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Established in 1909, the Bureau conducts 
research focusing on the intersection of 
energy, the environment, and the economy, 
where significant advances are being made 
tackling tough problems globally.



About seismic interpretation
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Onajite E., 2014, Understanding Seismic Interpretation Methodology,  in 
Seismic Data Analysis Techniques in Hydrocarbon Exploration
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OK …

So what is THIS generation of 
seismic interpretation?



Example: Campos Basin, offshore Brazil
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450 x 1950 x 1200 
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Example: Campos Basin, offshore Brazil
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450 x 1950 x 1200 
samples

Weeks (if not months) vs 2-3 min



About seismic interpretation
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Are we really doing this 
in a proper 3D way?



Why deep learning?
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● Everybody knows deep learning is fast in application now …

● But it also brings a new 3D/4D/… perspective to seismic 
interpretation!

Dolz, J., et al., 2018, 3D fully convolutional networks for subcortical 
segmentation in MRI: A large-scale study, NeuroImage



Outline
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● Simple fault classification

● Generating geophysical synthetic training data

● From classification to segmentation:
○ Fault segmentation
○ Salt body segmentation
○ Channel segmentation

● Tracking geobody in a recurrent style

● Predicting relative geological time (RGT)
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Training and validation datasets
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200 synthetic training datasets + 20 synthetic validation datasets
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Simple fault classification
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52Waldeland et al., 2018, Convolutional neural networks for automated seismic interpretation, TLE



53Waldeland et al., 2018, Convolutional neural networks for automated seismic interpretation, TLE



54Di et al., 2018, Deep Convolutional Neural Networks for Seismic Salt-Body Delineation, AAPG 2018



Classification vs Segmentation
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Deep learning is powerful.

But different problem setup could unlock more power!

Classification Segmentation

● Difficult to handle the 
border of different 
classes;

● Sliding window could be 
computational intensive.

● Suitable setup for 
geobody detection 
problems;

● Less subdomains than 
sliding windows



Outline

56

● Simple fault classification

● Generating geophysical synthetic training data

● From classification to segmentation:
○ Fault segmentation
○ Salt body segmentation
○ Channel segmentation

● Tracking geobody in a recurrent style

● Predicting relative geological time (RGT)



Segmentation problems
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Input image Semantic segmentation

● Autonomous driving

● Satellite surveillance

● Video processing

● Medical image 
analysis

● Geophysical data 
interpretation



58Long et al., 2015, Fully Convolutional Networks for Semantic Segmentation, CVPR 2015

Earliest network architecture for segmentation problems:
Fully convolutional networks (FCN).



Simplified U-net fault segmentation
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The original U-Net is more complicated than necessary for fault segmentation.
We simplified the U-Net by reducing both the layers and number of features at each layer.



Balanced cross-entropy loss
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Conventional cross-entropy loss:

A fault image is highly imbalanced between zeros (non-fault) and ones (fault) 

Balanced cross-entropy loss:

where:



Field examples: Subset of F3
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Thinned fault likelihood (previous method)

62



CNN fault probability
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Field example 2
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Provided by Clyde Petroleum and Paradigm



Thinned fault likelihood (conventional method)
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CNN fault probability
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Field example 3: Costa Rica Margin
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Field example 4: Campos Basin, offshore Brazil
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450 x 1950 x 1200 
samples



CNN fault probability

72

450 x 1950 x 1200 
samples

FaultSeg method 
only takes 2-3 min 
with a Titan Xp 
GPU!
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450 x 1950 x 1200 
samples

FaultSeg method 
only takes 2-3 min 
with a Titan Xp 
GPU!
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Training data
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SEAM Phase I seismic 
volume:

Fehler and Keliher, 2011, SEAM 
phase I: Challenges of subsalt 
imaging in tertiary basins, with 
emphasis on deepwater Gulf of 
Mexico: SEG.



Extracting salt body mask from velocity model
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SEAM Phase I velocity 
model:



Extracting salt body mask from velocity model
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True salt model Salt slice view



Split training and validation data
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Validation dataTraining data



Size limitation — sliding window prediction
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Dump the whole volume into 
training is infeasible.

