves b ) (% ) (x
multiple nodes) frameworks are emerging
. . . X W wl| |x.2 W.1| (W.z2| |W.21) [W.22
e Distributed frameworks are being developed along
. . (a) Dataflow (b) Dataflow after Data Partitioning
two directions
— The HPC Eco-system: MPI-based Deep Learning Statement and its dataflow fragment. The
— Enterprise Eco-system: BigData-based Deep Learning dataand computing vertexes with different

colors reside on different processes.

Courtesy: https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf

GTC’19


https://web.stanford.edu/~rezab/nips2014workshop/submits/minerva.pdf

DL Frameworks and GitHub Statistics

e Al Index report offers very
detailed trends about Al and
ML

e |talso provides interesting
statistics about open source
DL frameworks and related
GitHub statistics

Courtesy: http://cdn.aiindex.org/2017-report.pdf

Stars

GitHub Stars of Al Software Libraries

30k tensorflow
m— ccikit-learn

—— caffe
20k

keras
CNTK

m—mxnet

pytorch

m—— theano

10k

— caffe2

2015 2016 2017 2018

Date
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Are Define-by-run frameworks easier than Define-and-run?

A 1
Define RPar}ameters ] /Deﬁne- :)y-Run \

Network ,| Computational ,| Gradient Model
definition graph function ode i
definition Parameters |
\ Auto differentiation W, N Update
mm—— | . ,
7 5 — omputational |—s Gradient
Training
Run Rparfmaers Update data graph ¢ function
e ——
RS . :
Training Computational sl  Gradient DynamlcTchange
data graph . function Conditions
\ Loss & gradient / \ /

e Define-and-run: TensorFlow, Caffe, Torch, Theano, and others

e Define-by-run
— PyTorch and Chainer

— TensorFlow 1.5 introduced Eager Execution (Define-by-run) mode

Courtesy: https://www.oreilly.com/learning/complex-neural-networks-made-easy-by-chainer
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Google TensorFlow (Most Popular)

e The most widely used framework open-sourced by Google
e Replaced Google’s DistBeliefl!] framework

e Runs on almost all execution platforms available (CPU, GPU, TPU,
Mobile, etc.)

e Very flexible but performance has been an issue

e Certain Python peculiarities like variable scope etc. v

e https://github.com/tensorflow/tensorflow *

Tenso

Courtesy: https://www.tensorflow.org/

[1] Jeffrey Dean et al., “Large Scale Distributed Deep Networks”
https://static.googleusercontent.com/media/research.google.com/en//archive/large deep networks nips2012.pdf
Network Based Computing Laborato GTC’19
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Facebook Torch/PyTorch - Catching up fast!

e Torch was written in Lua

é
— Adoption wasn’t wide-spread P I T b R C I I

e PyTorch is a Python adaptation of Torch Courtesy: http://pytorch.org

— Gaining lot of attention

e Several contributors

— Biggest support by Facebook
e There are/maybe plans to merge the PyTorch and Caffe2 efforts

e Key selling point is ease of expression and “define-by-run” approach
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Preferred Networks Chainer/ChainerMN

e ChainerMN provides multi-node parallel/distributed training using MPI
— MVAPICH2 MPI library is being used by Preferred Networks

— http://mvapich.cse.ohio-state.edu

e ChainerMN is geared towards performance

— Uses Define-by-run (Chainer, PyTorch) approach instead of Define-and-run

(Caffe, TensorFlow, Torch, Theano) approach

— https://github.com/chainer/chainer

— Focus on Speed as well as multi-node Scaling

— Beats CNTK, MXNet, and TensorFlow for training ResNet-50 on 128 GPUs [1]

1. http://chainer.org/general/2017/02/08/Performance-of-Distributed-Deep-Learning-Using-ChainerMN.html
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Many Other DL Frameworks...

e Keras - https://keras.io

e MXNet - http://mxnet.io

e Theano - http://deeplearning.net/software/theano/

e Blocks - https://blocks.readthedocs.io/en/latest/

e Intel BigDL - https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-

on-apache-spark

e Thelist keeps growing and the names keep getting longer and weirder ;-)

— Livermore Big Artificial Neural Network Toolkit (LBANN) -
https://github.com/LLNL/Ibann

— Deep Scalable Sparse Tensor Network Engine (DSSTNE) -
https://github.com/amzn/amazon-dsstne

Network Based Computing


https://keras.io/
http://mxnet.io/
http://deeplearning.net/software/theano/
https://blocks.readthedocs.io/en/latest/
https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
https://github.com/LLNL/lbann
https://github.com/amzn/amazon-dsstne

Outline

e |ntroduction

e Overview of Execution Environments

e Parallel and Distributed DNN Training

e Latest Trends in HPC Technologies

e Challenges in Exploiting HPC Technologies for Deep Learning
e Solutions and Case Studies

e Open Issues and Challenges

e Conclusion

Network Based Computing



So where do we run our DL framework?

e Early (2014) frameworks used a single fast GPU
— As DNNs became larger, faster and better GPUs became available

— At the same time, parallel (multi-GPU) training gained traction as well

e Today

— Parallel training on multiple GPUs is being supported by most frameworks

— Distributed (multiple nodes) training is still upcoming
e A lot of fragmentation in the efforts (MPI, Big-Data, NCCL, Gloo, etc.)

