

MVAPICH2-GDR: High-Performance and Scalable CUDA-Aware MPI Library for HPC and AI

GPU Technology Conference (GTC 2019)

by

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Hari Subramoni

The Ohio State University

E-mail: subramon@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~subramon

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- Current Features
 - Multi-stream Communication for IPC
 - CMA-based Intra-node Host-to-Host Communication Support
 - Maximal Overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Streaming Support with InfiniBand Multicast and GDR
 - Support for Deep Learning
 - Support for OpenPOWER with NVLink
 - Support for Container

• Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,975 organizations in 88 countries
 - More than 529,000 (> 0.5 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov '18 ranking)
 - 3rd ranked 10,649,640-core cluster (Sunway TaihuLight) at NSC, Wuxi, China
 - 14th, 556,104 cores (Oakforest-PACS) in Japan
 - 17th, 367,024 cores (Stampede2) at TACC
 - 27th, 241,108-core (Pleiades) at NASA and many others
 - Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, and OpenHPC)
 - <u>http://mvapich.cse.ohio-state.edu</u>
- Empowering Top500 systems for over a decade

GTC 2019

Partner in the upcoming TACC Frontera System

3

MVAPICH2 Release Timeline and Downloads

GTC 2019

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models					
Message Passing Interface	PGAS	Hybrid MPI + X			
(MPI)	(UPC, OpenSHMEM, CAF, UPC++)	(MPI + PGAS + OpenMP/Cilk)			

[•] Upcoming

GTC 2019

MVAPICH2 Software Family

High-Performance Parallel	Programming	Libraries
----------------------------------	-------------	-----------

MVAPICH2	Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE		
MVAPICH2-X	Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and MPI+PGAS programming models with unified communication runtime		
MVAPICH2-GDR	Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning Applications		
MVAPICH2-Virt	High-performance and scalable MPI for hypervisor and container based HPC cloud		
MVAPICH2-EA	Energy aware and High-performance MPI		
MVAPICH2-MIC	Optimized MPI for clusters with Intel KNC		
Microbenchmarks			
ОМВ	Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) libraries for CPUs and GPUs		
Tools			
OSU INAM	Network monitoring, profiling, and analysis for clusters with MPI and scheduler integration		
OEMT	Utility to measure the energy consumption of MPI applications		
k Based Computing Labor	atory GTC 2019		

MVAPICH2-GDR: Optimizing MPI Data Movement on GPU Clusters

Connected as PCIe devices – Flexibility but Complexity

Memory buffers

1. Intra-GPU

- 2. Intra-Socket GPU-GPU
- 3. Inter-Socket GPU-GPU
- 4. Inter-Node GPU-GPU
- 5. Intra-Socket GPU-Host
- 6. Inter-Socket GPU-Host
- 7. Inter-Node **GPU**-Host

8. Inter-Node GPU-GPU with IB adapter on remote socket and more . . .

- NVLink is leading to more paths
- For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline ...
- Critical for runtimes to optimize data movement while hiding the complexity

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3.1 Releases

- Support for MPI communication from NVIDIA GPU device memory
- High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU)
- High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
- Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple GPU adapters/node
- Optimized and tuned collectives for GPU device buffers
- MPI datatype support for point-to-point and collective communication from GPU device buffers
- Unified memory

MVAPICH2-GDR: Pre-requisites for OpenPOWER & x86 Systems

- MVAPICH2-GDR 2.3.1 requires the following software to be installed on your system:
 - 1. Mellanox OFED 3.2 and later
 - 2. NVIDIA Driver 367.48 or later
 - 3. NVIDIA CUDA Toolkit 7.5 and later
 - 4. NVIDIA Peer Memory (nv peer mem) module to enable GPUDirect RDMA (GDR) support
- Strongly Recommended for Best Performance
 - 5. GDRCOPY Library by NVIDIA: <u>https://github.com/NVIDIA/gdrcopy</u>
- Comprehensive Instructions can be seen from the MVAPICH2-GDR User Guide:
 - <u>http://mvapich.cse.ohio-state.edu/userguide/gdr/</u>

