

DEEP LEARNING FRAMEWORK FOR DIAGNOSTICS AND **PATIENT-SPECIFIC DESIGN OF BIOPROSTHETIC HEART VALVES**

ADITYA BALU SAHITI NALLAGONDA **MING-CHEN HSU SOUMIK SARKAR ADARSH KRISHNAMURTHY**

Heart Diseases

- Leading cause of death
 - In both the US and the world
 - 1 in every 4 deaths
 - A heart attack every 40s
- Loss of revenue
 - \$200 billion each year

Heart Disease Death Rates, 2014-2016 Adults, Ages 35 +, by County Rates are spatially smoothed to enhance the stability of rates in counties with small .0 populations. C2 = C2 Data Source: National Vital Statistics System National Center for Health Statistics

www.cdc.gov/dhdsp/maps

March 18, 2019

ST. JUDE MEDICAL MORE CONTROL LESS RISK.

Medtronic

\$11.588B

Edwards \$3.518B

Age-Adjusted Average Annual Rates per 100,000 103.4 - 284.2

103.4 - 284.2 284.3 - 324.9 325.0 - 365.9 366.0 - 426.5 426.6 - 1170.5 Insufficient Data

Valvular Diseases

- Valvular Heart diseases
 - Affects more than 2.5% of US population
- Causes
 - Calcification (Narrowing at the opening)
 - Regurgitation (Leakage and reverse flow)
- Intervention
 - Surgical replacement
 - 90,000 prosthetic heart valves per year

[1] https://www.webmd.com/heart-disease/guide/heart-valve-disease#1

Artificial Heart Valves

- Mechanical Valve
 - Advantages
 - Durable
 - Disadvantages
 - Causes damage to blood cells
 - Need blood thinner to prevent clots
 - Noisy (can cause sleepless nights)
- Bioprosthetic Valves
 - Use bovine or porcine pericardium
 - Advantages
 - Replicates the valve tissue
 - Disadvantages
 - Durability due to fatigue
 - Prone to calcification

valve

Patient-Specific Replacement Heart Valves

- Common sizes
- Disadvantages of wrong sizing
 - Poor valve function (regurgitation, low flow rate)
 - Durability
- BHV Replacements
 - 10 years

Order Valve Size O Number (Stent Di O.D.† (St (±0.5 mm) (±0		Orifice Diameter (Stent O.D. (±0.5 mm)	Orifice Suture Ring Diameter Diameter Stent O.D. (±1 mm) 50.5 mm)		Aortic Protrusion (±0.5 mm)	
	(A)	(B)	(C)	(D)	(E)	
305C219	19	17.5	25.0	13.5	11.0	
305C221	21	18.5	27.0	15.0	12.0	
305C223	23	20.5	30.0	16.0	13.5	
305C225	25	22.0	33.0	17.5	15.0	
305C227	27	24.0	36.0	18.5	15.5	
305C229	29	26.0	39.0	20.0	16.0	

[2] https://www.medtronic.com/ca-en/healthcare-professionals/products/cardiovascular/heart-valves-surgical/mosaic-mosaic-ultra-bioprostheses.html [3] https://www.heartvalvechoice.com/tissue-vs-mechanical-heart-valve/

March 18, 2019

MOSAIC[™] AORTIC VALVE, MODEL 305

Patient-Specific Design of Heart Valves

• Design heart values for every patient using their medical results

An aortic bioprosthetic heart valve with its placement on aorta

A view of one leaflet of the heart valve with its parametric curve boundary

March 18, 2019

Valve Function

- Coaptation Area
- Open area

Open Area

Coaptation Area

Design of BHV

- Custom design requires evaluation of the valve function
- Simulation speeds up the process

Simulations of BHVs

- Imaging analysis for surgical decision making is difficult
- Simulation of physics is necessary

Phase contrast MRI image data

March 18, 2019

[4] M. C. Hsu et al., "Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models," Computational Mechanics, 55 (2015) 1211-1225

