
Lessons	from	Building	a	Visualization	
Toolkit	for	Massively	Threaded	

Architectures	
Robert	Maynard	

Principal	Engineer,	Kitware	

This research was supported by the Exascale Computing Project (17-SC-20-
SC), a joint project of the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperative.

A single place for the visualization community to collaborate, contribute, and
leverage massively threaded algorithms.

Code Sprint, April 2017, University of Oregon

Code Sprint, September 2015, LLNL

Reduce the challenges of writing highly concurrent algorithms by using data
parallel algorithms

Done by writing ‘worklets’

Reduce the challenges of writing highly concurrent algorithms by using data
parallel algorithms

Execution

Worklets

Execution
DataModel

Control

Filters

Control
DataModel

CUDA
OpenMP
TBB

Data Parallel Algorithms
Arrays

WorkletMapField

Iterates over any array (Point, Cell)
○ Read/Write access
○ Parallel for_each

WorkletMapCellToPoint

Iterates over all points
○ Read access to cell fields
○ Read/Write access to point fields
○ Point 3 has access to cells 1,3,4

Iterates over all cells
○ Read access to point fields
○ Read/Write access to cell fields
○ Cell 1 has access to points 0,2,3,4

WorkletMapPointToCell

Many algorithms need more than 1 to 1 mapping. The operations might need to
pass over elements that produce no value or the operation might need to produce
multiple values for a single input element.

 Scattering

Scatter Counting

Scatter Uniform

 Masking

Active

Masked

Masked

Active

Some algorithms need to be iterative on subsets of the input while maintaining a
single output. For these kind of problems VTK-m provides the ability to enable/
disable a worklet execution based on a input mask.

Iterates over all points
○  Read access to points field neighborhood

○  Write access to center point

WorkletPointNeighborhood

Iterates over a key/value(s) array
○  Read access to all values of a given key

○  Write access for a given key

WorkletReduceByKey

Reduce the challenges of writing highly concurrent algorithms
by using data parallel algorithms

ForEach / ForEach3D
Transform

Sort / SortByKey
Reduce / ReduceByKey

Copy / CopyIf / CopySubRange
LowerBounds / UpperBounds

ScanInclusive / ScanInclusiveByKey
ScanExclusive / ScanExclusiveByKey

Unique / UniqueByKey

Make it easier for simulation codes to take advantage of these parallel
visualization and analysis tasks on a wide range of current and next-generation
hardware.

Libsim

S
im

ulations

GUI / Parallel Management

Base Vis Library
(Algorithm Implementation)

In Situ Vis Library
(Integration with Sim)

Multithreaded Algorithms
Processor Portability

1. Load VTK-m
Plugin

2. Use a VTK-m filter like any
other

In ParaView

Slide Credit: Ken Moreland

Slide Credit: Ken Moreland

In VisIt

1. Turn on VTK-m in Preferences 2. Use VTK-m enabled plots as
normal

Slide Credit: David Pugmire

Slide Credit: David Pugmire

External Evolution

●  Lagrangian
●  Mask Points
●  Point Average
●  Point Elevation
●  Probe
●  Streamlines

●  Cell Average
●  Cell Measurements
●  Clean Grid
●  Clip by Field or Implicit Function
●  Contour Trees
●  External Faces

Filters

Filters

●  Extract Geometry, Points,
Structured

●  FieldToColors
●  Gradient
●  Histogram and Entropy
●  Marching Cubes

○  Hex and Voxel Done
○  Other Cell Types In-

Progress

●  Split Sharp Edges
●  Surface Normals
●  Surface Simplification
●  Tetrahedralize
●  Threshold
●  Triangulate
●  Warp
●  ZFP

Worklet Control Signature

VTK-m no longer requires the list of allowed types for each worklet parameter

Runtime Device Selection

VTK-m supports compilation of any number of device adapters in a single library.
Previously it was only possible to get runtime selection by jumping through hoops

