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Influence how we live and experience life!

Our Emotions
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But, we're also surrounded by High 1Q and no EQ devices
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Affectiva mission: humanize technology with Human Perception Al

Pioneers of Human Perception Al.

Al software that understands all things human —

nuanced human emotions, complex cognitive states,

behaviors, activities, interactions and objects people use.
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Only multi-modal in cabin sensing Al.

Using deep learning, computer vision, voice analytics and
massive amounts of data, Affectiva analyzes face and
voice to understand state of humans in vehicle.

Face:

7 emotions, indicators of attention, drowsiness,
distraction, positive / negative, 20+ facial expressions
and demographics

OO

Voice:
< Arousal, laughter, anger, gender



Emotion Al detects emotion and cognitive states the way people do

People communicate Affectiva’s multi-modal
through multiple modalities Emotion Al

o9 @ Face I\/Iulti-modal

Facial expressions
and gestures

7 emotions, ° Developingearlyand late
indicators of

P Henti fusion of modalities for
atiention, deeper understanding of

Arousal, laughter,
anger, gender

drowsiness,

How the words : . . » complexstates
are said : distraction, positive /
,,,,,,,,,,,,,,,,, : negative, 20+ facial * Expanding beyondface
: expressionsand andvoice
7% demographics

The actual words

. .
oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Source: Journal of Consulting Psychology.
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Emotion Al Is a multi-modal and
multi-dimensional problem

Multi-modal - Human emotions manifestin a variety of ways including
your tone of voice and your face '

Many expressions - Facial muscles generate hundreds of facial actions, speech has
many differentdimensions - from pitch and resonance,
to melody and voice quality

Highly nuanced — Emotional and cognitive states can be very nuanced and subtle, like
an eye twitch or your pause patterns whenspeaking

Non-deterministic - Changesin facial or vocal expressions, can have different
meanings depending onthe person’s context at that time

Temporal lapse- As an individual’s state unfold overtime, algorithms need to measure
moment by moment changes to accurately capture of mind

Context — Understanding complex state of mind requires contextual knowledge of the
surrounding environmentand how an individual isinteracting with it

Massive data - Emotion Al algorithms need to be trained with massive
amounts of real world data that is collected and annotated
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Display and perception of emotion is not perfectly aligned

CREMA-D*: large scale study of emotion and perception  Human recognition of intended emotion based on
e 9l participants e Vvoice-only: 40.9%
e 6 emotions of varying intensities o face-only: 58.2%
e 7442 emotion samples. e face and voice: 63.6%

e 2443 obhservers




Difference in emotion perception from Face vs. Speech modalities

Confusion Matrix of unimodal face displayed vs human perceived
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Confusion matrices showing emotions displayed by humans, recognized by other human observers



Difference in emotion perception from Face vs. Speech modalities

Confusion Matrix of unimodal face displayed vs human perceived

Confusion Matrix of unimodal voice displayed vs human perceived
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Difference in emotion perception from Face vs. Speech modalities

Confusion Matrix of unimodal face displayed vs human perceived

Confusion Matrix of unimodal voice displayed vs human perceived
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Emotion Al at Affectiva

ow It works
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Data driven approach to Emotion Al

~
Data

Multi-Modal Data Acquisition

Large amounts of real world
video & audio data; different
ethnicities and contexts

~

Data
Annotation
Infrastructure

Manualand
automated
labeling of video
and speech

’________

S
Algorithms

Training & Validation
Parallelize deeplearning
experiments on a massive scale

————————,

\

’___-

______\

Product Delivery: APIs and SDKs - gl
! i0S O

The classifiers and run-time system are

"N o0

optimized for the cloud or on device or 2 G @
embedded ‘
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’______-

Evaluation

\

Output

Multi-modal classifiers for
machine perception, e.g.,
expressions, emotions,
cognitive statesand
demographics
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Massive proprietary data and annotations power our Al

UNITED -
KINGDOM ¢ , CHINA
e

JAPAN 4Bn 7.5MM

ERMANY 2

USA \ FRAMES FACES

MEXCo s VIETNAM
' PHILIPPINE
BRAZIL | - $
THAILAN 836MM 87
Legend INDONESIA AUTO FRAMES COUNTRIES
- Top 10 countries
Others

v Foundation: Large, diverse & real world data built in the past 7 years
v Growing automotive in-cabin data with scalable data acquisition strategy
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Deep learning

&

Anger 0.09133
Contempt 0.62842
Disgust 0.20128
Fear 0.00001
Happiness 0.00041
Affectiva’s focus is on deep learning * Allows for end-to-end learning
of one or more complex tasks jointly
* |t allows modeling of more complex problems with _ 3
higher accuracy than other ® Solves a variety of problems: classification, segmentation,

machine learning techniques temporal modeling
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Vision pipeline

The current vision SDK consists of steps
* Face detection: given an image, detect faces
* Landmark localization: given a image + bounding box, detect and track landmarks
* Facial analysis: detect facial expression/emotion/attributes

per face analysis

Facial analysis
(Multi-task CNN)