9

Outline

March 18, 2019

Results and Conclusions

Computational Modeling Frameworks for BHVs

- Reconstruct the heart valve from medical images
 - Generate geometric representation of the heart valve (NURBS)
- Perform valve closure simulations
 - Use Isogeometric analysis

[5] S Morganti, F Auricchio, DJ Benson, FI Gambarin, S Hartmann, TJR Hughes, and A Reali. Patient-specific isogeometric structural analysis of aortic valve closure. Computer Methods in Applied Mechanics and Engineering, 284:508–520, 2015 [6] Fei Xu, Simone Morganti, Rana Zakerzadeh, David Kamensky, Ferdinando Auricchio, Alessandro Reali, Thomas JR Hughes, Michael S Sacks, and Ming-Chen Hsu. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluidstructure interaction analysis. International journal for numerical methods in biomedical engineering, 34(4):e2938, 2018.

March 18, 2019

Valve Performance

- Coaptation Area
- Valve Deformations

Reconstruction of Aortic Valve

Reconstruction of Aortic Root from CTA for a patient

attachment of the valve to the root. The red and green curves are parametrically controlled for valve design.

[5] S Morganti, F Auricchio, DJ Benson, FI Gambarin, S Hartmann, TJR Hughes, and A Reali. Patient-specific isogeometric structural analysis of aortic valve closure. Computer Methods in Applied Mechanics and Engineering, 284:508–520, 2015 [6] Fei Xu, Simone Morganti, Rana Zakerzadeh, David Kamensky, Ferdinando Auricchio, Alessandro Reali, Thomas JR Hughes, Michael S Sacks, and Ming-Chen Hsu. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluidstructure interaction analysis. International journal for numerical methods in biomedical engineering, 34(4):e2938, 2018.

March 18, 2019

Figure 3: The key geometric features used to parametrically control the valve designs. The blue key points define the

Valve Reconstruction and design

- Interface valve with the patient's aortic root
- Define parameters for the designing
- Vary them to get good performance

Parametric Design of Heart Valve Geometry

- Parameters of the heart value affecting the geometry
 - Belly curvature (*x₃*)
 - Height of free edge (*x*₂)
 - Curvature of free edge (*x*₁)

[5] S Morganti, F Auricchio, DJ Benson, FI Gambarin, S Hartmann, TJR Hughes, and A Reali. Patient-specific isogeometric structural analysis of aortic valve closure. Computer Methods in Applied Mechanics and Engineering, 284:508–520, 2015
 [6] Fei Xu, Simone Morganti, Rana Zakerzadeh, David Kamensky, Ferdinando Auricchio, Alessandro Reali, Thomas JR Hughes, Michael S Sacks, and Ming-Chen Hsu. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid–structure interaction analysis. International journal for numerical methods in biomedical engineering, 34(4):e2938, 2018.

March 18, 2019

(c) Increasing x_3

Non-Uniform Rational B-Spline Representation

- Approximate the geometry using:
 - Control Points
 - Basis Functions (Piecewise polynomial)
 - Knot vectors
 - Weights

A sample NURBS curve representation

http://web.me.iastate.edu/idealab/c-nurbs-python.html

Non-Uniform Rational B-Spline Representation

- Approximate the geometry using:
 - Control Points
 - Basis Functions
 - Knot vectors
 - Weights
- Tensor Product for surfaces

A sample NURBS surface representation

http://web.me.iastate.edu/idealab/c-nurbs-python.html

Non-Uniform Rational B-Spline Representation

De facto surface representation

- Most general spline
- Piecewise-polynomial tensor product surfaces
- Can represent complex geometry such as heart valves

[7] <u>https://github.com/orbingol/NURBS-Python</u>

[8] Piegl, L., & Tiller, W. (2012). The NURBS book. Springer Science & Business Media.