Runtime Device Execution

VTK-m has removed the Device template from all Dispatchers and instead builds
all device versions and can easily switch between them

Runtime Device Selection

ArrayHandle, Algorithms, Worklet, and Filter now all support runtime selection

Runtime selection supports the ability to use an Any device which selects the
active device at runtime. Any supports graceful degradation for when a device
crashes

Runtime Device Tracking

Future Runtime Device Tracking

Since VTK-m defers location of execution to runtime this
opens up future research work on task locality

●  Should execution over small domains happen in serial?
●  When should execution move to the memory space of the allocation?

○  Can we map this to multi-gpu machines and allocations?
●  What to do when inputs are spread across multiple memory spaces?

Logging

For better reporting of runtime performance and errors VTK-m has a fully
integrated logging framework. Allows us to log:

●  Errors
●  Warnings
●  Dynamic Cast Failures
●  Control Side Memory Allocations
●  Execution Side Memory Allocations
●  Memory Transfers
●  Performance

Logging

Original Filter Policy Design

Filter Policies are how callers of VTK-m control what compile
time type expansions will be done for:

○  CellSets [Structured, Unstructured, …]
○  Field Types [are they float, double, vec3f?]
○  Field Storage [Basic, Counting, Implicit, …]
○  Coordinates Types
○  Coordinates Storage

Original Filter Policy Design

New Filter Policy Design

 Virtual Arrays

VTK-m has identified a need to have certain execution objects
leverage virtual methods. Things such as array handle storage,
implicit functions and coordinate systems now use virtuals.

 7 types

3 types

New++ Filter Policy [In Design]

VTK-m currently only exactly matches FieldTypes. Going
forward we are going to cast to best matching and provide
explicit de-virtualization.

 MultiBlock

VTK-m MultiBlock is very similar to vtkPartitionedDataSet
●  VTK-m MultiBlock entries can only be DataSets, no support

for nested MultiBlocks
●  In VTK-m a MultiBlock can span multiple nodes (MPI/DIY),

but a block must be fully contained on a single node

 Hybrid Parallelism

Drive Towards Hybrid Async

VTK-m provides a custom reduce by key since we needed
the following functionality:

○  Multi value reduction

○  Access to all values per key

WorkletReduceByKey

Internal Evolution

 CUDA Streams
When ever VTK-m executes using the CUDA device adapter all kernels and
memory transfers now use per-thread default streams explicitly

This work allows for better in-situ integration, and for VTK-m to provide the option of
coarse grained block level parallelism.

 CUDA

VTK-m ArrayHandle now properly handles users passing CUDA allocated
pointers for input data.
●  No extra data transfers or copies
●  If UVM allocated can also be used with other devices

When VTK-m executes on Pascal+ hardware all device memory will be
allocated using UVM.
●  Includes hints to the UVM system if the memory is read, write, or r+w
●  If the ArrayHandle doesn’t have host data, will use the UVM memory
●  Controllable with environment variables

VTK-m ArrayHandle reads now use __ldg loads automatically
on any read only input

VTK-m tries for all cuda operations to happen asynchronously
Allows for overlapping control and device
●  Goal of reducing host / device synchronizations.

○  We use Thrust for parallel primitives (expect worklet launches)
○  We don’t sync after each worklet
○  We only use event syncs
○  We explicitly event sync only for host memory access
○  We batch small cuda memory free’s

 CUDA

VTK-m uses lots of predefined lookup tables
These are challenging to write correctly when you want the same table to be used
for host and device (E.3.13. Const-qualified variables && F.3.16.5. Constexpr variables)

 CUDA Lookup Tables

 CUDA Lookup Tables

VTK-m Topology based worklets are always executed in the context of a topology.

 CUDA Worklet Execution

Task
Launcher

worklet worklet worklet worklet worklet worklet worklet Task

worklet 1,1,0 Task
Launcher

worklet 0,1,0

worklet 1,0,0 worklet 0,0,0

VTK-m has explored using different strategies over the years for 1D
execution.