— On the other hand, DL has made its way to Mobile and Web too!
e Smartphones - OK Google, Siri, Cortana, Alexa, etc.

e DrivePX —the computer that drives NVIDIA’s self-driving car

e Deeplearn.js —a DL framework in a web-browser

e TensorFlow playground - http://playground.tensorflow.org/
Network Based Computing
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Conventional Execution on GPUs and CPUs

[ |\/|y framework IS faster than DLEApplicationsflmage@®ecognition,Bpeech@Processing,@tc.)
your framework! ‘ ‘ ‘
. DLFrameworks{Caffe,fensorFlow,@tc.)
e This needs to be understood
. holisti Genericll MKLEDptimized cuDNN Optimized
In a holistic way. Convolutionilayer Convolutionilayer Convolutionilayer
e Performance depends on the 1 l ‘
entire execution environment
ATLAS @) BLAS
(the fU” stack) pen MKLE2017 cuDNN/cuBLAS
Other@BLASAibraries
 [solated view of performance BLASRibraries l 1
is not helpful
Other@Processors Multi-/Many-corel Many-coreGPUE
(Xeon,Xeon®hi) (Pascal@100)
Hardware

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU- and GPU-based DNN Training
on Modern Architectures”, In Proceedings of the Machine Learningon HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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DL Frameworks and Underlying Libraries

e BLAS Libraries — the heart of math operations
— Atlas/OpenBLAS
— NVIDIA cuBlas
— Intel Math Kernel Library (MKL)
e Most compute intensive layers are generally optimized for a specific
hardware

— E.g. Convolution Layer, Pooling Layer, etc.

e DNN Libraries — the heart of Convolutions!

— NVIDIA cuDNN (already reached its 7t" iteration — cudnn-v7.5)
— Intel MKL-DNN (MKL 2018) — recent but a very promising development

Network Based Computing



Where does the Performance come from?
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(a) AlexNet: Forward Propagation (b) AlexNet: Backward Propagation

e The fulllandscape: Forward and Backward Pass -- Faster Convolutions = Faster Training

e Performance of Intel KNL == NVIDIA P100 for AlexNet Training — Volta is in a different league!

Most performance gains are based on improvementsin layer conv2 and conv3for AlexNet

A. A. Awan, H. Subramoni, and Dhabaleswar K. Panda. “An In-depth Performance Characterization of CPU-and GPU-based DNN Training on Modern
Architectures”, In Proceedings of the Machine Learning on HPC Environments (MLHPC'17). ACM, New York, NY, USA, Article 8.
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The Need for Parallel and Distributed Training

e Why do we need Parallel Training?

e Larger and Deeper models are being proposed

— AlexNet to ResNet to Neural Machine Translation (NMT)

— DNNs require a lot of memory

— Larger models cannot fit a GPU’s memory
e Single GPU training became a bottleneck
e As mentioned earlier, community has already moved to multi-GPU training
e Multi-GPU in one node is good but there is a limit to Scale-up (8 GPUs)

e Multi-node (Distributed or Parallel) Training is necessary!!
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Batch-size, Model-size, Accuracy, and Scalability

e |ncreasing model-size generally increases accuracy A Nalve Asyrnc SO 4%"6‘@
D, .

=
e |ncreasing batch-size requires tweaking hyper- S G%,%w,
. : 2 g, e
parameters to maintain accuracy p ing

o -
— Limits for batch-size 2

e 3 Synchronous
— Cannot make it infinitely large i}

— Over-fitting >

Accuracy Per Epoch

e Large batch size generally helps scalability

— More work to do before the need to synchronize

e |ncreasing the model-size (no. of parameters)

— Communication overhead becomes bigger so scalability

Network Size

decreases Single Machine

— GPU memory is precious and can only fit finite model data

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks Data Size
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Benefits of Distributed Training: An Example with Caffe

e Strong scaling CIFAR10 Training with
OSU-Caffe (1 —> 4 GPUs) — Batch Size 2K

e Large batch size is needed for
scalability.

e Adding more GPUs will degrade the
scaling efficient

Run Command - (change Snp from 1—4)

mpirun_rsh -np Snp ./build/tools/caffe

train -solver

examples/cifar10/cifar10_quick solver.prototxt
-scal strong

Output: 10123 21:49:24.289763 75582 caffe.cpp:351] Avg. Time Taken:142.101
Output: 10123 21:54:03.449211 97694 caffe.cpp:351] Avg. Time Taken: 74.6679

Output: 10123 22:02:46.858219 20659 caffe.cpp:351] Avg. Time Taken:39.8109

160
140

Time (seconds)

I

N & OO ON
O ©O O 0O 0 O O

GTC’19

CIFAR-10 Training with OSU-Caffe

CIFAR-10
®1-GPU 2-GPUs 4-GPUs

OSU-Caffeis available from the HiDL project page
(http://hidl.cse.ohio-state.edu)
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Parallelization Strategies Model Parallelism

Machine 4 (——— l"
) ) ) ' |
e What are the Parallelization Strategies r____':::::::::';__,}% e .
: Machine 2 ]H Machine 3 :
— Model Parallelism R | - S
:-Machinm -\ 7-I

— Data Parallelism (Received the most attention) ! i

— Hybrid Parallelism

— Automatic Selection

e e e = — o e e e e e e e e —

Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
Network Based Computing Laborato GTC’19
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Communication in Distributed Frameworks

e What are the Design Choices for Communication?

— Established paradigms like Message Passing Interface (MPI)

— Develop specific communication libraries like NCCL, Gloo,
Baidu-allreduce, etc.

— Use Big-Data frameworks like Spark, Hadoop, etc.

e Still need some form of external communication for parameters (RDMA, 1B,
etc.)

e Focus on Scale-up and Scale-out

— What are the challenges and opportunities?
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Scale-up and Scale-out
e Scale-up: Intra-node Communication / Desired

— Many improvements like:
e NVIDIAcuDNN, cuBLAS, NCCL, etc.