NURBS Evaluation

Patient Specific Design of Heart Valve Geometry

[9] <u>https://web.me.iastate.edu/jmchsu/heart-valves.html</u>

Isogeometric Analysis

- Based on technologies such as NURBS
- Same ("exact") functional description is used for geometry and simulation.
- Includes standard FEA as a special case, but offers other possibilities:
 - Precise and efficient geometric modeling
 - Superior approximation properties
 - Smooth and higher-order basis functions
 - Integration of design and analysis

Isogeometric Analysis

Challenges of Using IGA for BHV Design

- Patient-specific design of bioprosthetic heart valves (BHV) require extensive exploration of design parameter space
- Computational analysis is tedious and compute intensive
- Lot of historical simulation data
- Real-time decision support tool for analyzing valve function is difficult

M.C. Hsu et.al., "Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models," Computational Mechanics, 55 (2015) 1211-1225

Deep Learning

- Lots of Uses in Medical Sciences
- Can learn complex phenomenon like the biomechanics
- Can provide real-time support

Outline

March 18, 2019

Results and Conclusions

ML Framework for Valve Biomechanics

Convolutional Neural Networks

- Convolution Operator
- Neural Networks
- Convolutional Neural Networks
- NURBS as Convolution

[3] Krishnamurthy, Adarsh, Rahul Khardekar, Sara McMains, Kirk Haller, and Gershon Elber. "Performing efficient NURBS modeling operations on the GPU." IEEE Transactions on Visualization and Computer Graphics 15, no. 4 (2009): 530-543.

NURBS-aware Convolution

• Use textural representation of the NURBS control points as input to a regular CNN

Textural

Representation

Y Coordinates Z Coordinates

ML Framework for Valve Biomechanics

CNN Architecture

DLFEA Hyper-parameters

- Encoder and Decoder architecture
 - Number of convolution layers
 - Number of filters in each layer

- Repetition size for capturing the effect of pressure and thickness
- Number of neurons in FC layer (Data Fusion)
 - Need to be carefully selected for performance vs. underfitting
- Number of FC layers and size of deconvolution

ML Framework for Valve Biomechanics

Training Algorithm

- Optimization algorithm: Adam
- Loss function:
 - Account for
 - fixed boundary conditions
 - Interaction

$$l_{bc} = 1 + abs(\frac{y_{true}}{max(y_{true})}) * l$$

$$l = \frac{1}{|\mathcal{D}|} * \sum_{k \in \mathcal{D}} (y_{pred_k} - y_{true_k})^2$$

ML Framework for Valve Biomechanics

Outline

Results and Conclusions

Data Generation

• Geometry Parameters

Parameter	1	2	3	4	5
Curvature of free edge (cm)	0.05	0.25	0.45	-	-
Belly curvature (cm)	0.2	0.6	0.9	1.2	1.4
Height of free edge (cm)	- 0.1	0.1	0.3	0.5	-

- Aortic Pressure
 - From 70 mm-Hg to 90 mm-Hg (21 values)
- Heart Valve Thickness
 - From 0.00386cm to 0.0772cm (20 values)
- 18,668 simulations

Isogeometric Analysis of Heart Valves

- Perform valve closure simulation
- Store key metrics from the analysis
 - Coaptation area
 - Deformed geometry

Coaptation Area

Training Process

End-to-end training

- Split the data for training, validation, and testing
 - 60% of data for training
 - 20% for validation
 - 20% for testing the generalization capability of the model
- Fine-tune the hyper-parameters for lowest validation loss

Outline

March 18, 2019

Results and Conclusions

Statistical Results

- Coaptation Area
 - RMSE: 0.056cm²
 - Median: 0.03cm²
 - Correlation Coefficient: 0.994

Statistical Results

- Procrustes Matching:
 - Accounts for shift and transformation in geometry
 - Provides a dissimilarity measure (cm)

$$D_{OPA}^{2}(X_{1}, X_{2}) = \|X_{2} - \beta X_{1}\Gamma - 1_{k}\gamma^{T}\|^{2},$$

 Γ is rotation matrix, γ is translation matrix, β is scale factor

- Results:
 - Median value of 0.0442cm
 - 10% of maximum deformation

Anecdotal Results

Pressure (mm-Hg)	Thickness (cm)	<i>x₁</i> (cm)	<i>x₂</i> (cm)	<i>x₃</i> (cm)	Simulated CA (cm ²)	Pr€
89	0.0695	0.1	0.45	0.9	0.4505	

