

Ray-Traced Global Illumination for Games: Massively Parallel Path Space Filtering

Nikolaus Binder and Alexander Keller

Solving the visibility problem

Rasterization

	_							_	_
•	•	٠	•	٠	٠	•	٠	٠	•
٠	•	٠	۰		٠	•	٠	•	۰
۰	•	٠	۰	٠	٠	۰	٠	٠	۰
•	٠	٠	0	٠	٠	0	٠	٠	0
۰	•	٠	۰	٠	٠	0	٠	•	•
۰	•	٠	٠	٠	٠	0	٠	٠	0
0	٠		0	٠	٠	0	٠	٠	0

Solving the visibility problem

Rasterization . ۰ ٠

Solving the visibility problem

Rasterization . 17 clipping

Solving the visibility problem

Rasterization ۰ ٠ ۰ . 11 clipping Z-buffer

Solving the visibility problem

Rasterization 1 clipping Z-buffer

Solving the visibility problem

Solving the visibility problem

Solving the visibility problem

Path tracing on a budget

Sharing instead of splitting

filtering beyond screen space

- filtering beyond screen space
- algorithm

- filtering beyond screen space
- algorithm
 - 1. generate paths, select and store vertices

- filtering beyond screen space
- algorithm
 - 1. generate paths, select and store vertices
- 2. average contributions with similar vertex descriptors

- filtering beyond screen space
- algorithm
 - 1. generate paths, select and store vertices
 - 2. average contributions with similar vertex descriptors
- 3. use averaged contributions

- filtering beyond screen space
- algorithm
 - 1. generate paths, select and store vertices
 - 2. average contributions with similar vertex descriptors
- 3. use averaged contributions

- filtering beyond screen space
- algorithm
 - 1. generate paths, select and store vertices
 - 2. average contributions with similar vertex descriptors
- 3. use averaged contributions

Bottleneck: Calculating averages

include many "close by" contributions in average

Bottleneck: Calculating averages

- include many "close by" contributions in average
 - efficient culling by range search

Bottleneck: Calculating averages

- include many "close by" contributions in average
 - efficient culling by range search
 - but still have to iterate over all of them

Bottleneck: Calculating averages

- include many "close by" contributions in average
 - efficient culling by range search
 - but still have to iterate over all of them
 - and every vertex needs to do this individually

Massively Parallel Path Space Filtering Principle

input

Massively Parallel Path Space Filtering Principle

input

local averaging

Massively Parallel Path Space Filtering Principle

input

local averaging

average per cell

- instead of calculating one average per vertex, calculate one average per cell
 - cell identified by quantizing a descriptor $(x_i,...)$
 - proximity defined by equality after quantization instead of distance
 - worst case complexity $\mathcal{O}(N)$ instead of $\mathcal{O}(N^2)$

Resolving quantization artifacts

•

input

average per cell

Resolving quantization artifacts

input

average per cell

Resolving quantization artifacts

input

average per cell

with jittering

jittering descriptor (x_i, ...) on store and look up

Resolving quantization artifacts

input

average per cell

- jittering descriptor (x_i, ...) on store and look up
 - hides quantization artifacts

Resolving quantization artifacts

input

average per cell

- jittering descriptor (x_i, ...) on store and look up
 - hides quantization artifacts
 - resulting uniform noise amenable to (existing) post filtering

Resolving quantization artifacts

input

average per cell

- jittering descriptor (x_i, ...) on store and look up
 - hides quantization artifacts
 - resulting uniform noise amenable to (existing) post filtering
- amounts to stochastic evaluation of interpolation

Hashing instead of searching

descriptors for selected vertices include

world space location x

Hashing instead of searching

descriptors for selected vertices include

world space location x and optionally normal n,

Hashing instead of searching

descriptors for selected vertices include

world space location x and optionally normal n, in

incident angle ω ,

Hashing instead of searching

descriptors for selected vertices include

Storing and looking up data with quantized descriptors

fast updates, no pre-processing

Storing and looking up data with quantized descriptors

- fast updates, no pre-processing
- access in constant time

Storing and looking up data with quantized descriptors

- fast updates, no pre-processing
- access in constant time
 - requires injective mapping $(x, n, ...) \mapsto [0, M)$

Storing and looking up data with quantized descriptors

- fast updates, no pre-processing
- access in constant time
 - requires injective mapping $(x, n, ...) \mapsto [0, M)$
- \Rightarrow hash map

Fast hash map

trade a larger table size for faster access

Fast hash map

- trade a larger table size for faster access
- simple, fast hash functions

Fast hash map

- trade a larger table size for faster access
- simple, fast hash functions
- Inear probing for collision resolution

Fast hash map

- trade a larger table size for faster access
- simple, fast hash functions
- Inear probing for collision resolution
- use a second hash of the descriptor instead of storing full keys
 - may fail, but is very very unlikely