NCCL2
cuDNN MPI

MKL-DNN

e CUDAO9 Co-operative Groups

e Scale-out: Inter-node Communication

— DL Frameworks — most are optimized for
single-node only

— Distributed (Parallel) Training is an

gRPC

emerging trend
e OSU-Caffe — MPI-based Hadgop
¢ Microsoft CNTK— MPI/NCCL2

e Google TensorFlow — gRPC-based/MPI/NCCL2 Scal t Porf 5
e Facebook Caffe2 — Hybrid (NCCL2/Gloo/MPI) Cale-out Ferformance

Scale-up Performance
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Data Parallel Deep Learning and MPI Collectives

Major MPI Collectives
involved in Designing
distributed frameworks

MPI_Bcast—required for
DNN parameter exchange

MPI_Reduce— needed for
gradient accumulation from
multiple solvers

MPI_Allreduce — use just
one Allreduce instead of
Reduce and Broadcast

\ 4

Loop {}

packed _comm_buff
E AT

MPI_Bcast (GPU Q) —-=~"=" “~J"==-o___ 1. Data
____——— ’¢ \\ ~~_~--~
“= : “ ! A ! = Propagation
o Params | Params N Params jon Params
- 12 1D 12
[a W
S HENE | NEEN | NEEN | DN
-------------- e o e e o e e
A ! A ! A I A
L, : L, : | L, : L,
[ | ] | L ' L,
Fl =2~ |B| F 2 B Fl——|g! F B 2. Forward
oc | - | on 1 %
: : ! L Backward
v Ln : v Ln : v Ln : v 0 Pass
packed_redu ! packed_redu | ! packed_redu | | packed_redu
ce_buff I ce buff I ce buff I ce buff
" ~ i > . —=>
——————————— =~=—————————-\—————————-;‘————————’—’1-—‘————————————————————
Sy ~ e =
“~~~ ~ ’ ——
““~~::\ ,::-—"IVIPI_Reduce (GPU 0)
b e 3. Gradient

Gradients

ApplyUpdates

A

EEEN

Aggregation

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

GTC’19




Outline

e |ntroduction

e QOverview of Execution Environments

e Parallel and Distributed DNN Training

e Latest Trends in HPC Technologies

e Challenges in Exploiting HPC Technologies for Deep Learning
e Solutions and Case Studies

e Open Issues and Challenges

e Conclusion

Network Based Computing



Drivers of Modern HPC Cluster Architectures

Accelerators
high compute density, high
performance/watt
>1 TFlop DP on a chip

High Performance Interconnects -
Multi-/Many-core InfiniBand

Processors <lusec latency, 100Gbps Bandwidth>

SSD, NVMe-SSD, NVRAM

e Multi-core/many-core technologies

e Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

e Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
e Accelerators (NVIDIA GPGPUs)

e Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

S g TS

Summit Sunway TaihulLight Sierra K - Computer
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HPC Technologies

e Hardware
— Interconnects — InfiniBand, RoCE, Omni-Path, etc.
— Processors — GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU),
FPGAs, etc.
e Communication Middleware

— Message Passing Interface (MPI)
e CUDA-Aware MPI, Many-core Optimized MPI runtimes (KNL-specific optimizations)
— NVIDIA NCCL

Network Based Computing



Overview of High Performance Interconnects

e High-Performance Computing (HPC) has adopted advanced interconnects and protocols
— InfiniBand (IB)
— Omni-Path
— High Speed Ethernet 10/25/40/50/100 Gigabit Ethernet/iWARP
— RDMA over Converged Enhanced Ethernet (RoCE)
e Very Good Performance
— Low latency (few micro seconds)
— High Bandwidth (200 Gb/s with HDR InfiniBand)
— Low CPU overhead (5-10%)
e OpenFabrics software stack with IB, Omni-Path, iWARP and RoCE interfaces are driving HPC systems

e Many such systems in Top500 list

GTC’19



Network Speed Acceleration with IB and HSE

Ethernet (1979 -) 10 Mbit/sec
Fast Ethernet (1993 -) 100 Mbit/sec
Gigabit Ethernet (1995 -) 1000 Mbit /sec
ATM (1995 -) 155/622/1024 Mbit/sec
Myrinet (1993 -) 1 Gbit/sec
Fibre Channel (1994 -) 1 Gbit/sec
InfiniBand (2001 -) 2 Gbit/sec (1XSDR)
10-Gigabit Ethernet (2001 -) 10 Gbit/sec
InfiniBand (2003 -) 8 Gbit/sec (4X SDR)
InfiniBand (2005 -) 16 Gbit/sec (4X DDR)
24 Gbit/sec (12X SDR)
InfiniBand (2007 -) 32 Gbit/sec (4X QDR)
40-Gigabit Ethernet (2010 -) 40 Gbit/sec

InfiniBand (2011 -)

54.6 Gbit/sec (4X FDR)

InfiniBand (2012 -)

2 x 54.6 Gbit/sec (4X Dual-FDR)

25-/50-Gigabit Ethernet (2014 -) 25/50 Gbit/sec
100-Gigabit Ethernet (2015 -) 100 Gbit/sec
Omni-Path (2015 -) 100 Gbit/sec
InfiniBand (2015 -) 100 Gbit/sec (4X EDR)
InfiniBand (2018 -) 200 Gbit/sec (4X HDR)

100 times in the last 17 years
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Intel Neural Network Processor (NNP)

e [ntel® Nervana™ Neural Network Processors (NNP)

— formerly known as “Lake Crest”

e Recently announced as part of Intel’s strategy for

[T
|
B
L g
LN
L
B
|

next-generation Al systems

e Purpose built architecture for deep learning
e 1TB/s High Bandwidth Memory (HBM)
e Spatial Architecture

e FlexPoint format

— Similar performance (in terms of accuracy) to FP32 while

Top-5 misclassification error

1 1

using 16 bits of storage 0 100 200
Epoch number

Courtesy: https://ai.intel.com/intel-nervana-neural-network-processor-architecture-update/
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GraphCore - Intelligence Processing Unit (IPU)

RESNET-50 TRAINING

e New processor that’s the first to be ) -
specifically designed for machine |

trained per secon.

intelligence workloads — an Intelligence
Processing Unit (IPU)

— Massively parallel

— Low-precision floating-point compute LSTM SINGLE LAYER INFERENCE

— Higher compute density

P00 vnable to schiave <2ms [alenc)y

e UK-based Startup o e

e Early benchmarks show 10-100x o
speedup over GPUs —
— Presented at NIPS 2017

Infarences par second

Courtesy: https://www.graphcore.ai/posts/preliminary-ipu-benchmarks-providing-previously-unseen-performance-for-a-range-of-machine-learning-applications
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HPC Technologies

e Hardware

— Interconnects — InfiniBand, RoCE, Omni-Path, etc.