MVAPICH2-GDR: Download and Setup on OpenPOWER & x86 Systems

- Simple Installation steps for both systems
- Pick the right MVAPICH2-GDR RPM from Downloads page:
 - <u>http://mvapich.cse.ohio-state.edu/downloads/</u>
 - e.g. <u>http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm</u> (== <mv2-gdr-rpm-name>.rpm)

\$ wget http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/<mv2-gdr-rpmname>.rpm

Root Users:

\$ rpm -Uvh --nodeps <mv2-gdr-rpm-name>.rpm

Non-Root Users:

\$ rpm2cpio <mv2-gdr-rpm-name>.rpm | cpio – id

• Contact MVAPICH help list with any questions related to the package

mvapich-help@cse.ohio-state.edu

MVAPICH2-GDR 2.3.1

- Released on 03/16/2018
- Major Features and Enhancements
 - Based on MVAPICH2 2.3.1
 - Enhanced intra-node and inter-node point-to-point performance for DGX-2 and IBM POWER8 and IBM POWER9 systems
 - Enhanced Allreduce performance for DGX-2 and IBM POWER8/POWER9 systems
 - Enhanced small message performance for CUDA-Aware MPI_Put and MPI_Get
 - Support for PGI 18.10
 - Flexible support for running TensorFlow (Horovod) jobs
 - Add support for Volta (V100) GPU
 - Support for OpenPOWER with NVLink
 - Efficient Multiple CUDA stream-based IPC communication for multi-GPU systems with and without NVLink
 - Leverage Linux Cross Memory Attach (CMA) feature for enhanced host-based communication
 - InfiniBand Multicast (IB-MCAST) based designs for GPU-based broadcast and streaming applications
 - Efficient broadcast designs for Deep Learning applications

Optimized MVAPICH2-GDR Design

ROCE and Optimized Collectives Support

- RoCE V1 and V2 support
- RDMA_CM connection support
- CUDA-Aware Collective Tuning
 - Point-point Tuning (available since MVAPICH2-GDR 2.0)
 - Tuned thresholds for the different communication patterns and features
 - Depending on the system configuration (CPU, HCA and GPU models)
 - Tuning Framework for GPU based collectives
 - Select the best algorithm depending on message size, system size and system configuration
 - Support for Bcast and Gather operations for different GDR-enabled systems
- Available since MVAPICH2-GDR 2.2RC1 release

Application-Level Evaluation (HOOMD-blue)

64K Particles

256K Particles

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
- HoomdBlue Version 1.0.5
 - GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

GTC 2019

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

- 2X improvement on 32 GPUs nodes
- 30% improvement on 96 GPU nodes (8 GPUs/node)

<u>Cosmo model: http://www2.cosmo-model.org/content</u> /tasks/operational/meteoSwiss/

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee, H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement Processing on Modern GPU-enabled Systems, IPDPS'16

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)

Current Features

- Multi-stream Communication for IPC
- CMA-based Intra-node Host-to-Host Communication Support
- Maximal Overlap in MPI Datatype Processing
- Efficient Support for Managed Memory
- Streaming Support with InfiniBand Multicast and GDR
- Support for Deep Learning
- Support for OpenPOWER with NVLink
- Support for Container

• Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Multi-stream Communication using CUDA IPC on OpenPOWER and DGX-1

• Up to **16% higher** Device to Device (D2D) bandwidth on OpenPOWER + NVLink inter-connect

Pt-to-pt (D-D) Bandwidth:

• Up to **30% higher** D2D bandwidth on DGX-1 with NVLink

Pt-to-pt (D-D) Bandwidth:

Benefits of Multi-stream CUDA IPC Design Benefits of Multi-stream CUDA IPC Design 20000 40000 Million Bytes (MB)/second (MB)/second 18000 35000 16% better 30% better 16000 30000 14000 25000 12000 10000 20000 **Million Bytes** 8000 15000 6000 10000 4000 5000 2000 0 0 16K 32K 64K 128K 256K 512K 1M 2M 128K 256K 512K 1M 2M 4M 4M Message Size (Bytes) Message Size (Bytes) 1-stream 4-streams 1-stream 4-streams Available since MVAPICH2-GDR-2.3a **Network Based Computing Laboratory** 18 GTC 2019

CMA-based Intra-node Host-to-Host Communication Support

INTRA-NODE Pt-to-Pt (H2H) LATENCY

• Up to **30% lower** Host-to-Host (H2H) latency and **30% higher** H2H Bandwidth

INTRA-NODE Pt-to-Pt (H2H) BANDWIDTH

Intel Broadwell (E5-2680 v4 @ 3240 GHz) node – 28 cores NVIDIA Tesla K-80 GPU, and Mellanox Connect-X4 EDR HCA CUDA 8.0, Mellanox OFED 4.0 with GPU-Direct-RDMA

Network Based Computing Laboratory

GTC 2019

19

Non-contiguous Data Exchange

Halo data exchange

- Multi-dimensional data
 - Row based organization
 - Contiguous on one dimension
 - Non-contiguous on other dimensions
- Halo data exchange
 - Duplicate the boundary
 - Exchange the boundary in each iteration

MPI Datatype support in MVAPICH2

- Datatypes support in MPI
 - Operate on customized datatypes to improve productivity
 - Enable MPI library to optimize non-contiguous data

At Sender:

•••

```
MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);
MPI_Type_commit(&new_type);
```

MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

- Inside MVAPICH2
 - Use datatype specific CUDA Kernels to pack data in chunks
 - Efficiently move data between nodes using RDMA
 - In progress currently optimizes vector and hindexed datatypes
 - Transparent to the user

H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evaluation, IEEE Transactions on Parallel and Distributed Systems, Vol. 25, No. 10, pp. 2595-2605, Oct 2014.

MPI Datatype Processing (Computation Optimization)

- Comprehensive support
 - Targeted kernels for regular datatypes vector, subarray, indexed_block
 - Generic kernels for all other irregular datatypes
- Separate non-blocking stream for kernels launched by MPI library
 - Avoids stream conflicts with application kernels
- Flexible set of parameters for users to tune kernels
 - Vector
 - MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_VECTOR_YSIZE
 - Subarray
 - MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE
 - MV2_CUDA_KERNEL_SUBARR_XDIM
 - MV2_CUDA_KERNEL_SUBARR_YDIM
 - MV2_CUDA_KERNEL_SUBARR_ZDIM
 - Indexed_block
 - MV2_CUDA_KERNEL_IDXBLK_XDIM

MPI Datatype Processing (Communication Optimization)

Common Scenario

MPI_Isend (A,.. Datatype,...) MPI_Isend (B,.. Datatype,...) MPI_Isend (C,.. Datatype,...) MPI_Isend (D,.. Datatype,...)

MPI_Waitall (...);

...

*A, B...contain non-contiguous MPI Datatype

Waste of computing resources on CPU and GPU

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)

Current Features

- Multi-stream Communication for IPC
- CMA-based Intra-node Host-to-Host Communication Support
- Maximal Overlap in MPI Datatype Processing
- Efficient Support for Managed Memory
- Streaming Support with InfiniBand Multicast and GDR
- Support for Deep Learning
- Support for OpenPOWER with NVLink
- Support for Container

Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Enhanced Support for Intra-node Unified Memory

- CUDA Unified Memory(UM) => no memory pin down
 - No IPC support for intra-node communication
 - No GDR support for Inter-node communication
- Initial and basic support in MVAPICH2-GDR
 - For both intra- and inter-nodes use "pipeline through" host memory
- Enhance intra-node UM to use IPC
 - Double buffering pair-wise IPC-based scheme
 - Brings IPC performance to UM
 - High performance and high productivity
- Available since MVAPICH2-GDR 2.2RC1

