

How AI is Changing the Way To Understand the Earth and Us?

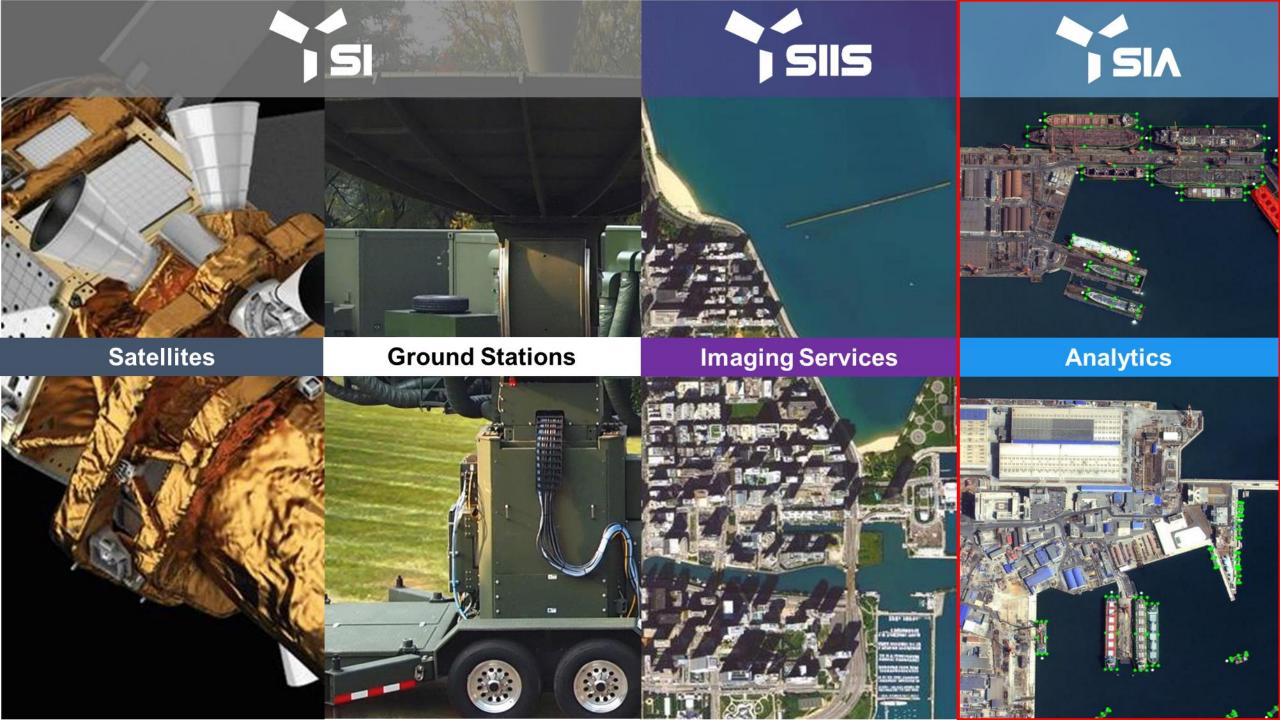
GPU Tech Conference 2019 (S9495)

Taegyun Jeon Founder and CEO SI Analytics

Contents

- Earth Observation with Artificial Intelligence
- Case #1: Object Detection and Classification with TensorRT
- Case #2: Road Extraction (DeepGlobe Challenge)
- Conclusions

Earth Observation



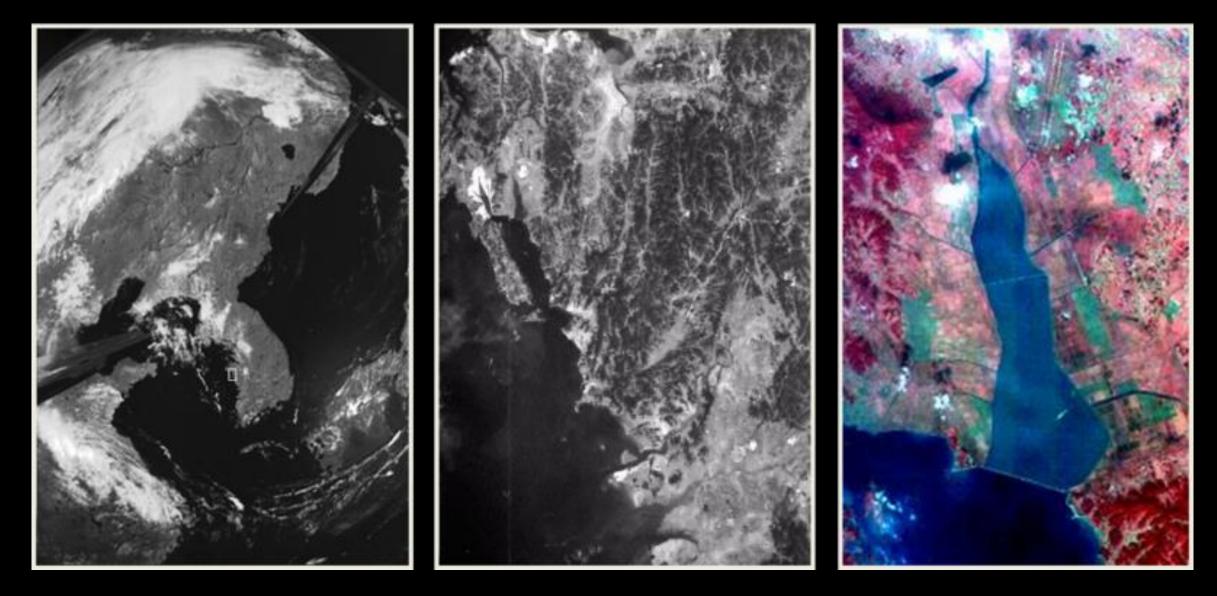
Each Observation

after a water and a first a water and a state of the state

- defense & Intelligence
- infrastructure monitoring
- forecasting weather
- **biodiversity and wildlife trends**
- ✓ land-use change
- ✓ natural disasters
- natural resources
- ✓ agriculture
 - emerging diseases
- mitigating climate change
- ✓ maritime monitoring

KITSAT-1 (1992) GSD: 400m

KITSAT-2 (1993) GSD: 200m



KOMPSAT-3A (2015) GSD: 0,55m

00

1

This image of New York City, taken Nov. 4, 2015, by South Korea's Kompsat-3A satellite, is an example of the products that SI Imaging Services of Korea has begun selling on the market.