, , , i Landmark , i
image ' Classification refinement faceimage Attributes :
i I F 4 E

i >0 |

, : | I

. Shared E Sharecx E

Region Proposal i Landmark E

Network ! estimate Confidence Fmotions E

:) Affectiva



Speech pipeline

The current speech pipeline consists of these steps:
* Speech detection: given audio, detect speech
* Speech enhancement: given noisy speech speech segment, mask noise
* Speech analysis: detect speech events/emotion/attributes

per audio segment analysis

Speech analysis

Speech enhanced speech
detected Inverse STFT Speech events

Single-channel audio

fon ot — I — I — o> - i <
VAD (voice activity  NSM model: i STFT E

detection): Speech vs. : :

Speech vs. non-stationary ! Noi :

stationary noise noise : olse ' :

: suppression Speech Emotions |
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Multi-Modal Applications

Media and
entertainment

Human Automotive
resources

&
N

Healthcare and Video
quantified self communication

Online Devices

education

Robotics
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Multimodal for Automotive




Affectiva Automotive Al
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Human Perception Al fuels deep understanding of people in a vehicle

Delivering valuable services to vehicle occupants depends on a deep understanding of their current state

Third Party
Solutions

In-Cab Context
Infotainment content
Inanimate objects
Cabin environment

External Context
Weather

Traffic

Signs

Pedestrians

Personal Context
|dentity

Likes/dislikes & preferences
Occupant state history
Calendar
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Facial expressions
Tone ofvoice
Body posture

Objeetdetection

Anger Enjoyment
surprise Attention
Distraction Excitement
Drowsiness Stress
Intoxication Discomfort
Cognitive Load - DispleasSure

Advanced
Vehicle Services

Safety

Next generation driver monitoring
Smart handoff & safety drivers
Proactive intervention

Occupant Experience
Individually customized baseline
Adaptive environment
Personalization across vehicles

Monetization
Differentiation among brands
Premium content delivery
Purchase recommendations
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Affectiva Automotive Al

Modular and extensible deep learning platform for in-cabin human perception Al

— Driver Monitoring

Core technology is shared and reused across different modules

Modular packaging enables light-weight deployment of capabilities for a specific use case
Extend existing capabilities by adding more modules

® Drowsiness lewels

® Distraction lewvels

¢ Cognitive load

Occupant State

Facial and vocal emotion
Mood (valence)

Multimodal emotion: frustration

— Occupant Activities

— Cabin State

® Talking
® Texting

® Cellphone in hand

Engagement

® Occupant location and presence
® Objects left behind
® Child left behind

Core Technology

Face & head tracking

¢ 3D Head pose

Facial expression recognition
® 20 Facial expressions:

e.g. smile, eye brow raise
® Drowsiness markers:

eye closure, yawn, blink

Object detection Voice detection

® Object classes: ® Voice activity detection
mobile device, bags

® Object location

Flexible Platform
® Support Near IR sensors
® Support ARM ECU

® Support multiple camera positions

:) Affectiva
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Automotive data collection for
multimodal analysis
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Automotive Data Acquisition

To develop a deep understanding of the state of occupantsin a car, one needs large amounts of data. With this data we can develop
algorithms that can sense emotions and gather people analytics in real world conditions.

In-Car Data Acquisition (Quarterly)
42,000 miles and 2,000+ hours driven
200+ drivers on 3 continents

Using Affectiva Driver Kits and Affectiva Moving Labs Dat‘a P artnersh I.pS
to collect naturalistic driver and occupant Acquire 3rd party natural in-cab data through
data to develop metrics that are robust to

academic and commercial partners (MIT AVT,

real-world conditions fleet operators, ride-share companies)

Simulated data

Auto Data

Collect challenging data
Corpus

“ | insafe lab simulation

environment to augment

| the spontaneous driver

Alinacton . (G dataset and bootstrap
algorithms (e.qg.

‘ drowsiness, intoxication)

multi-spectral & transfer
learning.

Affectiva

'né

-

Data Collection }
Lab =

B
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Automotive Al data

Automotive Al 1.0 tracks metrics for driver monitoring as well as emotion estimation

Gestures
Emotions v

W anger
joy
surprise
W valence

Expressions v

W blink
W blink rate

W anger
W joy
W surprise
W valence
Expressions v
W blink
W blink rate
W brow furrow
W brow raise
W cheekraise
W eyeclosure
B mouth open
W nose wrinkle
| smile 0:00/0:35
W upperlip
raise

W brow furrow
W brow raise
W cheekraise
eye closure
W mouth open
W nosewrinkle
W smile

W upper lipraise
yawn

Selections Selections

Metrics
surprise
o joy

8

8 8458 o835 288
§8858.8858¢88

g
8
8
g

Driver Drowsiness Emotion detection
Detecting eye closure and yawning events Detect driver emotions including surprise and
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Multimodal frustration: A case study
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Why detect frustration?

Frustrationis “the occurrence of an obstacle that prevents the
satisfaction of a need” [Lawson, 1965].

