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Scalable

Tested at Google-scale.
Deploy everywhere

Easy

Simplified APIs.
Focused on Keras and 

eager execution

Powerful 

Flexibility and performance.
Power to do cutting edge research 

and scale to > 1 exaflops

TensorFlow 2.0 Alpha is out
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calls

Built to Distribute and Scale



estimator = 

# Train locally 

estimator.train   (input_fn=..., ...

estimator.evaluate(input_fn=..., ...)

estimator.predict (input_fn=..., ...)

Premade Estimators
Datasets

Premade Estimators

LinearRegressor(...)

LinearClassifier(...)

DNNRegressor(...)

DNNClassifier(...)

DNNLinearCombinedRegressor(...)

DNNLinearCombinedClassifier(...)

BaselineRegressor(...)

BaselineClassifier(...)

BoostedTreeRegressor(...)

BoostedTreeClassifier(...)

Datasets



wide_columns = [
    tf.feature_column.bucketized_column(
        'age',=[18, 27, 40, 65])]
deep_columns = [
    tf.feature_column.numeric_column('visits'),
    tf.feature_column.numeric_column('clicks')]

tf.estimator.DNNLinearCombinedClassifier(
        linear_feature_columns=wide_columns,
        dnn_feature_columns=deep_columns,
        dnn_hidden_units=[100, 75, 50, 25])

Premade Estimator - Wide & Deep



tf.data (Dataset)
tf.feature_column

(Transfer Learning)

Perform Distributed Training

E.g. V100



tf.keras.layerstf.keras Custom Models
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(512, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit     (dataset, epochs=5)
model.evaluate(dataset)
model.predict (dataset)

Datasets



TensorFlow Datasets

● audio
○ "nsynth"

● image
○ "celeb_a"
○ "cifar10"
○ "coco2014"
○ "diabetic_retinopathy_detection"
○ "imagenet2012"
○ "mnist"
○ "open_images_v4"

● structured
○ "titanic"

● text
○ "imdb_reviews"
○ "lm1b"
○ "squad"

import tensorflow_datasets as tfds

train_ds = tfds.load("imdb_reviews",

                     split="train",

                     as_supervised=True)

● translate
○ "wmt_translate_ende"
○ "wmt_translate_enfr"

● video
○ "bair_robot_pushing_small"
○ "moving_mnist"
○ "starcraft_video"

● 30+ available
● Add your own



● Datasets (tf.data) for the input pipeline
a. TensorFlow Datasets is great
b. tf.feature_columns are cool too

● Premade Estimators 

● Keras Models (tf.keras)

TensorFlow Summary



The V-100

And why is it so good @ Machine Learning???



● High-Level - We look at only parts of the power of GPUs

● Simple Overview - More optimal designs exist

● Reduced Scope - Only considering fully-connected layers, etc

Disclaimer



Strengths of V100
● Built for Massively Parallel Computations

● Specific hardware / software to manage 
Deep Learning Workloads (Tensor Cores, 
mixed-precision execution, etc)



Strengths of V100
● Built for Massively Parallel Computations

● Specific hardware / software to manage 
Deep Learning Workloads (Tensor Cores, 
mixed-precision execution, etc)

Tesla SXM V100

● 5376 cores (FP32)



What are we going to do with 5376 FP32 cores?

My Questions Around the GPU



What are we going to do with 5376 FP32 cores?
"Execute things in parallel"!
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What are we going to do with 5376 FP32 cores?
"Execute things in parallel"!

Yes, but how can we exactly do that for ML Workloads?
"Hey, that's your job - That's why we're here listening"!

Alright, let me try to talk about that then







● We may have a huge number of layers
● Each layer can have huge number of neurons

--> There may be 100s millions or even billions * and + ops

All knobs are W values that we need to tune
So that given a certain input, they generate the correct output



"Matrix Multiplication is

EATING (the computing resources of) THE WORLD"

hi_j = [X0, X1, X2, ...] * [W0, W1, W2, ...]

hi_j = X0*W0 + X1*W1 +  X2*W2 + ...



X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1]   # Then we need to have 256 weight values

h0,0 = X * W  # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

Matmul
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Single-threaded Execution
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1]   # Then we need to have 256 weight values

h0,0 = X * W  # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6



GPU Execution
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GPU - #1 Multiplication Step
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GPU - #1 Multiplication Step
X = [1.0, 2.0, ..., 256.0] # Let's say we have 256 input values

W = [0.1, 0.1, ..., 0.1]   # Then we need to have 256 weight values

h0,0 = X * W  # [1*0.1 + 2*0.1 + ... + 256*0.1] == 32389.6

Tesla SXM V100

5376 cores (FP32)
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GPU - #1 What about Summation?
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X

1

2

.

.

.

256

[

[

W

0.1

0.1

.

.

.

0.1

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6 

[

[

*
+

+
+ = h0,0

X1_mul_vector

1*0.1 = 0.1

2*0.1 = 0.2

.

.

.

256*0.1 = 25.6 

GPU - #2 Summary Step
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GPU - #2 Summary Step
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Comparing - Order of Magnitude (sequences)



Many Knobs to Tune

But the type of calculation we 
perform is very suited for GPUs



  

  

Summary

● GPUs == Many Threads == Great for ML Workloads

● And now you know how this works

● Fortunately, you don't need to worry about implementation details
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multi-core 
CPU
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multi-core 
CPU

GPU
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multi-core 
CPU

GPU

Work needed: NONE 
(just use a GPU build)
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Beyond That
Use Distribution Strategy API

There's a talk for that
(@ 1pm)
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You Can...
tensorflow.org/learn

TensorFlow Courses
coursera.org/learn/introduction-tensorflow

udacity.com/tensorflow

Distribution Strategies
tensorflow.org/alpha/guide/distribute_strategy @MagnusHyttsten