— Processors — GPUs, Multi-/Many-core CPUs, Tensor Processing Unit (TPU), FPGAs,
etc.

e Communication Middleware

— Message Passing Interface (MPI)

e CUDA-Aware MPI, Many-core Optimized MPI runtimes (KNL-specific optimizations)
— NVIDIA NCCL




Parallel Programming Models Overview

P1 P2 P3 PL <«<—> P2 <« P3 P1L <— P2 <«<—{ P3
| ! | | | ! | T
Loqical shared me+orv
Shared Memory Memory Memory Memory Memory | || Memory || | Memory
[ | [
| |
Shared Memory Model Distributed Memory Model Partitioned Global Address Space (PGAS)
SHMEM, DSM MPI (Message Passing Interface) OpenSHMEM, UPC, Chapel, X10, CAF, ...

e Programming models provide abstract machine models
e Models can be mapped on different types of systems
— e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
e PGAS models and Hybrid MPI+PGAS models are gradually receiving

importance
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Allreduce Collective Communication Pattern

e Element-wise Sum data from all processes and sends to all processes

| int MPI_Allreduce (const void *sendbuf, void * recvbuf, int count, MPI_Datatype datatype,
MPI_Op operation, MPI_Comm comm)

Input-only Parameters Sendbuf (Before)

Parameter Description
sendbuf Starting address of send buffer Tl 12 13
recvbuf Starting address of recv buffer
type Data type of buffer elements "
count Number of elements in the buffers
operation Reduction operationto be performed (e.g. sum) Recvbuf (After)
comm Communicator handle i 3

:
Parameter Description 182
recvbuf Starting address of receive buffer 16
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Overview of the MVAPICH2 Project

e High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
— MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
— MVAPICH2-X (MPI + PGAS), Available since 2011
—  Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
— Support for Virtualization (MVAPICH2-Virt), Available since 2015

)

— Support for Energy-Awareness (MVAPICH2-EA), Available since 2015 ﬁ"&i%z:.‘

— Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015 //¢;7 S\ 1 8

— Used by more than 2,975 organizations in 86 countries / #\ )| Years & N “ ,

/ . N, e\ N,

— More than 528,000 (> 0.5 million) downloads from the OSU site directly "\ \ Count,ng! , ‘:_\,&‘f,’\és

— Empowering many TOP500 clusters (Nov ‘18 ranking) 4 Y W\
2001-2019 TN

e 31 ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China
e 14th 556,104 cores (Oakforest-PACS)inJapan

e 17t 367,024 cores (Stampede2) at TACC

e 27t 241,108-core (Pleiades) at NASA and many others

— Available with software stacks of manyvendors and Linux Distros (RedHat, SuSE, and OpenHPC)

— http://mvapich.cse.ohio-state.edu Partner in the upcoming TACC Frontera System

e Empowering Top500 systems for over a decade
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GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GDR

e Standard MPI interfaces used for unified data movement
e Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

e QOverlaps data movement from GPU with RDMA transfers

At Sender: -
MPI Send(s devbuf, size, ...); inside
MVAPI@CHZ‘ ‘

At Recelver:
MPI Recv(r devbuf, size, ...);

High Performance and High Productivity

Network Based Computing



Optimized MVAPICH2-GDR Design

GPU-GPU Inter-node Latency GPU-GPU Inter-node Bi-Bandwidth
30 6000
25 % 5000
S 20 )
R S 4000
5 10 £ 3000 11X
5 c 1.85us 10x 2 2000
c
0o & @ 1000
0 1 2 4 8 16 32 64 128256512 1K 2K 4K 8K (R P PP S
- N Y 0 8 3 3 X BB Y % X F
Message Size (Bytes) oo
Message Size (Bytes)
=d#r~MV2-(NO-GDR) MV2-GDR 2.3 =&~ MV2-(NO-GDR) MV2-GDR-2.3
— GPU-GPU Inter-node Bandwidth
) 3500
3 3000
£ 2500
E 2000 9x MVAPICH2-GDR-2.3.1
g %888 Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU

500
0 & ———-—r‘l—“—‘—r‘ Mellanox Connect-X4 EDR HCA

1 2 4 8 16 32 64 128256512 1K 2K 4K CUDA9.0

Mellanox OFED 4.0 with GPU-Direct-RDMA
Message Size (Bytes)

=f—MV2-(NO-GDR) MV2-GDR-2.3

GTC’19



NCCL Communication Library

e (Collective Communication with a caveat!

— GPU buffer exchange
GPUD GPU1 GPU2 GPU3

GPU1
— Dense Multi-GPU systems
(Cray CS-Storm, DGX-1) hmmm
— MPI-like — but not MPI standard compliant .
e NCCL (pronounced Nickel)

— Open-source Communication Library by NVIDIA

GPU2 GPU3

— Topology-aware, ring-based (linear) collective
communication library for GPUs

— Divide bigger buffers to smaller chunks

— Good performance for large messages

e Kernel-based threaded copy (Warp-level Parallel)
instead of cudaMemcpy

https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
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Broad Challenge: Exploiting HPC for Deep Learning
How to efficiently scale-out a

Deep Learning (DL) framework and take
advantage of heterogeneous

High Performance Computing (HPC)
resources?