2016 – SI Imaging Services – All right reserved. Product features are given as an indication only and subject to change without notice KOMPSAT-3A Images @ KARI – Worldwide Distribution SIIS

Earth Observation with Artificial Intelligence

Traditional EO

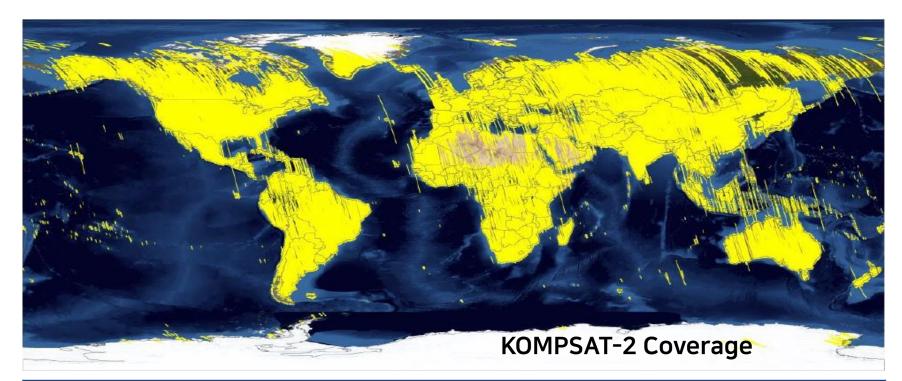
On-demand data

EO with AI

On-demand analysis

ORDERING	Reactive tasking based on single satellites	Reactive tasking based on constellations	
	Data cost is driven by the data source (higher CAPEX system equates to higher data prices); lower-cost systems would imply lower data prices and services development		
PROCESSING	Owned data analysis	Cloud approach + Owned data analysis	
	Manual/automated operations on desktop or internal network	Deep Learning based on Big Data	
DELIVERING	Ad hoc services, ordering through reseller or web-portal tasking	Service subscription basis	
	Reselling network, privileged distributors (government user focused)	Platform deliveries (private sector focused) and reselling network for governments	

Coverage



KOMPSAT Archive	KOMPSAT-2 (EO)	Kompsat-3 (EO)	KOMPSAT-3A (EO)	Kompsat-5 (Sar)
Scenes (Dec 15, 2016)	2,645,022	781,389	80,340	52,245
Data volume (TB)	743 TB	700 TB	59 TB	104 TB
Coverage per day (km ²)	1,700,000	300,000	240,000	Up to 1,000,000

South Korea (100,210 km²)

England (243,610 km²)

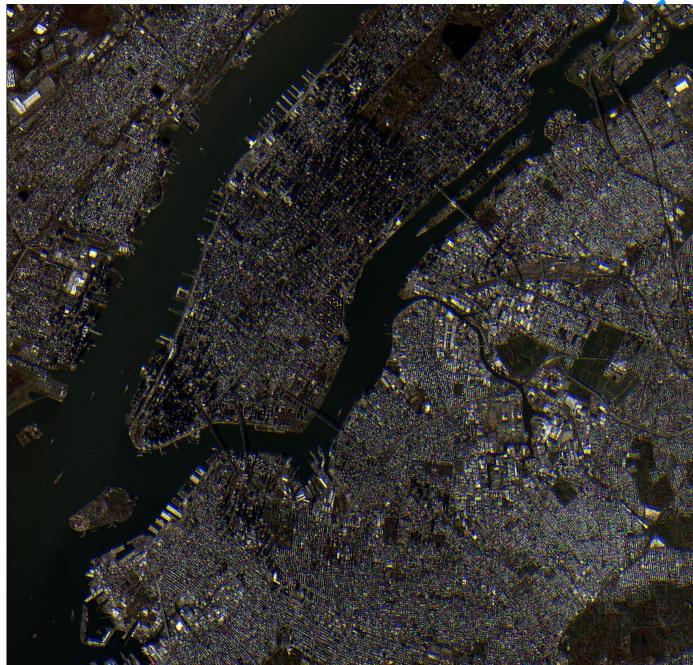
USA (9,834,000 km²)

