
Ray-Traced Global Illumination for Games:
Massively Parallel Path Space Filtering
Nikolaus Binder and Alexander Keller

Principles of Image Synthesis
Solving the visibility problem

Rasterization

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

2

Principles of Image Synthesis
Solving the visibility problem

Rasterization

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

2

Principles of Image Synthesis
Solving the visibility problem

Rasterization

clipping

dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

2

Principles of Image Synthesis
Solving the visibility problem

Rasterization

clipping

dicing

Z-buffer

kind of Z-Buffer

shadow maps shadow maps

2

Principles of Image Synthesis
Solving the visibility problem

Rasterization

clipping

dicing

Z-buffer

kind of Z-Buffer

shadow maps shadow maps

2

Principles of Image Synthesis
Solving the visibility problem

Rasterization Reyes

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

2

Principles of Image Synthesis
Solving the visibility problem

Rasterization Reyes

clipping dicing

Z-buffer kind of Z-Buffer

shadow maps shadow maps

2

Principles of Image Synthesis
Solving the visibility problem

Rasterization Reyes Ray Tracing

P

L

Camera

clipping dicing acceleration data structure

Z-buffer kind of Z-Buffer tracing rays with arbitrary origins

shadow maps shadow maps shadow rays

2

Path tracing on a budget

Massively Parallel Path Space Filtering

Massively Parallel Path Space Filtering
Sharing instead of splitting

� filtering beyond screen space

� algorithm

1. generate paths,

select and store vertices

2. average contributions

with similar vertex descriptors

3. use averaged contributions

5

Massively Parallel Path Space Filtering
Sharing instead of splitting

� filtering beyond screen space

� algorithm

1. generate paths,

select and store vertices

2. average contributions

with similar vertex descriptors

3. use averaged contributions

5

Massively Parallel Path Space Filtering
Sharing instead of splitting

� filtering beyond screen space

� algorithm

1. generate paths,

select and store vertices

2. average contributions

with similar vertex descriptors

3. use averaged contributions

5

Massively Parallel Path Space Filtering
Sharing instead of splitting

� filtering beyond screen space

� algorithm

1. generate paths,

select and store vertices

2. average contributions

with similar vertex descriptors

3. use averaged contributions

5

Massively Parallel Path Space Filtering
Sharing instead of splitting

� filtering beyond screen space

� algorithm

1. generate paths,

select and store vertices

2. average contributions

with similar vertex descriptors

3. use averaged contributions

5

Massively Parallel Path Space Filtering
Sharing instead of splitting

� filtering beyond screen space

� algorithm

1. generate paths,

select and store vertices

2. average contributions

with similar vertex descriptors

3. use averaged contributions

5

Massively Parallel Path Space Filtering
Sharing instead of splitting

� filtering beyond screen space

� algorithm

1. generate paths,

select and store vertices

2. average contributions

with similar vertex descriptors

3. use averaged contributions

5

Massively Parallel Path Space Filtering
Bottleneck: Calculating averages

� include many “close by” contributions in average

– efficient culling by range search

– but still have to iterate over all of them

– and every vertex needs to do this individually

6

Massively Parallel Path Space Filtering
Bottleneck: Calculating averages

� include many “close by” contributions in average
– efficient culling by range search

– but still have to iterate over all of them

– and every vertex needs to do this individually

6

Massively Parallel Path Space Filtering
Bottleneck: Calculating averages

� include many “close by” contributions in average
– efficient culling by range search

– but still have to iterate over all of them

– and every vertex needs to do this individually

6

Massively Parallel Path Space Filtering
Bottleneck: Calculating averages

� include many “close by” contributions in average
– efficient culling by range search

– but still have to iterate over all of them

– and every vertex needs to do this individually

6

Massively Parallel Path Space Filtering
Principle

input

� instead of calculating one average per vertex, calculate one average per cell
– cell identified by quantizing a descriptor (xi , . . .)

– proximity defined by equality after quantization instead of distance

– worst case complexity O(N) instead of O(N2)

7

Massively Parallel Path Space Filtering
Principle

input local averaging

� instead of calculating one average per vertex, calculate one average per cell
– cell identified by quantizing a descriptor (xi , . . .)

– proximity defined by equality after quantization instead of distance

– worst case complexity O(N) instead of O(N2)

7

Massively Parallel Path Space Filtering
Principle

input local averaging average per cell

� instead of calculating one average per vertex, calculate one average per cell
– cell identified by quantizing a descriptor (xi , . . .)

