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AGENDA

Important capabilities to maximize data center utilization

TensorRT Inference Server architecture for maximum utilization

Multi-frameworks

Multi-models

Model concurrency

Real-world use-case: Naver
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MAXIMIZING UTILIZATION

Often GPU is not fully utilized by a single model… increase utilization by:

Supporting a variety of model frameworks

Supporting concurrent model execution, one or multiple models

Supporting many model types: CNN, RNN, “stateless”, “stateful”

Enabling both “online” and “offline” inference use cases

Enabling scalable, reliable deployment



4 

TENSORRT INFERENCE SERVER
Architected for Maximum Datacenter Utilization

Support a variety of model frameworks

TensorRT, TensorFlow, Caffe2, custom

Support concurrent model execution, one or multiple models

Multi-model, multi-GPU and asynchronous HTTP and GRPC request handling 

Support many model types: CNN, RNN, “stateless”, “stateful”

Multiple scheduling and batching algorithms

Enable both “online” and “offline” inference use cases

Batch 1, batch n, dynamic batching

Enable scalable, reliable deployment

Prometheus metrics, live/ready endpoints, Kubernetes integration 
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EXTENSIBLE ARCHITECTURE

Extensible backend architecture allows multiple 
framework and custom support

Extensible scheduler architecture allows support 
for different model types and different batching 
strategies

Leverage CUDA to support model concurrency 
and multi-GPU
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MODEL REPOSITORY

File-system based repository of the models loaded and served by the inference server

Model metadata describes framework, scheduling, batching, concurrency and other aspects of 
each model

ModelX
   platform: TensorRT
   scheduler: default
   concurrency: …

ModelY
   platform: TensorRT
   scheduler: dynamic-batcher
   concurrency: …

ModelZ
   platform: TensorFlow
   scheduler: sequence-batcher
   concurrency: ...
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BACKEND ARCHITECTURE

Backend acts as interface between inference requests and a standard or custom framework

Supported standard frameworks: TensorRT, TensorFlow, Caffe2

Providers efficiently communicate inference request inputs and outputs (HTTP or GRPC)

Efficient data movement, no additional copies
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MULTIPLE MODELS
ModelZ Backend
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MODEL CONCURRENCY
Multiple Models Sharing a GPU

By default each model gets one instance on each available GPU (or 1 CPU instance if no GPUs)

Each instance has an execution context that encapsulates the state needed by the runtime to 
execute the model

ModelZ Backend
ModelY Backend

ModelX Backend

Default 
Scheduler

TensorRT Runtime

Context
GPU
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MODEL CONCURRENCY
Multiple Instances of the Same Model

Model metadata allows multiple instances to be configured for each model

Multiple model instances allow multiple inference requests to be executed simultaneously  

GPU

ModelX Backend

Default 
Scheduler

TensorRT Runtime

Context

Context

Context
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ModelZ Backend

Sequence 
Batcher

TensorFlow 
Runtime
Context

Context
ModelY Backend

Dynamic 
Batcher

TensorRT Runtime

Context

Context

MODEL CONCURRENCY
Multiple Instances of Multiple Models

GPU
ModelX Backend

Default 
Scheduler

TensorRT Runtime

Context

Context

Context
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CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time
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CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time
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CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time
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CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time
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CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time
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CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time
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CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time
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SHARING A GPU
CUDA Enables Multiple Model Execution on a GPU

ModelY Backend
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TensorRT Runtime
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ModelX Backend
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MUTLI-GPU
Execution Contexts Can Target Multiple GPUs

ModelY Backend
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CUSTOM FRAMEWORK
Integrate Custom Logic Into Inference Server

Provide implementation of your “framework”/”runtime” as shared library

Implement simple API: Initialize, Finalize, Execute

All inference server features are available: multi-model, multi-GPU, concurrent execution, 
scheduling and batching algorithms, etc. 

ModelCustom Backend
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SCHEDULER ARCHITECTURE

Scheduler responsible for managing all inference requests to a given model

Distribute requests to the available execution contexts

Each model can configure the type of scheduler appropriate for the model

Model Backend

Scheduler

Runtime

Context

Context
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DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default 
Scheduler

Runtime

Context

Context

Batch-1 Request
Batch-4 Request
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DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default 
Scheduler

Runtime

Context

Context

Incoming requests to ModelX
queued in scheduler
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DEFAULT SCHEDULER

Assuming GPU is fully utilized by 
executing 2 batch-4 inferences at 
the same time.

Utilization = 3/8 = 37.5%

Distribute Individual Requests Across Available Contexts

ModelX Backend

Default 
Scheduler

Runtime

Context

Context

requests assigned in order
to ready contexts
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DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default 
Scheduler

Runtime

Context

Context

 When context completes a
new request is assigned

Assuming GPU is fully utilized by 
executing 2 batch-4 inferences at 
the same time.