●  We use grid stride loops

○  We launch a fixed number of blocks and threads and stride over the total work
○  Number of blocks is based on a function of the number of SM’s (32 per)
○  We use 128 threads per block

●  We want as many register per thread as our worklets are ‘large’

 CUDA 1D Worklet Execution

Task
Launcher

worklet worklet worklet worklet worklet worklet worklet Task

VTK-m uses a similar strategies over the years for 3D execution.

●  We use grid stride loops

○  Number of blocks is based on a function of the number of SM’s (32 per)
○  We use 256 threads per block in a <8,8,4> layout

 CUDA 3D Worklet Execution

worklet 1,1,0 Task
Launcher

worklet 0,1,0

worklet 1,0,0 worklet 0,0,0

 Virtual Methods

CUDA: NVIDIA GP100 TBB: 2x Intel Xeon CPU E5-2620 v3 [24 cores]

VTK-m originally avoided using atomics due to presumptions on
performance. Starting in 2018 we have slowly moved algorithms over to
atomics on a case by case basis

 Atomic Performance

CUDA: Quadro K5100M CPU: Intel Core i7-4710MQ CPU @ 2.50GHz

CellToPoint Table Gen Time (s) Mem (GiB)

Backend Serial TBB OpenMP CUDA

VTK 2.535 (N/A) (N/A) (N/A) 2.711

VTK-m (Sort) 17.940 8.169 8.125 1.606* 8.166*

VTK-m (Atomic Histogram) 6.673 1.428 1.445 0.547 2.505

Conformance && Performance

Testing

Testing

●  Testing is used to catch serious changes in baseline performance

Testing

●  Testing is used to verify install layout
○  WIP: Building code against the installed vtk-m as part of the testing process

Testing

●  Testing will be used to monitor compile times leverages Ninja ability to report
per TU compilation times

Device Level Benchmarks

VTK-m has a collection of device adapter level benchmarks used for micro
performance comparisons.

●  Allows developers to test new implementations for parallel primitives
●  Allows VTK-m to get a baseline for new hardware
●  Allows device adapters to be compared against each other

 AtomicArray CopySpeeds DeviceAdapter

Device Level Benchmarks

IBM Power System AC922 node (SUMMIT) GPU: Volata V100 CPU: 2x Power9 [42 cores, SMT2]

Algorithm Level Benchmarks

VTK-m has a collection of filter and worklet level benchmarks. These are generally
used to verify whole algorithm or application performance.

●  Allows developers to test new implementations for algorithms
●  Allows VTK-m to get a baseline for new hardware

FieldWorklets ToplogyWorklets Filters

Filter Benchmarks

IBM Power System AC922 node (SUMMIT) GPU: Volata V100 CPU: 2x Power9 [42 cores, SMT2]

Filter Benchmarks

IBM Power System AC922 node (SUMMIT) GPU: Volata V100 CPU: 2x Power9 [42 cores, SMT2]

Filter Benchmarks [Old 3D Scheduling]

IBM Power System AC922 node (SUMMIT) GPU: Volata V100 CPU: 2x Power9 [42 cores, SMT2]

 Thank You!

Robert Maynard
robert.maynard@kitware.com

@robertjmaynard

Checkout out VTK-m @ gitlab.kitware.com/vtk/vtk-m and Kitware @ www.kitware.com

Please complete the Presenter Evaluation sent to you by email or through the GTC Mobile App.

Your feedback is important!

This research was supported by the Exascale
Computing Project (http://
www.exascaleproject.org), a joint project of the
U.S. Department of Energy’s Office of Science
and National Nuclear Security Administration,
responsible for delivering a capable exascale
ecosystem, including software, applications, and
hardware technology, to support the nation’s
exascale computing imperative.

Project Number: 17-SC-20-SC