– proximity defined by equality after quantization instead of distance

– worst case complexity O(N) instead of O(N2)

7

Massively Parallel Path Space Filtering
Resolving quantization artifacts

input average per cell

8

Massively Parallel Path Space Filtering
Resolving quantization artifacts

input average per cell with jittering

8

Massively Parallel Path Space Filtering
Resolving quantization artifacts

input average per cell with jittering

� jittering descriptor (xi , ...) on store and look up

– hides quantization artifacts

– resulting uniform noise amenable to (existing) post filtering

� amounts to stochastic evaluation of interpolation

9

Massively Parallel Path Space Filtering
Resolving quantization artifacts

input average per cell with jittering

� jittering descriptor (xi , ...) on store and look up
– hides quantization artifacts

– resulting uniform noise amenable to (existing) post filtering

� amounts to stochastic evaluation of interpolation

9

Massively Parallel Path Space Filtering
Resolving quantization artifacts

input average per cell with jittering

� jittering descriptor (xi , ...) on store and look up
– hides quantization artifacts

– resulting uniform noise amenable to (existing) post filtering

� amounts to stochastic evaluation of interpolation

9

Massively Parallel Path Space Filtering
Resolving quantization artifacts

input average per cell with jittering

� jittering descriptor (xi , ...) on store and look up
– hides quantization artifacts

– resulting uniform noise amenable to (existing) post filtering

� amounts to stochastic evaluation of interpolation

9

Massively Parallel Path Space Filtering
Hashing instead of searching

� descriptors for selected vertices include

world space location x

10

Massively Parallel Path Space Filtering
Hashing instead of searching

� descriptors for selected vertices include

world space location x and optionally normal n,

10

Massively Parallel Path Space Filtering
Hashing instead of searching

� descriptors for selected vertices include

world space location x and optionally normal n, incident angle ω,

10

Massively Parallel Path Space Filtering
Hashing instead of searching

� descriptors for selected vertices include

world space location x and optionally normal n, incident angle ω, and BRDF layer

10

Massively Parallel Path Space Filtering
Storing and looking up data with quantized descriptors

� fast updates, no pre-processing

� access in constant time

– requires injective mapping (x ,n, ...) 7→ [0,M)

11

Massively Parallel Path Space Filtering
Storing and looking up data with quantized descriptors

� fast updates, no pre-processing

� access in constant time

– requires injective mapping (x ,n, ...) 7→ [0,M)

11

Massively Parallel Path Space Filtering
Storing and looking up data with quantized descriptors

� fast updates, no pre-processing

� access in constant time
– requires injective mapping (x ,n, ...) 7→ [0,M)

11

Massively Parallel Path Space Filtering
Storing and looking up data with quantized descriptors

� fast updates, no pre-processing

� access in constant time
– requires injective mapping (x ,n, ...) 7→ [0,M)

⇒ hash map

11

Massively Parallel Path Space Filtering
Fast hash map

� trade a larger table size for faster access

� simple, fast hash functions

� linear probing for collision resolution

� use a second hash of the descriptor instead of storing full keys
– may fail, but is very very unlikely

12

Massively Parallel Path Space Filtering
Fast hash map

� trade a larger table size for faster access

� simple, fast hash functions

� linear probing for collision resolution

� use a second hash of the descriptor instead of storing full keys
– may fail, but is very very unlikely

12

Massively Parallel Path Space Filtering
Fast hash map

� trade a larger table size for faster access

� simple, fast hash functions

� linear probing for collision resolution

� use a second hash of the descriptor instead of storing full keys
– may fail, but is very very unlikely

12

Massively Parallel Path Space Filtering
Fast hash map

� trade a larger table size for faster access

� simple, fast hash functions

� linear probing for collision resolution

� use a second hash of the descriptor instead of storing full keys
– may fail, but is very very unlikely

12

Massively Parallel Path Space Filtering
Linear instead of quadratic

� finding the hash table location i

l ← level of detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level of detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋

i ← hash(x̃ , . . .) % table size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise

13

Massively Parallel Path Space Filtering
Linear instead of quadratic

� finding the hash table location i

l ← level of detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level of detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋

i ← hash(x̃ , . . .) % table size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise

13

Massively Parallel Path Space Filtering
Linear instead of quadratic

� finding the hash table location i

l ← level of detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level of detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋
i ← hash(x̃ , . . .) % table size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise

13

Massively Parallel Path Space Filtering
Linear instead of quadratic

� finding the hash table location i

l ← level of detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level of detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋
i ← hash(x̃ , . . .) % table size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise

13

Massively Parallel Path Space Filtering
Linear instead of quadratic

� finding the hash table location i

l ← level of detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level of detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋
i ← hash(x̃ , . . .) % table size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise

13

Massively Parallel Path Space Filtering
Linear instead of quadratic

� finding the hash table location i

l ← level of detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level of detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋
i ← hash(x̃ , . . .) % table size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise

13

Massively Parallel Path Space Filtering
Linear instead of quadratic

� finding the hash table location i

l ← level of detail(|pcam−x |)
x ′← x+ jitter(n) · scale ·2l

l ′← level of detail(|pcam−x ′|)
x̃ ←

⌊
x ′

scale·2l ′

⌋
i ← hash(x̃ , . . .) % table size

v ← hash2(x̃ ,n, . . .)

for both averaging and querying

� jittering before quantization hides discretization artifacts in uniform noise

13

Massively parallel path space filtering at second bounce (2ms@HD)

Massively Parallel Path Space Filtering
Temporal filtering vs. temporal accumulation

� exponential moving average f̃ = (1−α)fold +αfnew with constant α

– will not converge over time

– lags and blurs over time

– in fact low pass filter

15

Massively Parallel Path Space Filtering
Temporal filtering vs. temporal accumulation

� cumulative moving average f̃ = (1− 1
N)fold + 1

N fnew

– converges over time

– vanishing adaptivity with increasing number of samples

– equivalent to exponential average with α = 1
N

16

Massively Parallel Path Space Filtering
Temporal filtering vs. temporal accumulation

� exponential moving average f̃ = (1−α)fold +αfnew with adaptive α

– temporal gradients to determine
� α = 1

N if no temporal changes are detected

� α ∈ (1
N ,1] depending on the amount of change

17

Massively parallel path space filtering at first bounce (1ms@HD)

Reinforcement Learning

Reinforcement Learning
Goal: maximize reward

� state transition yields reward

rt+1(at | st) ∈ R

� learn a policy πt

– to select an action at ∈ A(st)

– given the current state st ∈ S

Agent st

Environment

atst+1 rt+1(at | st)

20

Reinforcement Learning
Goal: maximize reward

� state transition yields reward

rt+1(at | st) ∈ R

� learn a policy πt

– to select an action at ∈ A(st)

– given the current state st ∈ S

Agent st

Environment

atst+1 rt+1(at | st)

20

Reinforcement Learning
Maximize reward by learning importance sampling

� structural equivalence of integral equation and Q-learning

L(x ,ω) = Le(x ,ω) +
∫
S 2

+(x)
fs(ωi ,x ,ω)cosθi L(h(x ,ωi),−ωi) dωi

Q′(s,a) = (1−α)Q(s,a)+α

(
r(s,a) + γ

∫
A π(s′,a′) Q(s′,a′) da′

)

� graphics example: learning the incident radiance

Q′(x ,ω) = (1−α)Q(x ,ω)+α

(
Le(y ,−ω)+

∫
S 2

+(y)
fs(ωi ,y ,−ω)cosθiQ(y ,ωi)dωi

)

21

Reinforcement Learning
Maximize reward by learning importance sampling

� structural equivalence of integral equation and Q-learning

L(x ,ω) = Le(x ,ω) +
∫
S 2

+(x)
fs(ωi ,x ,ω)cosθi L(h(x ,ωi),−ωi) dωi

Q′(s,a) = (1−α)Q(s,a)+α

(
r(s,a) + γ

∫
A π(s′,a′) Q(s′,a′) da′

)

� graphics example: learning the incident radiance

Q′(x ,ω) = (1−α)Q(x ,ω)+α

(
Le(y ,−ω)+

∫
S 2

+(y)
fs(ωi ,y ,−ω)cosθiQ(y ,ωi)dωi

)

21

Reinforcement Learning
Maximize reward by learning importance sampling

� structural equivalence of integral equation and Q-learning

L(x ,ω) = Le(x ,ω) +
∫
S 2

+(x)
fs(ωi ,x ,ω)cosθi L(h(x ,ωi),−ωi) dωi

Q′(s,a) = (1−α)Q(s,a)+α

(
r(s,a) + γ

∫
A π(s′,a′) Q(s′,a′) da′

)

� graphics example: learning the incident radiance

Q′(x ,ω) = (1−α)Q(x ,ω)+α

(
Le(y ,−ω)+

∫
S 2

+(y)
fs(ωi ,y ,−ω)cosθiQ(y ,ωi)dωi

)