Utilization = 2/8 = 25%
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DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default 
Scheduler

Runtime

Context

Context

 When context completes a
new request is assigned

Assuming GPU is fully utilized by 
executing 2 batch-4 inferences at 
the same time.

Utilization = 4/8 = 50%
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DYNAMIC BATCHING SCHEDULER

Default scheduler takes advantage of multiple model instances

But GPU utilization dependent on the batch-size of the inference request

Batching is often on of the best ways to increase GPU utilization

Dynamic batch scheduler (aka dynamic batcher) forms larger batches by combining multiple 
inference request

Group Requests To Form Larger Batches, Increase GPU Utilization
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DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic 
Batcher

Runtime

Context

Context

Batch-1 Request
Batch-4 Request
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DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic 
Batcher

Runtime

Context

Context

Incoming requests to ModelY
queued in scheduler
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DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic 
Batcher

Runtime

Context

Context

Dynamic batcher configuration for 
ModelY can specify preferred 
batch-size. Assume 4 gives best 
utilization.

Dynamic batcher groups requests 
to give 100% utilization
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SEQUENCE BATCHING SCHEDULER

Default and dynamic-batching schedulers work with stateless models; each request is 
scheduled and executed independently

Some models are stateful, a sequence of inference requests must be routed to the same 
model instance

“Online” ASR, TTS, and similar models

Models that use LSTM, GRU, etc. to maintain state across inference requests

Multi-instance and batching required by these models to maximum GPU utilization

Sequence-batching scheduler provides dynamically batching for stateful models

Dynamic Batching for Stateful Models
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SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence 
Batcher

Runtime

Context

Context

Sequence: 3 inference requests

123

12345

Sequence: 5 inference requests



34 

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence 
Batcher

Runtime

Context

Context123 12345

Inference requests arrive
 in arbitrary order
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SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence 
Batcher

Runtime

Context

Context123 12345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot

Context has available slots, not used
waiting requests due to stateful model

requirement
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SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence 
Batcher

Runtime

Context

Context23 2345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot
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SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence 
Batcher

Runtime

Context

Context3
345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot
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SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence 
Batcher

Runtime

Context

Context45

On a fully-loaded server, all context 
slots would be occupied by 
sequences.

As soon as one sequence ends 
another is allocated to the slot.
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MAXIMIZING DATA CENTER UTILIZATION WITH 
TENSORRT INFERENCE SERVER

Recap

Expand the number of models available to share the GPU

Support a variety of model frameworks

Support many model types: CNN, RNN, “stateless”, “stateful”

Enable multiple models and multiple instances to execute concurrently on GPU

Support multi-model and multi-instance via CUDA streams

Enable many model types to exploit large batches which have higher GPU utilization

Provide scheduling / batching algorithms for both “stateless” and “stateful” models
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NAVER USE-CASE
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NAVER
Korea No. 1 Search Engine & Internet Company
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DATA ENGINEERING PLATFORM
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C3DL PLATFORM

YARN-based DL platform for Search 
Division’s DL R&D

CPU / GPU scheduler based on YARN 
(https://github.com/naver/hadoop) 

Both training/inference supported

Since 2016
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Batc
h

Serving

Streaming

Service

Datasets Training Model Inference

WHY TRTIS IN C3DL?
Can be used for several types of Inference Services
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WHY TRTIS FOR C3DL?

Supports HTTP / gRPC 

Each Data Handling with numpy-like format

Dynamic Model Deployment with Model Store

Optimized for Container-based Provisioning

Multi-model / Multi-GPU supported

Multi Framework supported

Optimized for Large-Scale Inference Service
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Input Queue Output Queue

TRTI
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Inference
Client gRPC 
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C3 DL INFERENCE
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FUTURE PLANS

More Use cases with TRTIS

More Inference on GPUs: Image as well as Text-based 

More cost-efficient Inference : T4 adoption 

More Collaboration with NVIDIA: Applying TRT for more Models

47



48 

MAXIMIZE GPU UTILIZATION WITH TENSORRT 
INFERENCE SERVER

Try It Today!

The TensorRT Inference Server is available as a ready-to-run Docker image on the NVIDIA 
Compute Cloud. https://ngc.nvidia.com/catalog/containers/nvidia:tensorrtserver

The TensorRT Inference Server is open-source. Read the docs, build the source, file issues, 
contribute pull requests! https://github.com/NVIDIA/tensorrt-inference-server

Questions, feedback?

Connect with the Experts: NVIDIA TensorRT Inference Server
Wednesday, 3/20/19  |  12:00 - 13:00 - SJCC Hall 3 Pod D (Concourse Level)