Network Based Computing Laborato



Research Challenges to Exploit HPC Technologies

1. What are the fundamental
issues in designing DL
frameworks?

— Memory Requirements
— Computation Requirements

— Communication Overhead

2. Why do we need to support
distributed training?

— To overcome the limits of
single-node training

— To better utilize hundreds of
existing HPC Clusters

1 .
\) Deep Learning and Machine Learning Frameworks

Caffe/
[ CNTK } [ OSU-Caffe } [ Caffe2 } [ TensorFlow } [ MXNet J
N\ Y 4

\\ ( Major Computation and Communication Phases in DL Frameworks

Forward Gradient
Backward Aggregation

Model Propagation

¥ ¥ b

2\ Communication Runtimes to support
| Distributed Training

¥

InfiniBand
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Research Challenges to Exploit HPC Technologies (Cont’d)

3. What are the new design challenges
brought forward by DL frameworks for Deep Learning and Machine Learning Frameworks
Communication runtimes?
: Caffe/ ff et
— Large Message Co"ectlve CNTK OSU-Caffe Caffe2 ensorriow MXNet
CommunicationandReductions \\'.OO0.000..Q0.000.0Q..O0.000.00Q.OO0.0QO..QOOOO..: ,’
: : T : « /
Major Com ion _an mmunication Ph in DL Framework: e /
— GPU Buffers (CUDA-Awareness) *\ S
e O iedia] PreEEEien Forward Gradient ,{
“ ° Backward Aggregation °
4. Can a Co-designapproach help in achieving 4 ). . = . B . B Mgﬂ
Scale-up and Scale-out efficiently? . mmunication Runtimes (MPI/NCCL/Gloo/MLSL Qpp_.or_ttmgs
— Co-Designthe support at Runtime . , _ o
o ¢ | Point-to-Point CUDA- Large-message é)
leveland Exploit it at the DL S Operations Awareness Collectives o
Frameworklevel :..O0.000.000.0Q0.000.CO..OO..OO..O0.000.000.000..

¥

— What performance benefits can be ¥ ¥

observed? —
InfiniBand

— What needs to be fixed at the
communicationruntime layer?
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Solutions and Case Studies: Exploiting HPC for DL

e NVIDIA NCCL/NCCL2
e Baidu-allreduce
e Facebook Gloo

e Co-design MPI runtimes and
DL Frameworks

e Distributed Training for
TensorFlow

e Scaling DNN Training on
Multi-/Many-core CPUs

e PowerAl DDL

Deep Learning and Machine Learning Frameworks

Caffe/
[ SRS } [OSU—Caffe

} [ Caffe2 } [TensorFlow} [ MXNet J
l 4

\° ° ,'
Major Com ion _and Communication Ph in DL Framework by
. b
5 . Forward Gradient
° MR ATl LI Backward Aggregation :
[ .
Co-Design

. < - b - - >
- mmunication Runtimes (MPI/NCCL/Gloo/MLSL Qrtunities
: | :
O Point-to- o
° ) Large-message o
o Point CUDA-Awareness . o
o _ Collectives o
: Operations o
O..O0.000.0Q0.000.000.00..OO..OO..O0.000.000.000.‘

¥

¥

¥

InfiniBand
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NVIDIA NCCL

e NCCL is a collective communication library
— NCCL 1.x is only for Intra-node communication on a
single-node
e NCCL 2.0 supports inter-node communication

as well

e Design Philosophy

— Use Rings and CUDA Kernels to perform efficient

communication

e NCCL is optimized for dense multi-GPU
systems like the DGX-1 and DGX-1V

Courtesy: https://www.nextplatform.com/2016/05/04/nvlink-takes-gpu-acceleration-next-level/

——» P100 P100 <+——

P100 P100

4P PCle
> CPU

Fully connected quad

120 GB/s per GPU bidirectional for peer traffic
40 GB/s per GPU bidirectional to CPU

Direct Load/store access to CPU Memory

High Speed Copy Engines for bulk data movement

Network Based Computing Laborato GTC’19
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NCCL 2: Multi-node GPU Collectives

CNTK scaling
ResNet50, images/s

E 8 8 8

:

0 B 16 4 iz

..... ldEal = P —— HCCL

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7155-jeaugey-nccl.pdf
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MVAPICH2-GDR vs. NCCL2 - Allreduce Operation

Optimized designs in MVAPICH2-GDR 2.3 offer better/comparable performance for most cases

[ ]
e MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs
1000 100000 *
10000
N o - ‘ —— ~1.2X better
100 oo —
2 ~3X better - 1000 /
c e
2 o)
3 8 100
10
10
1 1
4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M
Message Size (Bytes) Message Size (Bytes)
NCCL2

== MVAPICH2-GDR

=o=MVAPICH2-GDR NCCL2

*Available since
MVAPICH2-GDR 2.3 Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect
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MVAPICH2-GDR vs. NCCL2 - Allreduce on DGX-2

Optimized designs in MVAPICH2-GDR 2.3.1 offer better/comparable performance for most cases
MPI_Alireduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)

10000

60
50
1000 :
-

~1.7X better "

40
@ m
= 2
g 30 g 100
I 7]
© -
: ~2.5X better 3
20
10
10
0 1
8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M

Message Size (Bytes) Message Size (Bytes)

=®-MVAPICH2-GDR-2.3.1 NCCL-2.3 =@-MVAPICH2-GDR-2.3.1 NCCL-2.3

*Available with MVAPICH2-GDR 2.3.1 Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2
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Solutions and Case Studies: Exploiting HPC for DL

NVIDIA NCCL
Baidu-allreduce
Facebook Gloo

Co-design MPI runtimes and
DL Frameworks

Distributed Training for
TensorFlow

Scaling DNN Training on
Multi-/Many-core CPUs

PowerAl DDL

Deep Learning and Machine Learning Frameworks

Caffe/

[ SRS } [OSU—Caffe
5\

} [ Caffe2 } [TensorFlow} [ MXNet J
l 4

/4
[
Major Com ion and Communication Ph in DL Framework :,’
o/
. Forward Gradient 4
MR ATl LI Backward Aggregation :
Co-Design
. B 8 § | fovesien
mmunication Runtimes (MPI/NCCL/Gloo/MLSL Qrtunities
[ ]
Point-to- Large-message .
. CUDA- . .
Point P Collectives .
. . °
Operations (Baidu-allreduce) .
..Q‘..Q‘..Q‘..Q‘...‘.‘Q..Q...Q‘..Q‘..Q‘..Q‘...‘..

