
Getting Started with TensorFlow on GPUs

1

Magnus Hyttsten
@MagnusHyttsten

+

Agenda

An Awkward Social Experiment
(that I'm afraid you will be part of...)

ROCKS!

Examples
(Train & Test Data)

Model
(Your
Brain)

Output

Input Data

"GTC"

<Awkward
Silence>

Examples
(Train & Test Data)

Model
(Your
Brain)

Loss
function

Output

Input Data
Labels
(Correct Answers)

Optimizer

"GTC"

"Rocks"

Examples
(Train & Test Data)

Model
(Your
Brain)

Loss
function

Output

Input Data
Labels
(Correct Answers)

Optimizer

"GTC"

"Rocks"
"Rocks"

"Classical"
Programming

Machine Learning

Input Data
+

Code

Input Data
+

Output Data

Output Data

Code

Scalable

Tested at Google-scale.
Deploy everywhere

Easy

Simplified APIs.
Focused on Keras and

eager execution

Powerful

Flexibility and performance.
Power to do cutting edge research

and scale to > 1 exaflops

TensorFlow 2.0 Alpha is out

tf.data (Dataset)
tf.feature_column

(Transfer Learning)

High-level APIs

Perform Distributed Training
(talk @1pm)

E.g. V100

tf.data (Dataset)
tf.feature_column

(Transfer Learning)

High-level APIs

Perform Distributed Training
(talk @1pm)

E.g. V100

DNNClassifier

DNNRegressor

LinearClassifier

LinearRegressor

DNNLinearCombinedClassifier

DNNLinearCombinedRegressor

Premade Estimators

BaselineClassifier

BaselineRegressor

BoostedTreeClassifier

BoostedTreeRegressor

input_fn
(Datasets, tf.data)

calls

Built to Distribute and Scale

estimator =

Train locally

estimator.train (input_fn=..., ...

estimator.evaluate(input_fn=..., ...)

estimator.predict (input_fn=..., ...)

Premade Estimators
Datasets

Premade Estimators

LinearRegressor(...)

LinearClassifier(...)

DNNRegressor(...)

DNNClassifier(...)

DNNLinearCombinedRegressor(...)

DNNLinearCombinedClassifier(...)

BaselineRegressor(...)

BaselineClassifier(...)

BoostedTreeRegressor(...)

BoostedTreeClassifier(...)

Datasets

wide_columns = [
 tf.feature_column.bucketized_column(
 'age',=[18, 27, 40, 65])]
deep_columns = [
 tf.feature_column.numeric_column('visits'),
 tf.feature_column.numeric_column('clicks')]

tf.estimator.DNNLinearCombinedClassifier(
 linear_feature_columns=wide_columns,
 dnn_feature_columns=deep_columns,
 dnn_hidden_units=[100, 75, 50, 25])

Premade Estimator - Wide & Deep

tf.data (Dataset)
tf.feature_column

(Transfer Learning)

Perform Distributed Training

E.g. V100

tf.keras.layerstf.keras Custom Models
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(512, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit (dataset, epochs=5)
model.evaluate(dataset)
model.predict (dataset)

Datasets

TensorFlow Datasets

● audio
○ "nsynth"

● image
○ "celeb_a"
○ "cifar10"
○ "coco2014"
○ "diabetic_retinopathy_detection"
○ "imagenet2012"
○ "mnist"
○ "open_images_v4"

● structured
○ "titanic"

● text
○ "imdb_reviews"
○ "lm1b"
○ "squad"

import tensorflow_datasets as tfds

train_ds = tfds.load("imdb_reviews",

 split="train",

 as_supervised=True)

● translate
○ "wmt_translate_ende"
○ "wmt_translate_enfr"

● video
○ "bair_robot_pushing_small"
○ "moving_mnist"
○ "starcraft_video"

● 30+ available
● Add your own

● Datasets (tf.data) for the input pipeline
a. TensorFlow Datasets is great
b. tf.feature_columns are cool too

● Premade Estimators

● Keras Models (tf.keras)

TensorFlow Summary

The V-100

And why is it so good @ Machine Learning???