We crop sliding windows from 
the volume:

● Predict on each window

● Merge all windows back the 
size of the volume
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Size limitation — sliding window prediction
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We build a data generator that 
randomly crop a window from the 
volume.

Note that:

● Z-axis is not permutable;

● X-axis and Y-axis are 
permutable.

● We can reflect / rotate in 
X-Y dimension!

Neural 
network

Z-axis

X-axis & 
Y-axis
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Size limitation — sliding window prediction
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We build a data generator that 
randomly crop a window from the 
volume.

Note that:

● Effectively we can generate 
infinite number of data 
samples;

● The rotated window is a 
powerful augmentation 
technique that improves 
the model generalization.

Neural 
network

Y-
ax

is X-
ax

is



Result showcase — SEAM Phase I 
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Predicted salt model Prediction probability
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True salt model True slice view



Result showcase — SEAM Phase I 
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Metric name Metric scores Metric definition

Accuracy 0.9609

Precision 0.9004

Recall 0.9468

F1 score 0.9230



Test on the field data
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Netherlands F3 
seismic volume:

From dGB Earth Sciences B.V., 
https://opendtect.org/osr/Main
/NetherlandsOffshoreF3BlockC
omplete4GB
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Predicted salt model Prediction probability
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Channel detection example
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The synthetic dataset is created 
from 3 pieces of information:

● Geological outcrop information 
from expert geologists.

● 3D shallow high resolution 
seismic data.

● Geostatistics information



Channel detection example
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● 3D offshore Australia released 
dataset from QCL group.

● Complex stacked channel 
system.
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Channel detection example
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● Deep learning time is for generating a distribution of 30 
detections of channel geobodies (GPU).

● Manual detection of channel geobodies time is approximate 
(CPU).
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Attribute vs instance
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Segmentation attribute

Figure from Petrel, Schlumberger

?



Current solutions
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Figure from Tabb, Amy, and Henry Medeiros. "Fast and robust curve skeletonization for 
real-world elongated objects." 2018 IEEE Winter Conference on Applications of Computer 
Vision (WACV). IEEE, 2018.

Skeletonization algorithm



Current solutions
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Figure from Hadiloo, S., et al. "SeisART software: seismic facies analysis by contributing 
interpreter and computer." Arabian Journal of Geosciences 10.23 (2017): 519.

Clustering analysis



Current solutions
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Figure from Pedersen, Stein Inge, et al. "Automatic fault extraction using artificial ants." 
SEG Technical Program Expanded Abstracts 2002. Society of Exploration Geophysicists, 
2002. 512-515.

Tracking algorithms



Disadvantages of the previous methods
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Predicted salt 
model

Seismic image 
volume

Segmentation 
model predictinput

● Cannot separate individual geobody instances

● Do not allow interactivity on the user end



Motivations to flood-filling network (FFN)
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Our architecture
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Seismic 
input

Previous 
likelihood 
prediction

U-net model 
for 

segmentation

New 
likelihood 
prediction

FoV shifts 
to next 
location

input

output

guide

update
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Seismic 
input

Previous 
likelihood 
prediction

U-net model 
for 

segmentation

New 
likelihood 
prediction

FoV shifts 
to next 
location

input

output

guide

update

Recurrent 
architecture



FoV movement - filling
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Results preview
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Multi-instances separation
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Multi-instances separation
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Predicting relative geological time (RGT)
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Predicting relative geological time (RGT)
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Liu, Fayao, et al., Deep convolutional neural fields for depth estimation from a single image, 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
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Predicting relative geological time (RGT)
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Conclusions

● We discuss what are the new 
things deep learning can bring 
into seismic interpretation.

● We show our development of 
the workflow with this tool 
designed for seismic images

● Many can be achieved by 
using synthetic data already!
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● CNN model can learn from 
synthetic data

● CNN model can work hard over 
night

● CNN model can get more 
experienced with human 
feedback

● CNN model only performs well 
on specific tasks

● Can a CNN model follow the 
logic like a geologist?

● Can a CNN model learn to tell 
stories from a seismic image?
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