¥

¥

¥

InfiniBand




Baidu’s Ring-Allreduce in TensorFlow

Scaling with TensorkFlow

* Run many independent TensorFlow processes

* Insert allreduce as a node in the graph:

Predictions
— Forward Error Deltas e pp
Frop ' Computation Prop

Gradients

Ring Reduced
Gradients
=z Allreduce

Courtesy: http://on-demand.gputechconf.com/gtc/2017/presentation/s7543-andrew-gibiansky-effectively-scakukbg-deep-learning-frameworks.pdf
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MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

e 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

100000
50000
45000
10000
~30X better 40000
Tg o e //‘ 35000
> e —— “» 30000
c =
b >
= 100 O 25000
— [y
(]
E 20000
10 15000
10000
1
< 00 O N S 00 WNS-TFOWWONST 0 O N < 5000
N O NN A NS OO0 O MmN
A NINOOOdMMNIMO o
A N <t 00 O AN N - N 0
— N O MNm O
— N
Message Size (Bytes)
—=o—=MVAPICH2 ==e=BAIDU OPENMPI

== MVAPICH2 ==e=BA|DU

*Available since MVAPICH2-GDR 2.3a

~10X better

~——  ~4X better l

"

- P

512K 1M 2M 4M

Message Size (Bytes)

OPENMPI

6000000

5000000

4000000

3000000

Latency (us)

2000000

1000000

=o=MVAPICH2 <= BAIDU

OpenMPl is ~5X slower
than Baidu

MV2 is ~2X better

than Baidu

o A2 ™ N © v
& AV PP
AN LIPSO AR A
R C PG A S s
R v s

Message Size (Bytes)

OPENMPI
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Solutions and Case Studies: Exploiting HPC for DL

e NVIDIA NCCL
: Deep Learning and Machine Learning Frameworks
e Baidu-allreduce
Caffe/
P Facebook GIOO CNTK OSU-Caffe Caffe2 TensorFlow MXNet
OO0 0000000000000 0000000000000 0 0000000000000 0 000 0 00 L4
. . \° ° 4
¢ CO_deSIgn MPI runtimes and Major Com ion_and Communication Phases in DL Framework: . /,
° o/
DI— Frameworks : Model Propagation ALEI Gradier?t {
° Backward Aggregation °
e Distributed Training for E $ 9 Co-Design
. - ) tunities
. Communication Runtimes (MPI/NCCL/Gloo/MLSL) Opportunities
TenSOFFIOW . mmunication Runtimes (MPI/NCCL/Gloo/MLSL -
] o . Point-to- Large-message 5
e Scaling DNN Training on - . SRl Collectives :
. . wareness : .
. * | Operations (Baidu-allreduce) 5
MUItI-/Many-Core CPUS :..QO.‘.C.‘.O.‘CO.‘.O.Q.O.‘O..QO..QO.‘.O.‘.O.‘.O..

¥

L 2 -

e PowerAl DDL




Facebook Caffe2

e Caffe2 (by Facebook) allows the use of multiple communication back-ends

— Gloo — Multi-node design from the beginning

— NCCL — Multi-node support added recently in v2

Gloo — Performance evaluation studies not available yet
Design principles are similar to MPl and NCCL

In essence, Gloo is an application level implementation of collective
algorithms for Reduce, Allreduce, etc.

Details and code available from: https://github.com/facebookincubator/gloo



https://github.com/facebookincubator/gloo

Facebook: Training ImageNet in 1 Hour

E‘ 40 -

(o) 32k - —e—ideal

S —»— gctual

© 35+ o

g S 16k

o S

= 30 L 8k

& 8

g > 4k

225 E

@ - - - - = - 2k

E [ 1 1 1 i
20 - 1 1 1 1 1 1 1 1 1 J

— B4 128 256 512 1k 2k 4k 8k 16k 32k 64k 8 16 32 64 128 256 352

# GPUs

mini-batch size
e Near-linear Scaling for ~256 Pascal GPUs (Facebook Big Basin Servers with 8 GPUs/node)
e Explored large batch-size training with ResNet-50

— 8K batch-size seems to be the sweet-spot.

Courtesy: https://research.fb.com/publications/imagenetlkinlh/
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Solutions and Case Studies: Exploiting HPC for DL

e NVIDIANCCL

e Baidu-allreduce Deep Learning and Machine Learning Frameworks
e Facebook Gloo
CNTK L) Caffe2 TensorFlow MXNet
e Co-design MPI runtimesand DL OSU-Caffe
O 00000000000 00000000 00000000000 000000000000 00O PO 00 L4
Frameworks \° . /
‘\ Maijor Com ion_an mmunication Ph in DL Framework: by
e Distributed Training for TensorFlow AN o/
o O Model Propagation SelnEe Gradient /{
e Scaling DNN Training on Multi-/Many- D\ il BackWarg GEEIEEtED .
[ ] °
core CPUs e i 1 $ Mgn
e PowerAl DDL - Communication Runtimes (MPINCC1/Gloo/MLSL) Opportunities
S i Large-message Collectives .
° POPIn-t-tO- CUDA- [ Hierarchical Reduce (HR) ] :
C oint °
. Operations Awareness [ NCCL-Bcast/MPI_Bcast ] -
:..Q0.0Q0.0Q0.000.0.0.0Q0.0Q..QQ.OQ0.0Q0.0Q0.0QO..