Linear instead of quadratic

finding the hash table location i

 $i \leftarrow \mathsf{hash}(\tilde{x}, \ldots) \$ % table_size

Linear instead of quadratic

finding the hash table location i

Linear instead of quadratic

finding the hash table location i

$$\begin{split} l' &\leftarrow \mathsf{level_of_detail}(|p_{\mathsf{cam}} - x'|) \\ \tilde{x} &\leftarrow \left\lfloor \frac{x'}{\mathit{scale}\cdot 2''} \right\rfloor \\ i &\leftarrow \mathsf{hash}(\tilde{x}, \ldots) \ \% \ \mathsf{table_size} \\ v &\leftarrow \mathsf{hash}(\tilde{x}, n, \ldots) \end{split}$$

Linear instead of quadratic

- finding the hash table location i
 - $$\begin{split} & l \leftarrow \mathsf{level_of_detail}(|p_{\mathsf{cam}} x|) \\ & x' \leftarrow x + \mathsf{jitter}(n) \cdot \mathit{scale} \cdot 2^l \\ & l' \leftarrow \mathsf{level_of_detail}(|p_{\mathsf{cam}} x'|) \\ & \tilde{x} \leftarrow \left\lfloor \frac{x'}{\mathit{scale} \cdot 2^l} \right\rfloor \\ & i \leftarrow \mathsf{hash}(\tilde{x}, \ldots) \ \% \ \mathsf{table_size} \\ & v \leftarrow \mathsf{hash}(\tilde{x}, n, \ldots) \end{split}$$

Linear instead of quadratic

- finding the hash table location i
 - $$\begin{split} & l \leftarrow \mathsf{level_of_detail}(|p_{cam} x|) \\ & x' \leftarrow x + \mathsf{jitter}(n) \cdot \mathit{scale} \cdot 2^l \\ & l' \leftarrow \mathsf{level_of_detail}(|p_{cam} x'|) \\ & \tilde{x} \leftarrow \left\lfloor \frac{x'}{\mathit{scale} \cdot 2^{l'}} \right\rfloor \\ & i \leftarrow \mathsf{hash}(\tilde{x}, \ldots) \ \% \ \mathsf{table_size} \\ & v \leftarrow \mathsf{hash}(\tilde{x}, n, \ldots) \end{split}$$

Linear instead of quadratic

finding the hash table location i

$$\begin{split} l' &\leftarrow \mathsf{level_of_detail}(|p_{\mathsf{cam}} - x'|) \\ \tilde{x} &\leftarrow \left\lfloor \frac{x'}{\mathit{scale}\cdot 2'} \right\rfloor \\ i &\leftarrow \mathsf{hash}(\tilde{x}, \ldots) \ \% \ \mathsf{table_size} \\ v &\leftarrow \mathsf{hash}(\tilde{x}, n, \ldots) \end{split}$$

Linear instead of quadratic

- finding the hash table location i
 - $$\begin{split} & l \leftarrow \mathsf{level_of_detail}(|p_{\mathsf{cam}} x|) \\ & x' \leftarrow x + \mathsf{jitter}(n) \cdot \mathit{scale} \cdot 2^l \\ & l' \leftarrow \mathsf{level_of_detail}(|p_{\mathsf{cam}} x'|) \\ & \tilde{x} \leftarrow \left\lfloor \frac{x'}{\mathit{scale} \cdot 2^{l'}} \right\rfloor \\ & i \leftarrow \mathsf{hash}(\tilde{x}, \ldots) \ \% \ \mathsf{table_size} \\ & v \leftarrow \mathsf{hash}(\tilde{x}, n, \ldots) \end{split}$$

for both averaging and querying

jittering before quantization hides discretization artifacts in uniform noise

Massively parallel path space filtering at second bounce (2ms@HD)

Temporal filtering vs. temporal accumulation

- exponential moving average $\tilde{f} = (1 \alpha) f_{old} + \alpha f_{new}$ with constant α
 - will not converge over time
 - lags and blurs over time
 - in fact low pass filter

Temporal filtering vs. temporal accumulation

- cumulative moving average $\tilde{f} = (1 \frac{1}{N})f_{old} + \frac{1}{N}f_{new}$
 - converges over time
 - vanishing adaptivity with increasing number of samples
 - equivalent to exponential average with $\alpha = \frac{1}{N}$

Temporal filtering vs. temporal accumulation

- exponential moving average $\tilde{f} = (1 \alpha) f_{old} + \alpha f_{new}$ with adaptive α
 - temporal gradients to determine
 - $\cdot \ \alpha = \frac{1}{N}$ if no temporal changes are detected
 - $\cdot \alpha \in (\frac{1}{N}, 1]$ depending on the amount of change

Massively parallel path space filtering at first bounce (1ms@HD)

Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$

Goal: maximize reward

state transition yields reward

 $r_{t+1}(a_t \mid s_t) \in \mathbb{R}$

- learn a policy π_t
 - to select an action $a_t \in \mathbb{A}(s_t)$
 - given the current state $s_t \in \mathbb{S}$