K. Hamidouche, A. Awan, A. Venkatesh, and D. K Panda, CUDA M3: Designing Efficient CUDA Managed Memory-aware MPI by Exploiting GDR and IPC, HiPC '16

On K80 with MV2-GDR

Characterizing Unified Memory aware MPI on modern GPUs

- Improved UM support in Pascal & Volta GPUs through:
 - Advanced GPU page fault engines
 - cudaMemPrefetch and cudaMemAdvise APIs provide more control for UM data placement
- Are the UM designs developed during Kepler era still valid?
- Carried out an in-depth characterization
- Our characterization studies show:
 - The UM designs from Kepler era are still valid
 - They are 4.2X and 2.8X better in latency compared to MVAPICH2-GDR and Open MPI

K. V. Manian, A. Awan, A. Ruhela, C. Chu, H. Subramoni and D. K Panda, Characterizing CUDA Unified Memory (UM)-Aware MPI Designs on Modern GPU Architectures, GPGPU '19 Workshop, in conjunction with ASPLOS '19, April '19

On V100 with MV2-GDR and OMPI

----MM-MV2-GDR -----MM-MV2-GDR-Opt -----MM-OMPI

Network Based Computing Laboratory

On V100 with MV2-GDR

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)

Current Features

- Multi-stream Communication for IPC
- CMA-based Intra-node Host-to-Host Communication Support
- Maximal Overlap in MPI Datatype Processing
- Efficient Support for Managed Memory
- Streaming Support with InfiniBand Multicast and GDR
- Support for Deep Learning
- Support for OpenPOWER with NVLink
- Support for Container

• Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Streaming Applications

- Streaming applications on HPC systems
 - 1. Communication (MPI)
 - Broadcast-type operations
 - 2. Computation (CUDA)
 - Multiple GPU nodes as workers

Hardware Multicast-based Broadcast

- For GPU-resident data, using \bullet
 - **GPUDirect RDMA (GDR)**
 - InfiniBand Hardware Multicast (IB-MCAST)
- Overhead
 - **IB UD limit**
 - GDR limit

Available since MVAPICH2-GDR 2.3a

A. Venkatesh, H. Subramoni, K. Hamidouche, and D. K. Panda, "A High Performance Broadcast Design with Hardware **Multicast and GPUDirect RDMA for Streaming Applications on** InfiniBand Clusters," in HiPC 2014, Dec 2014.

Network Based Computing Laboratory

GTC 2019

Streaming Benchmark @ CSCS (88 GPUs)

- IB-MCAST + GDR + Topology-aware IPC-based schemes
 - Up to 58% and 79% reduction

for small and large messages

C.-H. Chu, K. Hamidouche, H. Subramoni, A. Venkatesh, B. Elton, and D. K. Panda, "Designing High Performance Heterogeneous Broadcast for Streaming Applications on GPU Clusters, " SBAC-PAD'16, Oct. 26-28, 2016.

Application-based Evaluation: CUDA-Aware CNTK

- @ RI2 cluster, 16 GPUs, 1 GPU/node
 - CUDA-Aware Microsoft Cognitive Toolkit (CA-CNTK)^[2]

- Reduces up to 24%, 16% and 18% of latency for AlexNet, VGG and ResNet models
- Higher improvement can be observed for larger system sizes

[1] C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton, and D. K. Panda, Efficient and Scalable Multi-Source Streaming Broadcast on GPU Clusters for Deep Learning, ICPP'17.