March 18, 2019

0.3913

Anecdotal Results

Pressure (mm-Hg)	Thickness (cm)	<i>x₁</i> (cm)	<i>x₂</i> (cm)	<i>x₃</i> (cm)	Simulated CA (cm ²)	Pro
75	0.0540	0.3	0.45	0.8	2.9276	

March 18, 2019

2.9659

Anecdotal Results

Pressure (mm-Hg)	Thickness (cm)	<i>x₁</i> (cm)	<i>x₂</i> (cm)	<i>x₃</i> (cm)	Simulated CA (cm ²)	Pre
73	0.0579	0.1	0.45	0.6	0.0217	

March 18, 2019

0.0207

Timings & Demo

- IGA:
 - 2 core, 32 threads each
 - ~5mins of runtime
- DLFEA:
 - Training: ~3-4 hours in P40s
 - Deployment: <5s in Titan Xp

HOME PLOTS APPS	EDITOR PUBLISH VIEW
New Open Save Compare Save Fint → Fint ✓ Fint → Fint NAVIGATE	Insert Insert Image: Comment Image: Commen
V V C: V Users V adityab	Box Mike-Aditya F param_design F
Current Folder	Editor - C:\Users\adityab\Box\Mike-Aditya\param_design\HV_design.m
B bezier_ext IGA_Files P_ref B Spline_2D_Surface.mexmaci64 B Spline_2D_Surface.mexw64 Findspan.m H J_design.m mesh.dat ** NURBS_eval_3D.rep MURBS_eval_3D.mexmaci64 WURBS_eval_3D.mexmaci64 * NURBS_Knot_Insertion.mexw64 Findspace.netw64 WURBS_Knot_Insertion.mexw64 Findspace.netw64 WURBS_Knot_Insertion.mexw64 Findspace.netw64 WURBS_Knot_Insertion.mexw64 Findspace.netw64 F	<pre>13 14 15 15 16 - cf_dh = 0.4; 17 - cf_dt = 0.8; 18 - cf_dZ = -0.295; 19 20 - nU = 17; 21 - nV = 12; 22 % 32 - cfs = [cf_dh, cf_dr, cf_dZ];] 24 25 - thl = (120)*pi/180; 26 - phi = (1.5)*pi/180; 27 - center = [0 0]; 28 29 - angLf(1;) = [0, th1] + [phi/2, -phi/2]; 30 - angLf(2;) = [0, th1] + [phi/2, -phi/2] + th1; 31 - angLf(3;) = [0, th1] + [phi/2, -phi/2] + th1*2; 32 - ifl = GEN leaflet2(angLf(1,1), angLf(1,2), center, cfs, nU, nV); </pre>
B_Spline_2D_Surface.cpp (C++ Source)	New to MATLAB? See resources for Getting Started.
No details available	<pre>operable program or batch file. 'bezier_ext' is not recognized as an internal or external command, operable program or batch file. 'mv' is not recognized as an internal or external command, operable program or batch file. <u>1123</u> end >> HV_design f_x >></pre>

Conclusions

- Fast simulation of heart valves using DLFEA
- DLFEA is able to learn the deformation biomechanics Including complicated dependence on geometry and boundary conditions
- Results show DLFEA matches the fidelity of valve simulations
 - Can provide interactive decision support

Future Work

- Interactive design and optimization framework using DLFEA
 - Improve performance of design-through-analysis pipelines
- Add additional components to the ML framework to enable direct prediction of results from raw medical images
 - End-to-end learning

Acknowledgements

- Funding Sources
 - National Science Foundation
 - CMMI:1644441 CM: Machine-Learning Driven Decision Support in Design for Manufacturability
 - OAC:1750865 CAREER: GPU-Accelerated Framework for Integrated Modeling and Biomechanics Simulations of Cardiac Systems
 - nVIDIA
 - Titan Xp GPU for Academic Research

anufacturability nd Biomechanics

Thank You!

Questions?

Extra Slides