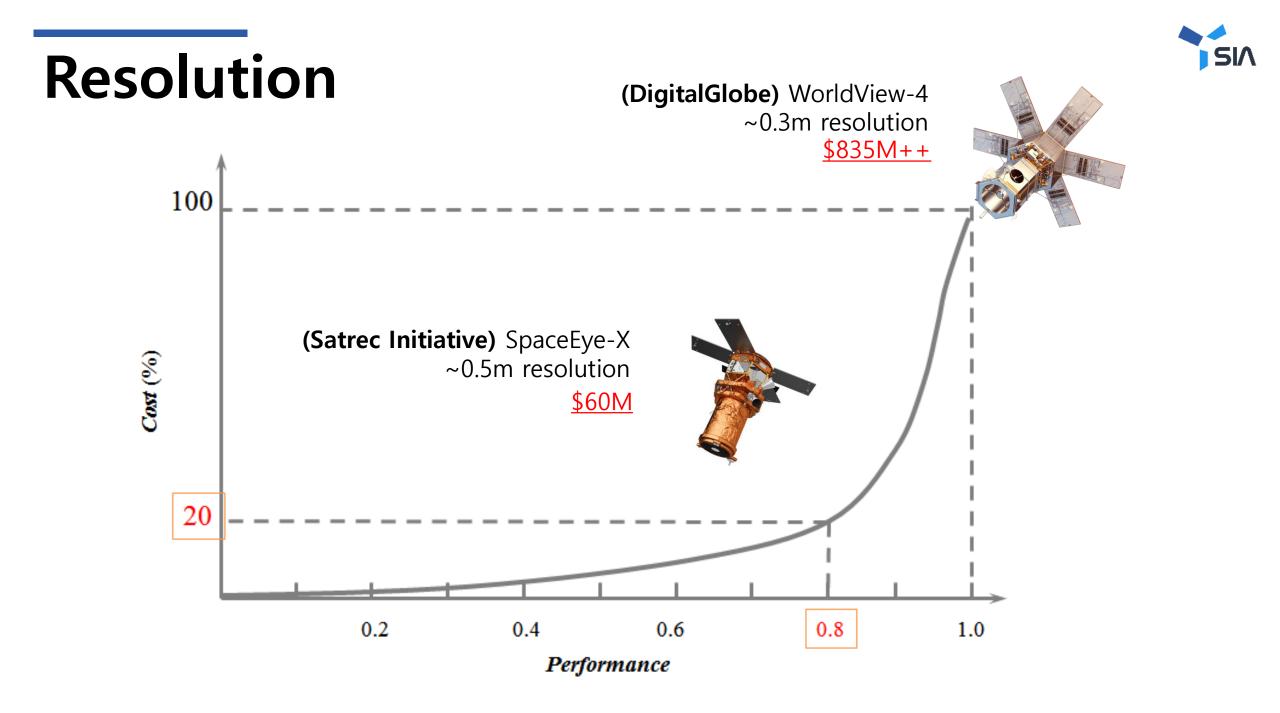
Volume

0.7KB150KB87MBMNISTImageNetSpaceNet(28,28,1)(224,224,3)(3K,3K,8)

2

2.5GB Satellite Scene (25K, 25K, 4)





Reusable rocket and Constellation space program

- ✓ Low launch cost
- ✓ Low manufacturing cost
- ✓ Huge daily data

THE SWARM COMETH

Small, light and cheap satellites could transform Earth observation. How they measure up to their larger brethren:

DOVE

Operator: Planet Labs Number of satellites*: 32 Weight: ~5 kg Instruments: Optical and near-infrared spectral bands Spatial resolution: 3-5 m

SKYSAT

LANDSAT 8 Skybox Imaging NASA N/A 2,071 kg[†] Optical and near-Multiple spectral bands infrared spectral bands 15-100 m[±]

WORLDVIEW-3 DigitalGlobe

N/A 2,800 kg Multiple spectral bands

1 m

0.3-30 m[±]

*When fully operational 1 Without instruments 1 Depending on spectral frequency

24

~100 kg

~1 m

100+ SATELLITE FLEET

7+ PB

OF DATA, & **7+TB ADDED DAILY**

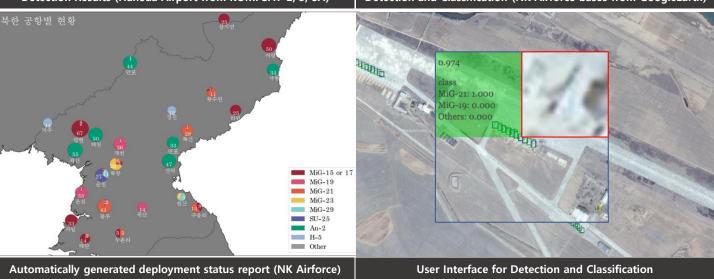
GUI & API **AUTOMATED DATA PIPELINE** & PLATFORM ACCESS

Object Detection and Classification

Detection and Classification

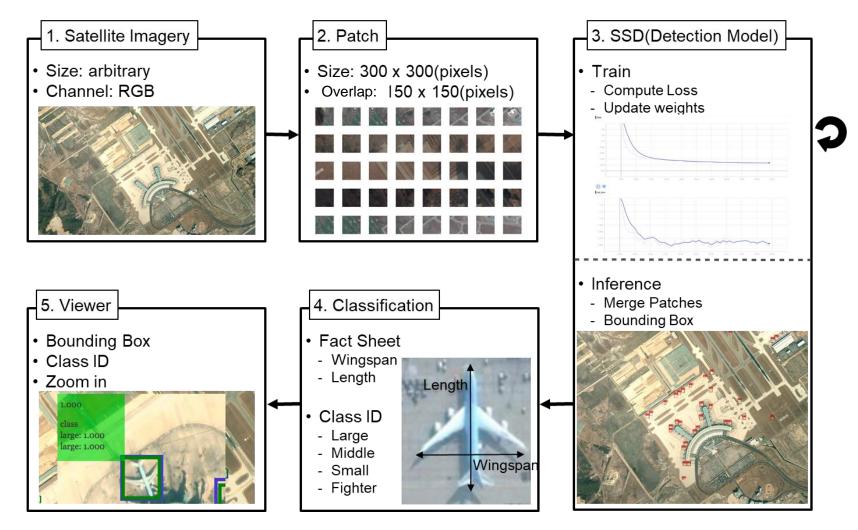
<u>Aircraft Detection & Classification</u>