21

Reinforcement Learning
Maximize reward by learning importance sampling

� structural equivalence of integral equation and Q-learning

L(x ,ω) = Le(x ,ω) +
∫
S 2

+(x)
fs(ωi ,x ,ω)cosθi L(h(x ,ωi),−ωi) dωi

Q′(s,a) = (1−α)Q(s,a)+α

(
r(s,a) + γ

∫
A π(s′,a′) Q(s′,a′) da′

)

� graphics example: learning the incident radiance

Q′(x ,ω) = (1−α)Q(x ,ω)+α

(
Le(y ,−ω)+

∫
S 2

+(y)
fs(ωi ,y ,−ω)cosθiQ(y ,ωi)dωi

)

21

Reinforcement Learning
Maximize reward by learning importance sampling

� structural equivalence of integral equation and Q-learning

L(x ,ω) = Le(x ,ω) +
∫
S 2

+(x)
fs(ωi ,x ,ω)cosθi L(h(x ,ωi),−ωi) dωi

Q′(s,a) = (1−α)Q(s,a)+α

(
r(s,a) + γ

∫
A π(s′,a′) Q(s′,a′) da′

)

� graphics example: learning the incident radiance

Q′(x ,ω) = (1−α)Q(x ,ω)+α

(
Le(y ,−ω)+

∫
S 2

+(y)
fs(ωi ,y ,−ω)cosθiQ(y ,ωi)dωi

)

21

Reinforcement Learning
Maximize reward by learning importance sampling

� structural equivalence of integral equation and Q-learning

L(x ,ω) = Le(x ,ω) +
∫
S 2

+(x)
fs(ωi ,x ,ω)cosθi L(h(x ,ωi),−ωi) dωi

Q′(s,a) = (1−α)Q(s,a)+α

(
r(s,a) + γ

∫
A π(s′,a′) Q(s′,a′) da′

)
� graphics example: learning the incident radiance

Q′(x ,ω) = (1−α)Q(x ,ω)+α

(
Le(y ,−ω)+

∫
S 2

+(y)
fs(ωi ,y ,−ω)cosθiQ(y ,ωi)dωi

)

21

Reinforcement Learning
Maximize reward by learning importance sampling

� structural equivalence of integral equation and Q-learning

L(x ,ω) = Le(x ,ω) +
∫
S 2

+(x)
fs(ωi ,x ,ω)cosθi L(h(x ,ωi),−ωi) dωi

Q′(s,a) = (1−α)Q(s,a)+α

(
r(s,a) + γ

∫
A π(s′,a′) Q(s′,a′) da′

)
� graphics example: learning the incident radiance

Q′(x ,ω) = (1−α)Q(x ,ω)+α

(
Le(y ,−ω)+

∫
S 2

+(y)
fs(ωi ,y ,−ω)cosθiQ(y ,ωi)dωi

)
to be used as a policy for selecting an action ω in state x to reach the next state y := h(x ,ω)

– the learning rate α is the only parameter left

I Technical Note: Q-Learning

21

http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf

approximate solution Q stored on discretized hemispheres across scene surface

2048 paths traced with BRDF importance sampling in a scene with challenging visibility

Path tracing with online reinforcement learning at the same number of paths

Metropolis light transport at the same number of paths

Reinforcement Learning
Principle

� radiance L is light sources Le plus transported radiance Tf L

L = Le +Tf L

� use an approximation, e.g. discretized hemispheres at selected locations in scene to store

Lc = Le +Tf Lc

for guiding importance sampling towards where the radiance comes from

� learn the approximation by

L′c = (1−α)Lc +α (Le +Tf Lc) = (1−α)Lc +α
(
Le +∑ fr ,iLc,i

)
using the current approximation instead of tracing single paths at higher variance

26

Reinforcement Learning
Principle

� radiance L is light sources Le plus transported radiance Tf L

L = Le +Tf L

� use an approximation, e.g. discretized hemispheres at selected locations in scene to store

Lc = Le +Tf Lc

for guiding importance sampling towards where the radiance comes from

� learn the approximation by

L′c = (1−α)Lc +α (Le +Tf Lc) = (1−α)Lc +α
(
Le +∑ fr ,iLc,i

)
using the current approximation instead of tracing single paths at higher variance

26

Reinforcement Learning
Principle

� radiance L is light sources Le plus transported radiance Tf L

L = Le +Tf L

� use an approximation, e.g. discretized hemispheres at selected locations in scene to store