● High-Level - We look at only parts of the power of GPUs

● Simple Overview - More optimal designs exist

● Reduced Scope - Only considering fully-connected layers, etc

Disclaimer

Strengths of V100
● Built for Massively Parallel Computations

● Specific hardware / software to manage
Deep Learning Workloads (Tensor Cores,
mixed-precision execution, etc)

Strengths of V100
● Built for Massively Parallel Computations

● Specific hardware / software to manage
Deep Learning Workloads (Tensor Cores,
mixed-precision execution, etc)

Tesla SXM V100

● 5376 cores (FP32)

What are we going to do with 5376 FP32 cores?

My Questions Around the GPU

What are we going to do with 5376 FP32 cores?
"Execute things in parallel"!

The Unsatisfactory Answer

What are we going to do with 5376 FP32 cores?
"Execute things in parallel"!

Yes, but how can we exactly do that for ML Workloads?

What are we going to do with 5376 FP32 cores?
"Execute things in parallel"!

Yes, but how can we exactly do that for ML Workloads?
"Hey, that's your job - That's why we're here listening"!

What are we going to do with 5376 FP32 cores?
"Execute things in parallel"!

Yes, but how can we exactly do that for ML Workloads?
"Hey, that's your job - That's why we're here listening"!

Alright, let me try to talk about that then

● We may have a huge number of layers
● Each layer can have huge number of neurons

--> There may be 100s millions or even billions * and + ops

All knobs are W values that we need to tune
So that given a certain input, they generate the correct output

"Matrix Multiplication is

EATING (the computing resources of) THE WORLD"

hi_j = [X0, X1, X2, ...] * [W0, W1, W2, ...]

hi_j = X0*W0 + X1*W1 + X2*W2 + ...

X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

Matmul

Single-threaded Execution

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

[

[

*

Single-threaded Execution
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

 1*0.1 = 0.1

[

[

*

Single-threaded Execution
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

Prev

 1*0.1 = 0.1

0.1

[

[

*

Single-threaded Execution
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

Prev

 1*0.1 = 0.1

0.1 + 2*0.1 = 0.3

[

[

*

Single-threaded Execution
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

Prev

 1*0.1 = 0.1

0.1 + 2*0.1 = 0.3

.

.

3238.5+255*0.1 = 3264

3264 + 256*0.1 = 3289.6

[

[

*

Single-threaded Execution
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

Prev

 1*0.1 = 0.1

0.1 + 2*0.1 = 0.3

.

.

3238.5+255*0.1 = 3264

3264 + 256*0.1 = 3289.6

[

[

*

Single-threaded
Execution

256 * t

Single-threaded Execution
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

GPU Execution

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

[

[

*

GPU - #1 Multiplication Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

[

[

*

GPU - #1 Multiplication Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

Tesla SXM V100

5376 cores (FP32)

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

[

[

*

GPU - #1 Multiplication Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

X1_mul_vector

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6

[

[

*

GPU - #1 Multiplication Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

X1_mul_vector

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6

[

[

*

Multi-threaded
Execution

(256 Threads)

 t

GPU - #1 Multiplication Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

X1_mul_vector

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6

[

[

*

Multi-threaded
Execution

(256 Threads)

 t

GPU - #1 What about Summation?
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6

[

[

*
+

+
+ = h0,0

X1_mul_vector

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6

GPU - #2 Summary Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6

[

[

*

Multi-threaded
Execution

(256 Threads)+

+
+ = h0,0 log 128 = 2

7 * t

X1_mul_vector

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6

GPU - #2 Summary Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1] # Then we need to have 256 weight values

h0,0 = X * W # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

Single-Threaded
Execution

GPU
Multi-Threaded

Execution

1 * t
+

7 * t
=

256 * t

Comparing - Order of Magnitude (sequences)

Many Knobs to Tune

But the type of calculation we
perform is very suited for GPUs

Summary

● GPUs == Many Threads == Great for ML Workloads

● And now you know how this works

● Fortunately, you don't need to worry about implementation details

61

multi-core
CPU

62

multi-core
CPU

GPU

63

multi-core
CPU

GPU

Work needed: NONE
(just use a GPU build)

64

Beyond That
Use Distribution Strategy API

There's a talk for that
(@ 1pm)

65

You Can...
tensorflow.org/learn

TensorFlow Courses
coursera.org/learn/introduction-tensorflow

udacity.com/tensorflow

Distribution Strategies
tensorflow.org/alpha/guide/distribute_strategy @MagnusHyttsten