- Task: Detect and classify all aircraft on North Korea Airforce bases
- Construct Own Dataset for civil aircraft and military fighters
- Compatibility: Transfer Learning (GoogleEarth & KOMPSAT 2, 3, 3A)
- Detection Accuracy: 89%
- Classification Accuracy: 95.2%
- Target Area: All NK Airforce bases
- Fill the gap for rare observation: Combine synthetic data from GAN

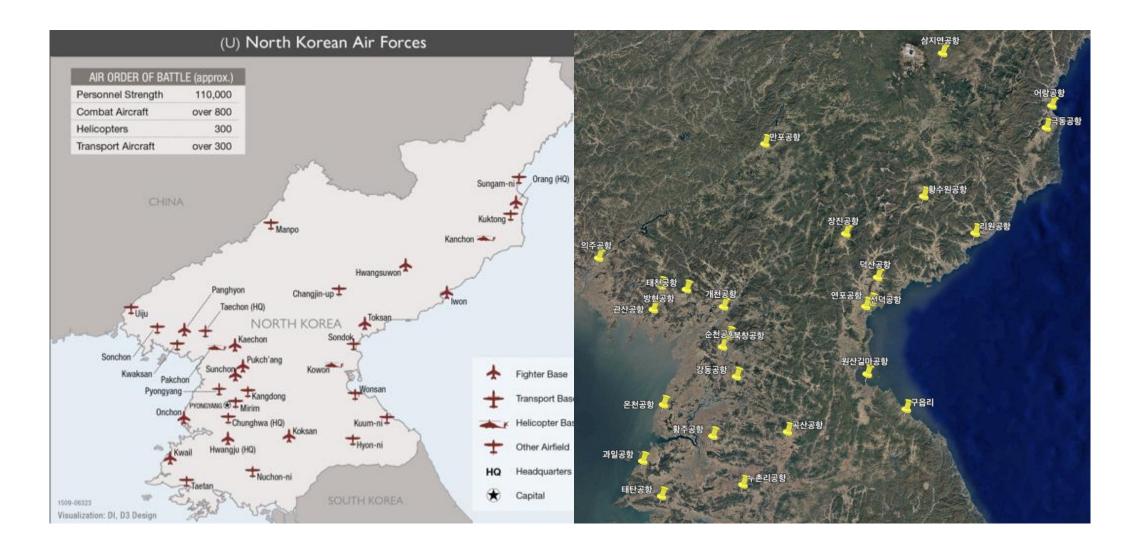


Detection and Classification

• **Objective**: Detect aircraft and fighter, then classify the types of aircraft



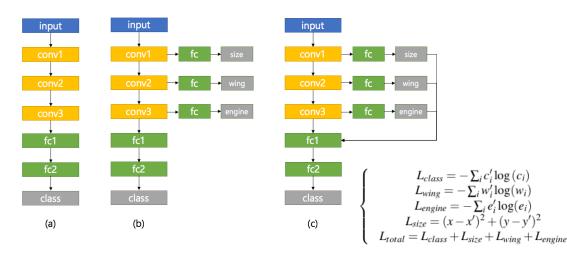
North Korean Air Forces (25 regions)



SIA

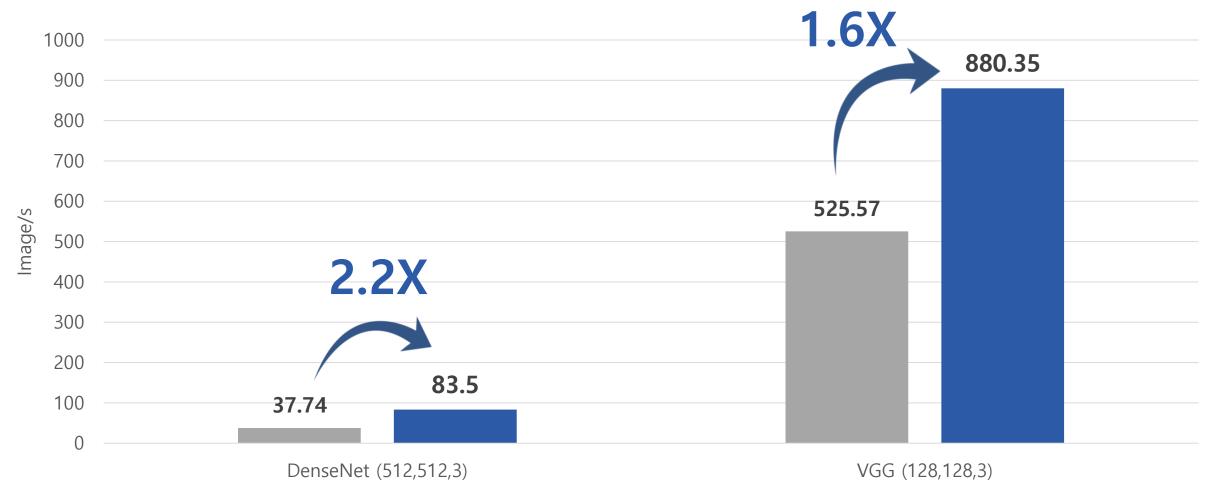
Detection Results

- ROI: 25 Airports (North Korea)
- Detection results: Precision (0.84), Recall (0.79), F1 (0.82)
- Classification results: Top-1 (91.5%), Top-3 (95.4%)