L 2 -
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S-Caffe: Proposed Co-Design Overview

e To address the limitations of Caffe and existing MPI runtimes, we
propose the OSU-Caffe (S-Caffe) framework

e At the application (DL framework) level

— Develop a fine-grain workflow —i.e. layer-wise communication instead
of communicating the entire model

e At the runtime (MPI) level
— Develop support to perform reduction of very-large GPU buffers

— Perform reduction using GPU kernels

OSU-Caffe is available from the HiDL project page
(http://hidl.cse.ohio-state.edu)
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OSU-Caffe: Scalable Deep Learning ..q.cnet(imsgenet)on 128GpUs

e (Caffe: A flexible and layered Deep Learning 250
framework.
e Benefits and Weaknesses 200
—  Multi-GPU Training within a single node g
— Performance degradation for GPUs across different sockets § 150
— Limited Scale-out GEJ
e (OSU-Caffe: MPI-based Parallel Training E"lOO
— Enable Scale-up (within a node) and Scale-out (across multi- %
GPU nodes) =
— Scale-outon 64 GPUs for training CIFAR-10 network on CIFAR- >0
10 dataset
— Scale-outon 128 GPUs for training GoogleNet network on 0 X
ImageNet dataset 8 16 32 64 128

X Invalid use case No. of GPUs

W Caffe M OSU-Caffe (1024) m OSU-Caffe (2048)

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)
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Solutions and Case Studies: Exploiting HPC for DL

e NVIDIA NCCL
e Baidu-allreduce

e Facebook Gloo

e Co-design MPI runtimes and

DL Frameworks

e Distributed Training for
TensorFlow

e Scaling DNN Training on
Multi-/Many-core CPUs

e PowerAl DDL

Deep Learning and Machine Learning Frameworks
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Distributed Training using TensorFlow (TF)

e TensorFlow is the most popular DL

‘Accelerated
framework gRPC } gRPC
e gRPCis the official distributed aRPC+MPI
training runtime , :
— Many problems for HPC use-cases | Distributed BRPC+X BRPC+Verbs
TensorFlow : ’
e Community efforts - Baidu and gRPC+GDR
Uber’s Horovod have added MPI , \
Baidu-MPI
support to TF across nodes \
No-gRPC )
e Need to understand several Horovod

options currently available 2

MPI

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed DNN Training using TensorFlow and

CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation”, (To be presented) CCGrid ‘19.
https://arxiv.org/abs/1810.11112
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Scalable TensorFlow using Horovod, MPI, and NCCL

e Efficient Allreduce is crucial for Horovod’s
overall training performance
— Both MPI and NCCL designs are available

e We have evaluated Horovod extensively
and compared across a wide range of
designs using gRPC and gRPC extensions

e MVAPICH2-GDR achieved up to 90%
scaling efficiency for ResNet-50 Training
on 64 Pascal GPUs

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, “Scalable Distributed
DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and
Performance Evaluation”, (To be presented) CCGrid ‘19.
https://arxiv.org/abs/1810.11112

GTC’19
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e NVIDIA NCCL
e Baidu-allreduce

e Facebook Gloo

e Co-design MPI runtimes and

DL Frameworks
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TensorFlow
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Caffe2 Performance Optimization with Intel MKL

OMP_NUM_THREADS=44 OMP_NUM_THREADS=1
batch Intel® MKL Eigen BLAS Intel® MKL Eigen BLAS
size (images/sec) (images/sec) (images/sec) (images/sec)
1 173.4 5.2 28.6 5.1
32 1500.2 29.3 64.6 15.4
64 1596.3 35.3 66.0 15.5
256 1735.2 44.9 67.3 16.2

Courtesy: https://software.intel.com/en-us/blogs/2017/04/18/intel-and-facebook-collaborate-to-boost-caffe2-performance-on-intel-cpu-s

GTC’19
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TensorFlow Optimization for Intel CPUs

Optimized Perf Alexnet on different batch
size

872 (71.5x)
e

570 (17x)

Baseline Perf  Optimzed Perf Optimzed Perf Optimzed Perf Optimzed Perf Optimzed Perf
Training Training -batch Training -batch Training -batch Training -batch Training -batch
cize 128 size 256 size 512 zize 1024 zize 2048

®EDW ¥ KNL

72x Speedup From New Optimizations — available through Google's TensorFlow Git

Courtesy: https://software.intel.com/en-us/arti timizations-on-modern-intel-architecture
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Intel Machine Learning Scaling Library (MLSL)

e |ntel MLSL s built on top of MPI primitives
— https://github.com/0lorg/MLSL

e Works across various interconnects: Intel(R) Omni-Path Architecture, InfiniBand*, and
Ethernet

e Common API to support Deep Learning frameworks (Caffe*, Theano*, Torch*, etc.)

MLSL::Activation A wrapper class for operation input and output activations

MLSL::CommBlockinfo A class to hold block information for activations packing/unpacking

MLSL:Distribution A class to hold the information about the parallelism scheme being used

MLSL:Environment A singleton object that holds global Intel MLSL functions

MLSL::Operation A class to hold information about learnable parameters (parameter sets) and activations corresponding to a certain operation of the computational graph

MLSL:OperationReginfo A class to hold Operation registration information

MLSL::ParameterSet A wrapper class for operation parameters
MLSL::Session A class to represent a collection of Operation objects with the same global mini-batch size
MLSL::Statistics A class to measure and store performance statistics of communication among processes that perform computation in the computational graph

Courtesy: https://github.com/01org/MLSL

GTC’19
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Solutions and Case Studies: Exploiting HPC for DL

NVIDIA NCCL

LLNL Aluminum
Baidu-allreduce
Facebook Gloo

Co-design MPI runtimes and
DL Frameworks

Distributed Training for
TensorFlow
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IBM PowerAl DDL
IBM PowerAl Platform

PowerAl Software Distribution
| < || TEM || ®
Deep | Caffe | m,%ACaffe | IBM Caffe ‘\I torch
Learning ] . e .
Frameworks i 3
‘¥ TensorFlow theano Ch{a"‘:er
Supporting Distributed
(ibrasies DIGITS OpenBLAS tnsabrityl Bazel NCCL
{ by
IBM Power System for HPC, with NVLink M,
Breakthrough performance for GPU accelerated applications, —
including Deep Learning and Machine Learning.
R -

Courtesy: https://www.hpcwire.com/2017/08/08/ibm-raises-bar-distributed-deep-learning/
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PowerAl DDL Performance
IBM Distributed Deep Learning Scaling Efficiency