A frustrated driver can be a dangerous driver.

« Frustration has been shown to be accompanied by
various driving behaviors, such as, horn honking,
purposeful tailgating and flashing high beams
[Hennessey and Wiesenthal, 1999].

« Overtaking was found to be correlated with a state of
frustration [Kinnear et al., 2015]

* Maltaet al. found that the intensity of pedal actuation
signals --- hard braking --- correlated with frustration
[Maltaet al., 2011].

Automatic in-cabin sensing of affective states such as
frustration can utilize that information to provide effective
interventions that attempt to minimize unsafe behavior. For
example, If driveris irritated because of a traffic jam, agent
suggests an alternative route.




In-lab data collection to elicit Frustration

® Participants were asked to do 6 timed tasks requiring interactions with a
voice agent (Alexa) to mimic interactions with car HMI in 2 sessions.

Multi-tasking: interacting with the voice agent while driving
Uni-tasking: only interacting with the voice agent; no driving

8:00 8:10 8:15 8:20

® Tasks designed to mimic real interactive conversations that people

8:35 8:40

8:55 9:00

mjght have with an in-car assistant.
Make a shoppinglist

Setup

_

Session 1

Session 2

Set a timer/alarm

Subject driving

Request systemto say something funny

Request a particular song by name

Request a particularradio station call number and frequency
v Dictate an email to a particular person

Aynaugyip

® Wizard-of-Oz setting: dialogue from Alexa pre-recorded and played by
study administrator.

® 105 participants: 55 female, 47 male and 3 did not specify gender

TASK 1

TASK 2

TASK 3 TASK 4 TASK 4

TASK 4

Driving Sim Familiarization

- Pre and Post Session Surveys




Instrumentation

« Multi-cameras and audio setup (4 pairs of NIR and
RGB cameras, 2 additional cameras, 3 microphones):
The multi-camera audio-video setup was used to
capture multiple views of the participant as well as their
audio stream.

« ECG: Subjects were asked to put 4 ECG sensors on
their body to measure heart rate.

« (GSR: Subjectsalso wore a skin conductance sensor.

« Integration platform: An software platform that allowed
study admin to see and hear the participant, their
vitals, and their performance on the driving sim, so that
pre-recorded voice responses could be played
appropriately to simulate HMI.

« Total: 24 pieces of hardware and matching software.




Challenges of data collection

Setup and syncing multiple sensors.

Eliciting “rea

24 pieces of hardware and matching software
Individually not difficult to set up
But setup and sync non-trivial

frustration in participants.

Engagement constraint: Frustration had to be
managed. Some tasks purposely frustrating but not
all --- otherwise people would give up; some tasks
had to be easy to accomplish so people could win at
it and stay engaged.

Believability constraint: Requests and responses in
scenarios had to be believable/acceptable yet
frustrating.




Example: Frustrated due to difficulty getting radio to play
12/17/2018 18:02:20




Analysis of frustration from face and voice
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Automatic analysis: Is multitasking more frustrating?

Multitasking defined as driving + HMI interaction
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Ratio

How much more frustrating is multitasking compared to free driving?
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Next steps:
multimodal frustration detection
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Analyzing other markers of frustration

Driving behavior

* Examinebehaviors such as honking, tailgating andflashing
of high beams [Hennessey and Wiesenthal, 1999],
overtaking[[Kinnearetal., 2015] and pedal actuation signals
[Malta etal., 2011].

Gestures and body posture
* Hand movements provide a means for displaying frustration
[Dittmann and Llewelyn, 1969]

Physiological responses

* Fernandezand Picard, 1998 showed that electrodermal
response (GSR) is indicative of human frustrationin
interacting with systems.

+ Belleetal. 2010 analyzed ECG data of students and found
thatthe ECG profile of personwho is calm can be
distinguishedfrom a person who is frustrated.




Multimodal Training Strategies for Frustration detection

Decision Level Fusion Feature Level Fusion




Human Perception Al fuels deep understanding of people in a vehicle

Delivering valuable services to vehicle occupants depends on a deep understanding of their current state

Third Party
Solutions

In-Cab Context
Infotainment content
Inanimate objects
Cabin environment

External Context
Weather

Traffic

Signs

Pedestrians

Personal Context
|dentity

Likes/dislikes & preferences
Occupant state history
Calendar
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Facial expressions
Tone ofvoice
Body posture

Objeetdetection

Anger Enjoyment
surprise Attention
Distraction Excitement
Drowsiness Stress
Intoxication Discomfort
Cognitive Load - DispleasSure

Advanced
Vehicle Services

Safety

Next generation driver monitoring
Smart handoff & safety drivers
Proactive intervention

Occupant Experience
Individually customized baseline
Adaptive environment
Personalization across vehicles

Monetization
Differentiation among brands
Premium content delivery
Purchase recommendations
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Learn more
www.affectiva.com

Contact us:
Email: taniya.mishra@affectiva.com
Email: mohammad.mavadati@affectiva.com
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