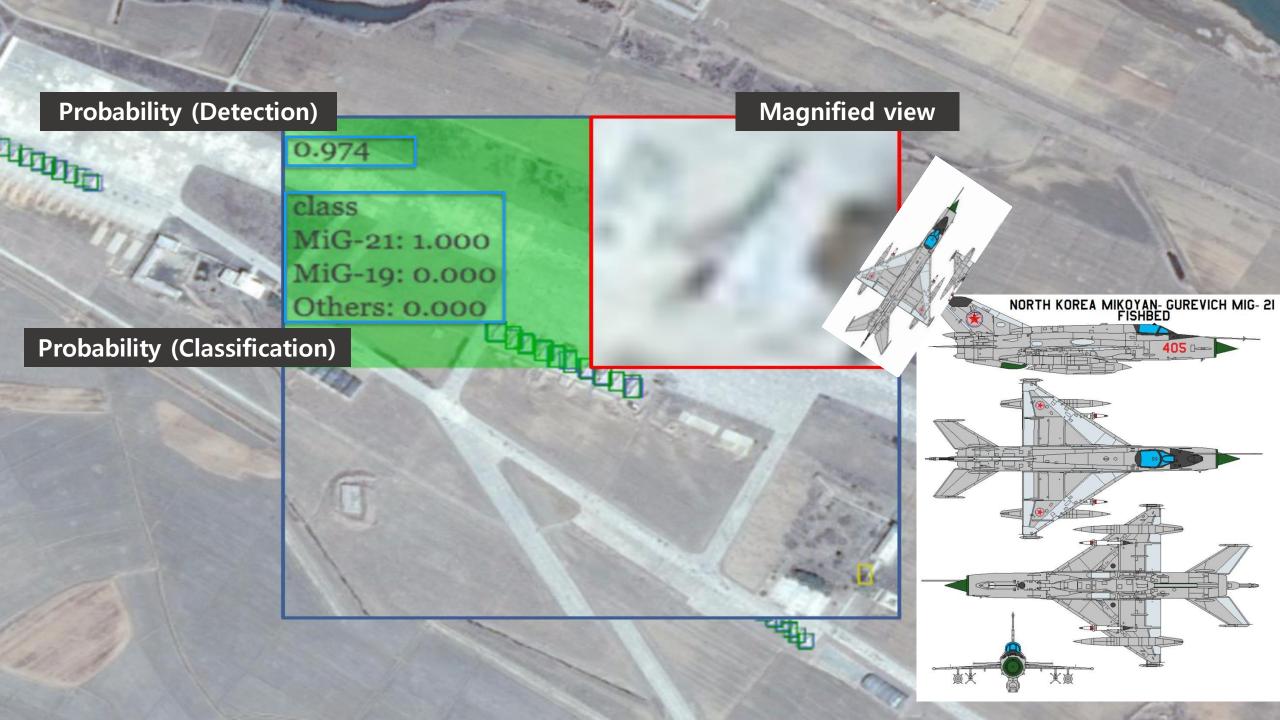


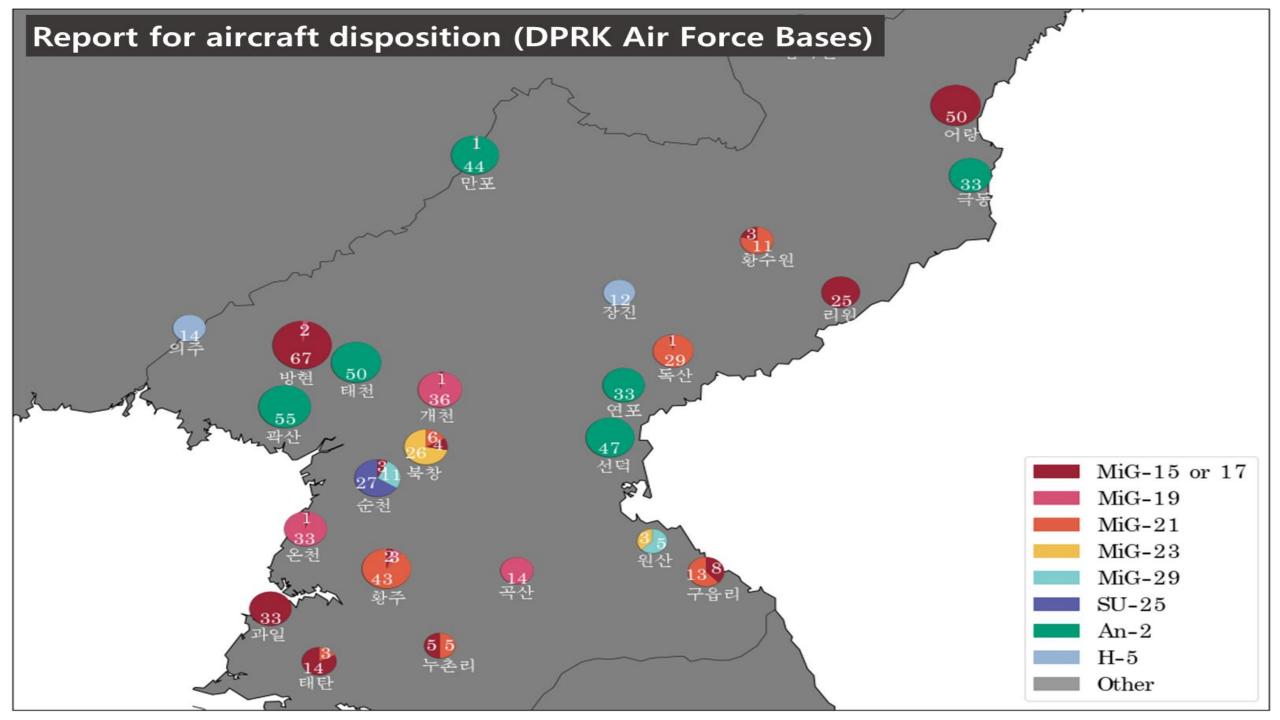
S. Jeon, J. Seo and T. Jeon, "Multi-task Learning for Fine-grained Visual Classification of Aircraft", MLAIP Workshop @ ACML (2017)