Lc = Le +Tf Lc

for guiding importance sampling towards where the radiance comes from

� learn the approximation by

L′c = (1−α)Lc +α (Le +Tf Lc) = (1−α)Lc +α
(
Le +∑ fr ,iLc,i

)
using the current approximation instead of tracing single paths at higher variance

26

Reinforcement Learning
Principle

� radiance L is light sources Le plus transported radiance Tf L

L = Le +Tf L

� use an approximation, e.g. discretized hemispheres at selected locations in scene to store

Lc = Le +Tf Lc

for guiding importance sampling towards where the radiance comes from

� learn the approximation by

L′c = (1−α)Lc +α (Le +Tf Lc)

= (1−α)Lc +α
(
Le +∑ fr ,iLc,i

)
using the current approximation instead of tracing single paths at higher variance

26

Reinforcement Learning
Principle

� radiance L is light sources Le plus transported radiance Tf L

L = Le +Tf L

� use an approximation, e.g. discretized hemispheres at selected locations in scene to store

Lc = Le +Tf Lc

for guiding importance sampling towards where the radiance comes from

� learn the approximation by

L′c = (1−α)Lc +α (Le +Tf Lc) = (1−α)Lc +α
(
Le +∑ fr ,iLc,i

)
using the current approximation instead of tracing single paths at higher variance

26

Reinforcement Learning
Principle

� shorter expected path length

� dramatically reduced number of paths with zero contribution

� challenges
– product importance sampling proportional to the integrand, i.e. policy γ ·π times value Q

– efficient representation of value Q

I S9900 - Irradiance Fields: RTX Diffuse Global Illumination for Local and Cloud Graphics

I Learning light transport the reinforced way

I Machine learning and integral equations

I Neural importance sampling

27

https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=277153
https://arxiv.org/abs/1701.07403
https://arxiv.org/abs/1712.06115
https://tom94.net/data/publications/mueller18neural/mueller18neural-v2.pdf

Reinforcement Learning
Principle

� shorter expected path length

� dramatically reduced number of paths with zero contribution

� challenges
– product importance sampling proportional to the integrand, i.e. policy γ ·π times value Q

– efficient representation of value Q

I S9900 - Irradiance Fields: RTX Diffuse Global Illumination for Local and Cloud Graphics

I Learning light transport the reinforced way

I Machine learning and integral equations

I Neural importance sampling

27

https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=277153
https://arxiv.org/abs/1701.07403
https://arxiv.org/abs/1712.06115
https://tom94.net/data/publications/mueller18neural/mueller18neural-v2.pdf

Photon-Guided Shadow Rays

Photon-Guided Shadow Rays
Photon maps similar to massively parallel path space filtering

� incorporate knowledge about visibility to improve efficiency

� control the number of shadow rays

� look up photons around a shading point and trace shadow rays towards their origin
– photon origins used as virtual point light sources (VPL)

29

Light hierarchy

Photon-guided shadow rays (PGSR)

PGSR + single pass screen space PSF

Point Clouds
Stochastically hashed particle maps

� on hash collision keep particle with the smallest random number and increment cell counter

� issue of wide bit-width memory access on GPU

� hash table size vs. quantization vs. uniformity of hash function

large hash table size: less collisions, totally divergent memory access

small hash table size: more collisions, automatically thinning particles in dense regions

33

Generic material model to reduce divergence

one BSDF model fed by parameter point cloud

Ray Traced Global Illumination for Games
Building blocks

� massively parallel path space filtering

� efficient light transport simulation by reinforcement learning

� photon-guided shadow rays

I S9900 - Irradiance Fields: RTX Diffuse Global Illumination for Local and Cloud Graphics

I Gradient estimation for real-time adaptive temporal filtering

I Massively parallel path space filtering

35

https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=277153&tclass=popup
http://cg.ivd.kit.edu/atf.php
https://arxiv.org/abs/1902.05942

	Principles of Image Synthesis
	Solving the visibility problem

	Massively Parallel Path Space Filtering
	Sharing instead of splitting
	Bottleneck: Calculating averages
	Principle
	Resolving quantization artifacts
	Hashing instead of searching
	Storing and looking up data with quantized descriptors
	Fast hash map
	Linear instead of quadratic
	Temporal filtering vs. temporal accumulation

	Reinforcement Learning
	Goal: maximize reward
	Maximize reward by learning importance sampling
	Principle

	Photon-Guided Shadow Rays
	Photon maps similar to massively parallel path space filtering

	Point Clouds
	Stochastically hashed particle maps

	Ray Traced Global Illumination for Games
	Building blocks