—&—|deal Scaling

—&—DDL Actual Scaling

95%
Efficiency w/
256 GPUs

4 16 64 256
Number of GPUs

Caffe with PowerAl DDL on ResNet-50 model using the ImageNet-1K data set on 64 Power8 servers

Courtesy:
https://www.ibm.com/blogs/research/2017/08/distributed-deep-learning/
https://arxiv.org/pdf/1708.02188.pdf
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e Conclusion




Open Issues and Challenges

e Convergence of DL and HPC
e Scalability and Large batch-size training?

e DL Benchmarks and Thoughts on Standardization

Network Based Computing Laborato




Convergence of DL and HPC

e |sDeep Learning an HPC Problem?
— Distributed DNN Training is definitely an HPC problem

— Inference — not yet an HPC problem

e Why HPC can help?

— Decades of research for communication models and performance optimizations

— MPI, PGAS, and other upcoming programming models and communication runtimes can
help for “data-parallel” training

e Some of the needs for DNN training are an exact match

— Compute intensive problem

e Some needs are new for distributed/parallel communication runtimes
— Large Message Communication

— CUDA-Aware Communication

GTC’19



Scalability and Large batch-size training?

e Large batch-size helps improve the scalability

— Lesser communication and more compute before synchronization

— Limits to large batch-size

e DL community is actively exploring this area

e HPC community can also investigate overlap and latency-hiding techniques

e |sthere alimitto DNN size?

— Noam Shazeer’s Outrageously Large Model (137 Billion Parameters)

— https://arxiv.org/pdf/1701.06538.pdf

e Qut-of-core Training for GPUs?
— NVIDIA’s vDNN - https://arxiv.org/pdf/1602.08124.pdf

— Prune the network or selectively allocate/de-allocate memory on GPUs

— OC-DNN and OC-Caffe

Network Based Computing
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Research Poster

Scalability and Large (Out-of-core) Models? € sesontonien:

P9243
. Out-of-core
e Large DNNs cannot be trained on GPUs due to memory limitation! P100EEPU MemoryiLimitd1668) Training
4500
— ResNet-50for Image Recognition but current frameworks can 4000
only go up to a small batch size of 45 o | G Goestener BYGS
— Next generation models like Neural Machine Translation (NMT) % £ 2048
are ridiculously large, consists of billions of parameters, and 8 10 - =
1000 — =
require even more memory ) 512 ST Eﬂ
_ o ' | Ere Hew B i -
— Can we design Out-of-core DNN training support using new TrainabilitygMemoryRequirements)
software features in CUDA 8/9 and hardware mechanisms in 20
PascaI/VOIta GPUS? ’§ :E:E:E:E: ............................
o . " ” T 15 T oc-caffe-opt is
e Generalintuition is that managed allocations “will be” slow! P i 80% better than
o " intel-caffe
— The proposed framework called OC-Caffe (Out-of-Core Caffe) E” 10 caffe-gpu
= cannot intel-
shows the potential of managed memory designs that can 8 s run caffe-opt
provide performance with negligible/no overhead. % y = - (N)/(A)
€ 0 e
i At 0 . £
e (OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for mcaffegou S occaffe-naive B oc-caffe-opt
ResNet-50 training on the Volta V100 GPU with CUDAS and CUDNN7 m caffe-cpu intel-caffe intel-caffe-opt

A. A. Awan, C.-H. Chu, H. Subramoni, X. Lu, and D. K. Panda, OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and
Volta GPUs for Out-of-Core DNN Training, HiPC’18

GTC’19



DL Benchmarks and Thoughts on Standardization

e Can we have a standardized interface?
— Are we there yet?

— Deep Learning Interface (DLI)? Inspired by Message Passing Interface (MPI)

e \What can be a good starting point?
e Will it come from the HPC community or the DL community?

e Can there be a collaboration across communities?

e What about standard benchmarks? Is there a need?

— State-of-the-art
e HKBU benchmarks - http://dlbench.comp.hkbu.edu.hk

e Soumith Chintala’s benchmarks - https://github.com/soumith/convnet-benchmarks

e DAWN Bench — https://dawn.cs.stanford.edu/benchmark/

e MLPerf — https://www.mlperf.org -- Latest and Widely Promoted now!

Network Based Computing
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Conclusion

e Exponential growth in Deep Learning frameworks

e Provided an overview of issues, challenges, and opportunities for

communication runtimes

— Efficient, scalable, and hierarchical designs are crucial for DL frameworks

— Co-design of communication runtimes and DL frameworks will be essential

e OSU-Caffe
e TensorFlow (Baidu, Uber’s Horovod, etc.)

e Neon and Nervana Graph

e Need collaborative efforts to achieve the full potential

e Standardization may help remove fragmentation in DL frameworks

Network Based Computing



Please join us for more events..

Monday, March 18

Tuesday, March 19

Wednesday, March 20

Research Poster

1. P9243 - Exploiting CUDA
Unified Memory for Efficient
Out-of-Core DNN Training

2. P9242 - Exploiting GPUDirect
Technology and Hardware
Multicast for Streaming and
Deep Learning Applications

Talk

S9476 - MVAPICH2-GDR:
High-Performance and
Scalable CUDA-Aware
MPI Library for HPC and
Al

Instructor-Led Training

L9121 - How to Boost
the Performance of
HPC/AI Applications
Using MVAPICH?2
Library

SJCC Upper Concourse

06:00 PM - 08:00 PM

SJCC Room 211A
(Concourse Level)
03:00 PM - 03:50 PM

SJCC Room LL21D
(Lower Level)
08:00 AM - 10:00 AM
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Thank You!

panda@cse.ohio-state.edu

awan.10@osu.edu

subramon@cse.ohio-state.edu

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH

%H/DL

MPI, PGAS and Hybrid MPI+PGAS Library High-Performance
Deep Learning
The MVAPICH2 Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/
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