Classification with TensorRT



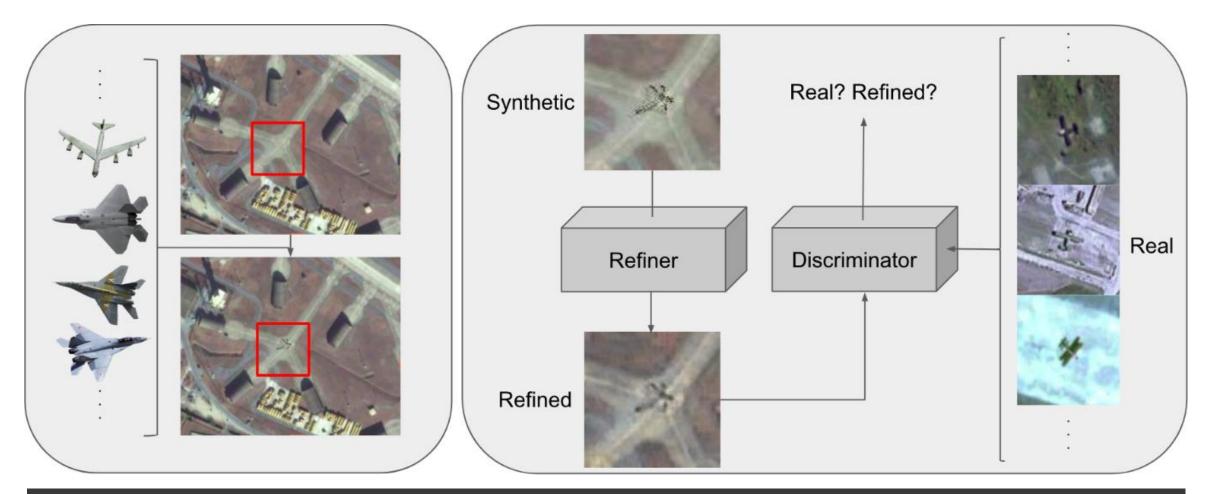
■ w/o TRT ■ w/ TRT





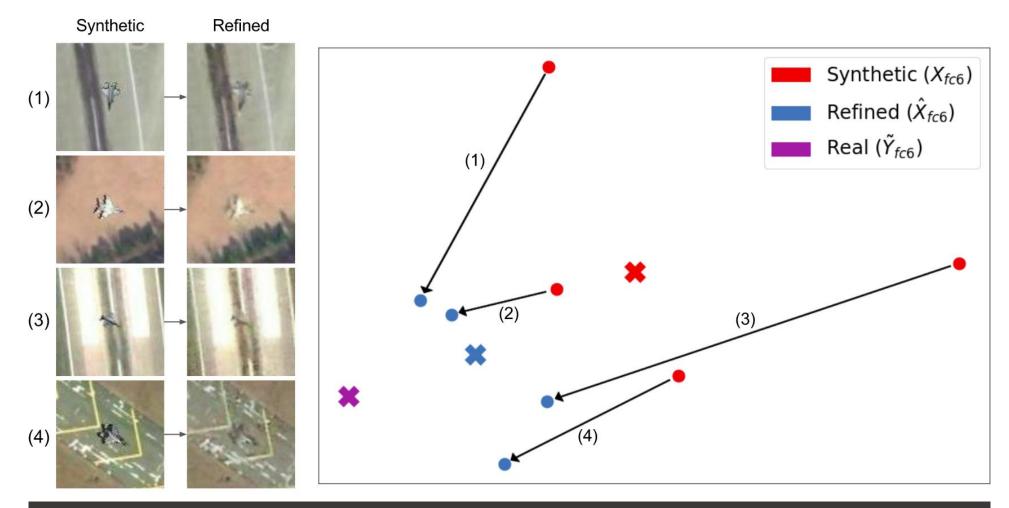
Synthetic Data Generator and Refiner

J. Seo, S. Jeon and T. Jeon, "Domain Adaptive Generation of Aircraft on Satellite Imagery via Simulated and Unsupervised Learning", MLAIP Workshop @ ACML (2017)



Adversarial Learning to refine the synthetic images from reference images

Synthetic Data Generator and Refiner



Qualitative and Quantitative Evaluation

Summary

- Task: Detect and classify all aircraft on North Korea Airforce bases
- Construct Own Dataset for civil aircraft and military fighters
- Compatibility: Transfer Learning between GoogleEarth and KOMPSAT 2, 3, 3A
- TensorRT: Speed-up to 2.2X (DenseNet) and 1.6X (VGG).
- Fill the gap for rare observation: Combine synthetic data from GAN

Road Extraction

Road Extraction

Automatic Mapping
 from Image to Road

- Usages
 - Automated Map Update
 - Urban Planning
 - City Monitoring
 - Road Navigation
 - Operation of Unmanned Vehicles
 - Attention of Safety Road

DeepGlobe Challenge (CVPR 2018)

DEEPGLOBE - CVPR18

Home Cha

Challenge Leaderboard

Workshop Committee

facebook

Challenge Tracks

Road Extraction

In disaster zones, especially in developing countries, maps and accessibility information are crucial for crisis response. We would like to pose the challenge of <u>automatically extracting roads and</u> <u>street networks from satellite images</u>. This will be a binary segmentation problem to detect all the road pixels in each area. The evaluation will be based on the accuracy of

Building Detection

Modeling population dynamics is of great importance for disaster response and recovery, and detection of buildings and urban areas are key to achieve so. We would like to pose the challenge of <u>automatically detecting buildings from</u> <u>satellite images</u>. This problem is formulated as a binary segmentation problem to localize all building polygons in