[2] D. S. Banerjee, K. Hamidouche, and D. K. Panda, Re-Designing CNTK Deep Learning Framework on Modern GPU Enabled Clusters, IEEE CloudCom'16

Network Based Computing Laboratory

GTC 2019

Research Poster (P9242)

Higher is better

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)

Current Features

- Multi-stream Communication for IPC
- CMA-based Intra-node Host-to-Host Communication Support
- Maximal Overlap in MPI Datatype Processing
- Efficient Support for Managed Memory
- Streaming Support with InfiniBand Multicast and GDR
- Support for Deep Learning
- Support for OpenPOWER with NVLink
- Support for Container

• Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Deep Learning: New Challenges for Runtimes

- Scale-up: Intra-node Communication
 - Many improvements like:
 - NVIDIA cuDNN, cuBLAS, NCCL, etc.
 - CUDA 9 Co-operative Groups
- Scale-out: Inter-node Communication
 - DL Frameworks most are optimized for single-node only
 - Distributed (Parallel) Training is an emerging trend
 - OSU-Caffe MPI-based
 - Microsoft CNTK MPI/NCCL2
 - Google TensorFlow gRPC-based/MPI/NCCL2
 - Facebook Caffe2 Hybrid (NCCL2/Gloo/MPI)

Data Parallel Deep Learning and MPI Collectives

- Major MPI Collectives involved in Designing distributed frameworks
- MPI_Bcast required for DNN parameter exchange
- MPI_Reduce needed for gradient accumulation from multiple solvers
- MPI_Allreduce use just one Allreduce instead of Reduce and Broadcast

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters. In *Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming* (PPoPP '17)

MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

• 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

*Available since MVAPICH2-GDR 2.3a

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation

- Optimized designs since MVAPICH2-GDR 2.3 offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect

GTC 2019

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)

- Optimized designs in MVAPICH2-GDR 2.3.1 offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

GTC 2019

Scalable TensorFlow using Horovod, MPI, and NCCL

- Efficient Allreduce is crucial for Horovod's overall training performance
 - Both MPI and NCCL designs are available
- We have evaluated Horovod extensively and compared across a wide range of designs using gRPC and gRPC extensions
- MVAPICH2-GDR achieved up to 90% scaling efficiency for ResNet-50 Training on 64 Pascal GPUs

A. A. Awan, J. Bedorf, C.-H. Chu, H. Subramoni and D. K. Panda, "Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation", (To be presented) CCGrid '19. <u>https://arxiv.org/abs/1810.11112</u>

Network Based Computing Laboratory

Distributed Training with TensorFlow and MVAPICH2-GDR

• ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (8 Volta GPUs)

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

Network Based Computing Laboratory

GTC 2019

OSU-Caffe: Scalable Deep Learning

- Caffe : A flexible and layered Deep Learning framework.
- Benefits and Weaknesses
 - Multi-GPU Training within a single node
 - Performance degradation for GPUs across different sockets
 - Limited Scale-out
- OSU-Caffe: MPI-based Parallel Training
 - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
 - Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset
 - Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU-Caffe publicly available from

http://hidl.cse.ohio-state.edu/

Support on OPENPOWER will be available soon

GoogLeNet (ImageNet) on 128 GPUs

GTC 2019

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)

Current Features

- Multi-stream Communication for IPC
- CMA-based Intra-node Host-to-Host Communication Support
- Maximal Overlap in MPI Datatype Processing
- Efficient Support for Managed Memory
- Streaming Support with InfiniBand Multicast and GDR
- Support for Deep Learning
- Support for OpenPOWER with NVLink
- Support for Container

• Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Point-to-Point Host-level Performance on OpenPOWER

Platform: OpenPOWER (Power8-ppc64le) CPU using Mellanox EDR (MT4115) HCANetwork Based Computing LaboratoryGTC 2019

Device-to-Device Performance on OpenPOWER (NVLink2 + Volta)

Intra-node Latency: 5.36 us (without GDRCopy)

INTER-NODE LATENCY (SMALL)

32 64 128 256 512 1K 2K 4K

Message Size (Bytes)

15

10

0

-atency (us)

INTER-NODE LATENCY (LARGE)

INTRA-NODE BANDWIDTH

Message Size (Bytes) Intra-node Bandwidth: 70.4 GB/sec for 128MB

(via NVLINK2)

INTER-NODE BANDWIDTH

Message Size (Bytes)