Maximize reward by learning importance sampling

Maximize reward by learning importance sampling

Maximize reward by learning importance sampling

$$\begin{array}{lll} L(x,\omega) & = & L_{e}(x,\omega) & + \int_{\mathscr{S}^{2}_{+}(x)} & f_{s}(\omega_{i},x,\omega)\cos\theta_{i} & L(h(x,\omega_{i}),-\omega_{i}) & d\omega_{i} \\ Q'(s,a) & = (1-\alpha)Q(s,a) + \alpha \left(\begin{array}{cc} r(s,a) & + \gamma \int_{\mathscr{A}} & \pi(s',a') & Q(s',a') & da' \end{array} \right) \end{array}$$

Maximize reward by learning importance sampling

Maximize reward by learning importance sampling

Maximize reward by learning importance sampling

structural equivalence of integral equation and Q-learning

- graphics example: learning the incident radiance

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\boldsymbol{\theta}}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\boldsymbol{s}}(\omega_i,y,-\omega)\cos\theta_i Q(y,\omega_i)d\omega_i \right)$$

Maximize reward by learning importance sampling

structural equivalence of integral equation and Q-learning

- graphics example: learning the incident radiance

$$Q'(x,\omega) = (1-\alpha)Q(x,\omega) + \alpha \left(L_{\theta}(y,-\omega) + \int_{\mathscr{S}^2_+(y)} f_{\mathfrak{s}}(\omega_i,y,-\omega)\cos\theta_i Q(y,\omega_i)d\omega_i \right)$$

to be used as a policy for selecting an action ω in state x to reach the next state $y := h(x, \omega)$

- the learning rate α is the only parameter left

Technical Note: Q-Learning

approximate solution Q stored on discretized hemispheres across scene surface

2048 paths traced with BRDF importance sampling in a scene with challenging visibility

Path tracing with online reinforcement learning at the same number of paths

Metropolis light transport at the same number of paths

Principle

radiance L is light sources Le plus transported radiance T_fL

 $L = L_e + T_f L$

Principle

radiance L is light sources Le plus transported radiance T_fL

 $L = L_e + T_f L$

• use an approximation, e.g. discretized hemispheres at selected locations in scene to store

 $L_c = L_e + T_f L_c$

Principle

radiance L is light sources Le plus transported radiance T_fL

 $L = L_e + T_f L$

• use an approximation, e.g. discretized hemispheres at selected locations in scene to store

 $L_c = L_e + T_f L_c$

for guiding importance sampling towards where the radiance comes from

Principle

radiance L is light sources Le plus transported radiance T_fL

 $L = L_e + T_f L$

• use an approximation, e.g. discretized hemispheres at selected locations in scene to store

 $L_c = L_e + T_f L_c$

for guiding importance sampling towards where the radiance comes from

learn the approximation by

 $L_c' = (1-\alpha)L_c + \alpha \left(L_e + T_f L_c\right)$

Principle

radiance L is light sources Le plus transported radiance T_fL

 $L = L_e + T_f L$

• use an approximation, e.g. discretized hemispheres at selected locations in scene to store

 $L_c = L_e + T_f L_c$

for guiding importance sampling towards where the radiance comes from

learn the approximation by

$$L'_{c} = (1-\alpha)L_{c} + \alpha \left(L_{e} + T_{f}L_{c}\right) = (1-\alpha)L_{c} + \alpha \left(L_{e} + \sum f_{r,i}L_{c,i}\right)$$

using the current approximation instead of tracing single paths at higher variance

Principle

- shorter expected path length
- dramatically reduced number of paths with zero contribution

Principle

- shorter expected path length
- dramatically reduced number of paths with zero contribution
- challenges
 - product importance sampling proportional to the integrand, i.e. policy $\gamma \cdot \pi$ times value Q
 - efficient representation of value Q

> S9900 - Irradiance Fields: RTX Diffuse Global Illumination for Local and Cloud Graphics

Learning light transport the reinforced way

Machine learning and integral equations

Neural importance sampling

Photon-Guided Shadow Rays

Photon-Guided Shadow Rays

Photon maps similar to massively parallel path space filtering

- incorporate knowledge about visibility to improve efficiency
- control the number of shadow rays
- Iook up photons around a shading point and trace shadow rays towards their origin
 - photon origins used as virtual point light sources (VPL)

Light hierarchy

Photon-guided shadow rays (PGSR)

PGSR + single pass screen space PSF

Point Clouds

Stochastically hashed particle maps

- on hash collision keep particle with the smallest random number and increment cell counter
- issue of wide bit-width memory access on GPU
- hash table size vs. quantization vs. uniformity of hash function large hash table size: less collisions, totally divergent memory access small hash table size: more collisions, automatically thinning particles in dense regions

Generic material model to reduce divergence one BSDF model fed by parameter point cloud

Ray Traced Global Illumination for Games

Building blocks

- massively parallel path space filtering
- efficient light transport simulation by reinforcement learning
- photon-guided shadow rays

> S9900 - Irradiance Fields: RTX Diffuse Global Illumination for Local and Cloud Graphics

Gradient estimation for real-time adaptive temporal filtering

Massively parallel path space filtering