Resources

Land Cover Classification

Automatic categorization and segmentation of land cover is of great importance for sustainable development, autonomous agriculture, and urban planning. We would like to introduce <u>the</u> <u>challenge of automatic classification of</u> <u>land cover types.</u> This problem is defined as a multi-class segmentation task to detect areas of urban, agriculture,

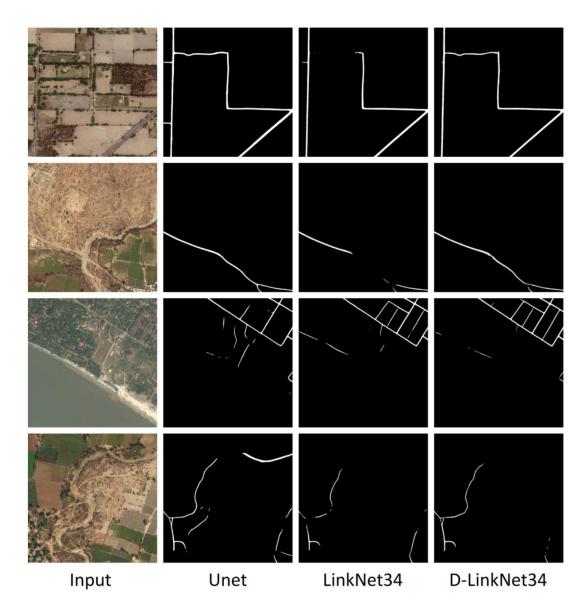
DigitalGlobe UBER planet.

Challenges of Road Extraction

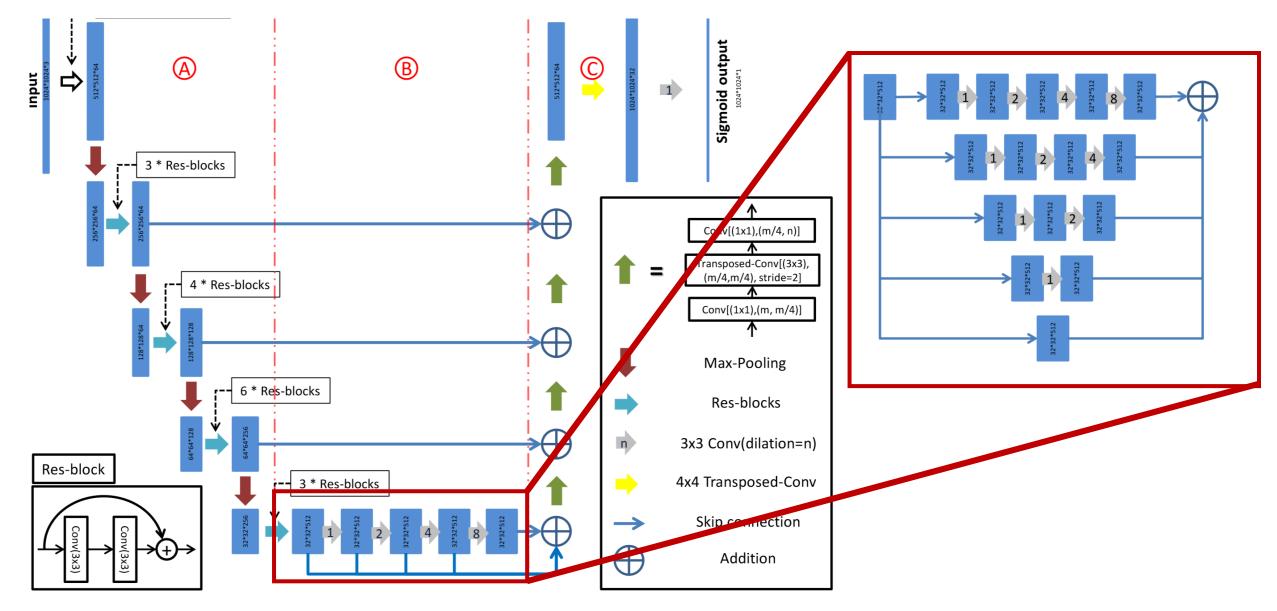
- Wide-area Processing
- Noisy Labeling & Ambiguity
- Extraction of Road Network Topology
- <u>Model Efficiency</u>
- Intrinsic Noise of Road Image

D-LinkNet: 1st Winner of the 2018 Challenge

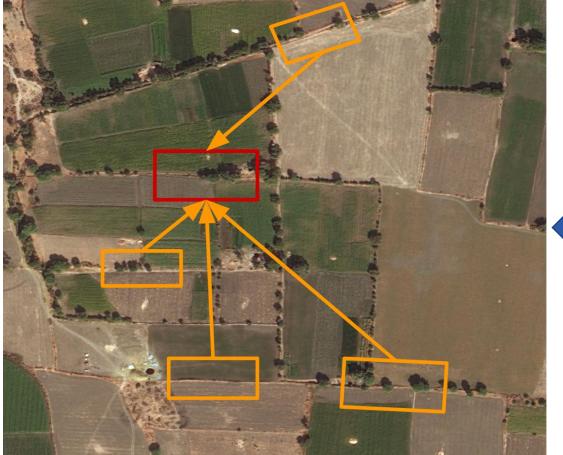
Model	IoU on validation set
Unet (7 pooling layers, no-pretrain)	0.6294
LinkNet34 (pretrained encoder)	0.6300
Ensemble of Unet and LinkNet34	0.6394
D-LinkNet (pretrained encoder)	0.6412