Message Size (Bytes) Available since MVAPICH2-GDR 2.3a

2h an

1h

2564 5224

Inter-node Latency: 5.66 us (without GDRCopy) Inter-node Bandwidth: 23.7 GB/sec (2 port EDR)

64

324 GAY 28×

400

300

200

100

-atency (us)

Platform: OpenPOWER (POWER9-ppc64le) nodes equipped with a dual-socket CPU, 4 Volta V100 GPUs, and 2port EDR InfiniBand Interconnect

Network Based Computing Laboratory

GTC 2019

43

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)

Current Features

- Multi-stream Communication for IPC
- CMA-based Intra-node Host-to-Host Communication Support
- Maximal Overlap in MPI Datatype Processing
- Efficient Support for Managed Memory
- Streaming Support with InfiniBand Multicast and GDR
- Support for Deep Learning
- Support for OpenPOWER with NVLink
- Support for Container

• Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Container Support

- Increasing trend to provide container support for MPI Libraries
 - Ease of build
 - Portability
 - Reproducibility
- MVAPICH2-GDR 2.3.1 provides container (Docker) support
- More details are available in the MVAPICH2-GDR User Guide
 - <u>http://mvapich.cse.ohio-state.edu/userguide/gdr/</u>
- Synergistic with the HPC-Container-Maker and hpccm efforts by NVIDIA
 - (<u>https://github.com/NVIDIA/hpc-container-maker</u>)

MVAPICH2-GDR on Container with Negligible Overhead

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- Current Features
 - Multi-stream Communication for IPC
 - CMA-based Intra-node Host-to-Host Communication Support
 - Maximal Overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Streaming Support with InfiniBand Multicast and GDR
 - Support for Deep Learning
 - Support for OpenPOWER with NVLink
 - Support for Container

Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Scalable Host-based Collectives on OpenPOWER with CMA (Intra-node Reduce &

GTC 2019

Scalable Host-based Collectives on OpenPOWER with CMA (Multi-node, Reduce &

Up to 12.4X and 8.5X performance improvement by MVAPICH2 for small and large messages respectively

GTC 2019

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- Current Features
 - Multi-stream Communication for IPC
 - CMA-based Intra-node Host-to-Host Communication Support
 - Maximal Overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Streaming Support with InfiniBand Multicast and GDR
 - Support for Deep Learning
 - Support for OpenPOWER with NVLink
 - Support for Container

• Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Shared Address Space (XPMEM-based) Collectives

- Offload Reduction computation and communication to peer MPI ranks
 - Every Peer has direct "load/store" access to other peer's buffers
 - Multiple pseudo roots independently carry-out reductions for intra-and inter-node
 - Directly put reduced data into root's receive buffer
- <u>*True "Zero-copy"*</u> design for Allreduce and Reduce
 - No copies require during the entire duration of Reduction operation
 - Scalable to multiple nodes
- *Zero contention* overheads as memory copies happen in <u>"user-space"</u>

Available since MVAPICH2-X 2.3rc1

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Benefits of XPMEM based MPI_Bcast

28 MPI Processes on single dual-socket Broadwell E5-2680v4, 2x14 core processor

Benefits of XPMEM based MPI_Scatter

High cache-locality and contention-free access compared to CMA

GTC 2019

Optimized All-Reduce with XPMEM

- Optimized MPI All-Reduce Design in MVAPICH2
 - Up to 2X performance improvement over Spectrum MPI and 4X over OpenMPI for intra-node

Optimized Runtime Parameters: MV2_CPU_BINDING_POLICY=hybrid MV2_HYBRID_BINDING_POLICY=bunch

GTC 2019

Application-Level Benefits of XPMEM-Based Collectives

CNTK AlexNet Training MiniAMR (Broadwell, ppn=16) (Broadwell, B.S=default, iteration=50, ppn=28) 70 Intel MPI Intel MPI 800 9% MVAPICH2 60 MVAPICH2 5% 700 Execution Time (s) (s) MVAPICH2-XPMFM Time 50 MVAPICH2-XPMEM 600 20% 500 40 Execution 400 30 300 27% 20 200 10 100 0 28 56 16 32 64 128 256 112 224 No. of Processes No of Processes