D-LinkNet: 1st Winner of the 2018 Challenge



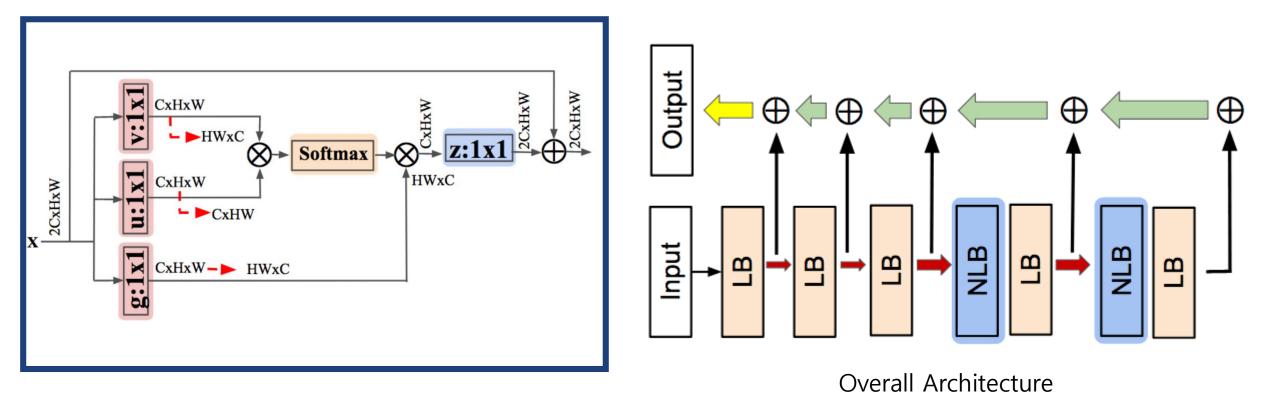
Our Motivation



Non-Local Operations

Non-Local LinkNet (NL-LinkNet)

Non-Local Block (NLB)

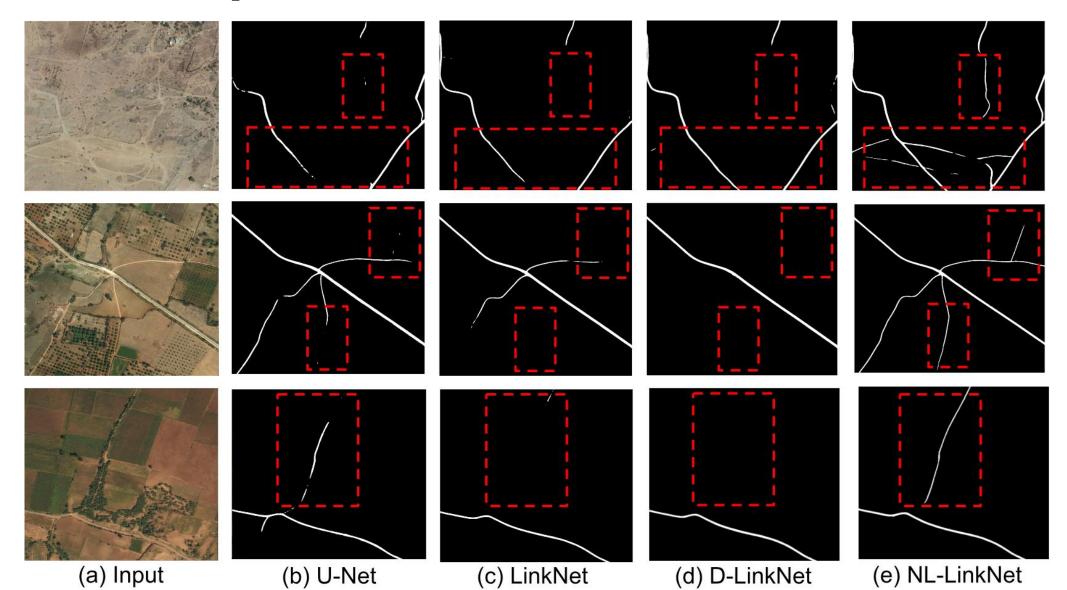


Quantitative Comparison

TABLE I BENCHMARKS FOR DEEPGLOBE ROAD EXTRACTION CHALLENGE

BenchMarks	mIOUs	Remarks
EosResUNet [23]	55.96	
StackedUNet [24]	60.60	4th place
ResInceptSkipNet [25]	61.30	3rd place
U-Net [12]	62.94	from [15]
LinkNet [13]	63.00	
FCN [10]	64.00	2nd place
D-LinkNet [15]	64.12	1st place
NL34-LinkNet	64.59	Ours
NL34-LinkNet+MS	65.00	Ours

Visual Comparison



Model Efficiency

TABLE II

PERFORMANCES OF NON-LOCAL BLOCKS ADDED INTO DIFFERENT STAGES

Models	NLB3	NLB4	DB	mIOUs	Params
Baseline	X	Х	X	63.07	21.657M
D-LinkNet	X	Χ	Ο	64.12	31.096M
NL3-LinkNet	0	Х	Χ	64.15	21.690M
NL4-LinkNet	X	Ο	X	64.40	21.789M
NL34-LinkNet	Ο	Ο	Х	64.59	21.822M

Summary

Core Idea: Non-local Operations

• Non-Local Block is better than traditional convolutional ops.

Conclusions

- Object Detection and Classification: Use case for Defense
- TensorRT: Speed-up to 2.2X (DenseNet) and 1.6X (VGG).
- Fill the gap for rare observation: Combine synthetic data from GAN

Non-Local Block: Extraction of Road Network Topology

Thank you for attention!

SI Analytics Co., Ltd. (Satrec Initiative Group) 441Expo-ro, Yuseong-gu, Daejeon, 34051, Korea

tgjeon@si-analytics.ai www.si-analytics.ai