- Up to 20% benefits over IMPI for CNTK DNN training using AllReduce
- Up to **27%** benefits over IMPI and up to **15%** improvement over MVAPICH2 for MiniAMR application kernel

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- Current Features
 - Multi-stream Communication for IPC
 - CMA-based Intra-node Host-to-Host Communication Support
 - Maximal Overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Streaming Support with InfiniBand Multicast and GDR
 - Support for Deep Learning
 - Support for OpenPOWER with NVLink
 - Support for Container

Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

MVAPICH2-GDR: Enhanced Derived Datatype Processing

- Kernel-based and GDRCOPY-based one-shot packing for inter-socket and inter-node communication
- Zero-copy (packing-free) for GPUs with peer-to-peer direct access over PCIe/NVLink

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- Current Features
 - Multi-stream Communication for IPC
 - CMA-based Intra-node Host-to-Host Communication Support
 - Maximal Overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Streaming Support with InfiniBand Multicast and GDR
 - Support for Deep Learning
 - Support for OpenPOWER with NVLink
 - Support for Container

Upcoming Features

- CMA-based Intra-node Collective Communication Support
- XPMEM-based Collective Communication Support
- Optimized Datatype Processing
- Out-of-core processing for Deep Learning
- Conclusions

Scalability and Large (Out-of-core) Models?

- Large DNNs cannot be trained on GPUs due to memory limitation!
 - ResNet-50 for Image Recognition but current frameworks can only go up to a small batch size of 45
 - Next generation models like Neural Machine Translation (NMT) are ridiculously large, consists of billions of parameters, and require even more memory
 - Can we design Out-of-core DNN training support using new software features in CUDA 8/9 and hardware mechanisms in Pascal/Volta GPUs?
- General intuition is that managed allocations "will be" slow!
 - The proposed framework called OC-Caffe (Out-of-Core Caffe) shows the potential of managed memory designs that can provide performance with negligible/no overhead.
- OC-Caffe-Opt: up to 80% better than Intel-optimized CPU Caffe for ResNet-50 training on the Volta V100 GPU with CUDA9 and

Network Based Computing Laboratory

GTC 2019

Research Poster (P9243)

Outline

- Overview of the MVAPICH2 Project
- MVAPICH2-GPU with GPUDirect-RDMA (GDR)
- Current Features
 - Multi-stream Communication for IPC
 - CMA-based Intra-node Host-to-Host Communication Support
 - Maximal Overlap in MPI Datatype Processing
 - Efficient Support for Managed Memory
 - Streaming Support with InfiniBand Multicast and GDR
 - Support for Deep Learning
 - Support for OpenPOWER with NVLink
 - Support for Container
- Upcoming Features
 - CMA-based Intra-node Collective Communication Support
 - XPMEM-based Collective Communication Support
 - Optimized Datatype Processing
 - Out-of-core processing for Deep Learning

Conclusions

Conclusions

- MVAPICH2-GDR MPI library optimizes MPI communication on InfiniBand and RoCE (V1 and V2) clusters with GPUs on both x86 and OpenPOWER platforms (including NVLink)
- Provides optimized designs for point-to-point two-sided and one-sided communication, datatype processing and collective operations
- Takes advantage of CUDA features like IPC and GPUDirect RDMA families
- Allows flexible solutions for streaming applications with GPUs
- Provides optimized solutions for both HPC and High-Performance Deep Learning (HiDL) frameworks and applications
- Upcoming releases will be supporting advanced designs

Please join us for more events..

Monday, March 18	Tuesday, March 19	Wednesday, March 20	
Research Poster	Talk	Instructor-Led Training	
 P9243 - Exploiting CUDA Unified Memory for Efficient Out-of-Core DNN Training P9242 - Exploiting GPUDirect Technology and Hardware Multicast for Streaming and Deep Learning Applications 	S9476 - MVAPICH2-GDR: High-Performance and Scalable CUDA-Aware MPI Library for HPC and AI	L9121 - How to Boost the Performance of HPC/AI Applications Using MVAPICH2 Library	
SJCC Upper Concourse 06:00 PM - 08:00 PM	SJCC Room 211A (Concourse Level) 03:00 PM - 03:50 PM	SJCC Room LL21D (Lower Level) 08:00 AM - 10:00 AM	

Personnel Acknowledgments

M. Luo

_

E. Mancini

Current Students (Graduate)	Current	t Students (Underaraduate)	Current Research Asst. Professor	Current Post-doc
 A. Awan (Ph.D.) M. Bayatpour (Ph.D.) S. Chakraborthy (Ph.D.) CH. Chu (Ph.D.) S. Guganani (Ph.D.) 	 J. Hashmi (Ph.D.) A. Jain (Ph.D.) K. S. Khorassani (Ph.D.) P. Kousha (Ph.D.) D. Shankar (Ph.D.) 	V. Gangal (B.S.) M. Haupt (B.S.) N. Sarkauskas (B.S.) A. Yeretzian (B.S.)	 X. Lu Current Research Scientist H. Subramoni 	 A. Ruhela K. Manian <i>Current Research Specialist</i> J. Smith
Past Students-A. Augustine (M.S.)-P. Balaji (Ph.D.)-R. Biswas (M.S.)-S. Bhagvat (M.S.)-A. Bhat (M.S.)-D. Buntinas (Ph.D.)-L. Chai (Ph.D.)-B. Chandrasekharan (M.S.)-N. Dandapanthula (M.S.)-V. Dhanraj (M.S.)-T. Gangadharappa (M.S.)-K. Gonalakrishnan (M.S.)	 W. Huang (Ph.D.) W. Jiang (M.S.) J. Jose (Ph.D.) S. Kini (M.S.) M. Koop (Ph.D.) K. Kulkarni (M.S.) R. Kumar (M.S.) S. Krishnamoorthy (M.S.) K. Kandalla (Ph.D.) M. Li (Ph.D.) P. Lai (M.S.) 	 J. Liu (Ph.D.) M. Luo (Ph.D.) A. Mamidala (Ph.D.) G. Marsh (M.S.) V. Meshram (M.S.) A. Moody (M.S.) S. Naravula (Ph.D.) R. Noronha (Ph.D.) X. Ouyang (Ph.D.) S. Pai (M.S.) S. Potluri (Ph.D.) 	 R. Rajachandrasekar (Ph.D.) G. Santhanaraman (Ph.D.) A. Singh (Ph.D.) J. Sridhar (M.S.) S. Sur (Ph.D.) H. Subramoni (Ph.D.) K. Vaidyanathan (Ph.D.) A. Vishnu (Ph.D.) J. Wu (Ph.D.) W. Yu (Ph.D.) J. Zhang (Ph.D.) 	 Past Research Scientist K. Hamidouche S. Sur Past Programmers D. Bureddy J. Perkins Past Research Specialist M. Arnold
Past Post-Docs – D. Banerjee	– J. Lin	– S. Marcarelli		

Network Based Computing Laboratory

X. Besseron

H.-W. Jin

_

_

J. Vienne

H. Wang

_

-

Multiple Positions Available in My Group

- Looking for Bright and Enthusiastic Personnel to join as
 - PhD Students
 - Post-Doctoral Researchers
 - MPI Programmer/Software Engineer
 - Hadoop/Big Data Programmer/Software Engineer
 - Deep Learning and Cloud Programmer/Software Engineer
- If interested, please send an e-mail to panda@cse.ohio-state.edu

Thank You!

panda@cse.ohio-state.edu, subramon@cse.ohio-state.edu

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project <u>http://mvapich.cse.ohio-state.edu/</u>

The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>

Network Based Computing Laboratory

