
David Goodwin, Soyoung Jeong

MAXIMIZING UTILIZATION FOR DATA
CENTER INFERENCE WITH TENSORRT
INFERENCE SERVER

2

AGENDA

Important capabilities to maximize data center utilization

TensorRT Inference Server architecture for maximum utilization

Multi-frameworks

Multi-models

Model concurrency

Real-world use-case: Naver

3

MAXIMIZING UTILIZATION

Often GPU is not fully utilized by a single model… increase utilization by:

Supporting a variety of model frameworks

Supporting concurrent model execution, one or multiple models

Supporting many model types: CNN, RNN, “stateless”, “stateful”

Enabling both “online” and “offline” inference use cases

Enabling scalable, reliable deployment

4

TENSORRT INFERENCE SERVER
Architected for Maximum Datacenter Utilization

Support a variety of model frameworks

TensorRT, TensorFlow, Caffe2, custom

Support concurrent model execution, one or multiple models

Multi-model, multi-GPU and asynchronous HTTP and GRPC request handling

Support many model types: CNN, RNN, “stateless”, “stateful”

Multiple scheduling and batching algorithms

Enable both “online” and “offline” inference use cases

Batch 1, batch n, dynamic batching

Enable scalable, reliable deployment

Prometheus metrics, live/ready endpoints, Kubernetes integration

5

EXTENSIBLE ARCHITECTURE

Extensible backend architecture allows multiple
framework and custom support

Extensible scheduler architecture allows support
for different model types and different batching
strategies

Leverage CUDA to support model concurrency
and multi-GPU

6

MODEL REPOSITORY

File-system based repository of the models loaded and served by the inference server

Model metadata describes framework, scheduling, batching, concurrency and other aspects of
each model

ModelX
 platform: TensorRT
 scheduler: default
 concurrency: …

ModelY
 platform: TensorRT
 scheduler: dynamic-batcher
 concurrency: …

ModelZ
 platform: TensorFlow
 scheduler: sequence-batcher
 concurrency: ...

7

BACKEND ARCHITECTURE

Backend acts as interface between inference requests and a standard or custom framework

Supported standard frameworks: TensorRT, TensorFlow, Caffe2

Providers efficiently communicate inference request inputs and outputs (HTTP or GRPC)

Efficient data movement, no additional copies

ModelX Backend

Default
Scheduler

TensorRT Runtime

M
od

el
X

In
fe

re
nc

e
Re

qu
es

t

Output
Tensors

Input
Tensors

Providers

8

MULTIPLE MODELS
ModelZ Backend

Sequence
Batcher

TensorFlow
Runtime

M
od

el
Z

In
fe

re
nc

e
Re

qu
es

t
ModelY Backend

Dynamic
Batcher

TensorRT Runtime

M
od

el
Y

In
fe

re
nc

e
Re

qu
es

t

ModelX Backend

Default
Scheduler

TensorRT Runtime

M
od

el
X

In
fe

re
nc

e
Re

qu
es

t

9

MODEL CONCURRENCY
Multiple Models Sharing a GPU

By default each model gets one instance on each available GPU (or 1 CPU instance if no GPUs)

Each instance has an execution context that encapsulates the state needed by the runtime to
execute the model

ModelZ Backend
ModelY Backend

ModelX Backend

Default
Scheduler

TensorRT Runtime

Context
GPU

10

MODEL CONCURRENCY
Multiple Instances of the Same Model

Model metadata allows multiple instances to be configured for each model

Multiple model instances allow multiple inference requests to be executed simultaneously

GPU

ModelX Backend

Default
Scheduler

TensorRT Runtime

Context

Context

Context

11

ModelZ Backend

Sequence
Batcher

TensorFlow
Runtime
Context

Context
ModelY Backend

Dynamic
Batcher

TensorRT Runtime

Context

Context

MODEL CONCURRENCY
Multiple Instances of Multiple Models

GPU
ModelX Backend

Default
Scheduler

TensorRT Runtime

Context

Context

Context

12

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
od

el
X

M
od

el
X

M
od

el
X

M
od

el
Y

M
od

el
Y

M
od

el
Y

13

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
od

el
X

M
od

el
X

M
od

el
X

M
od

el
Y

M
od

el
Y

M
od

el
Y

Execute ModelX

14

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
od

el
X

M
od

el
X

M
od

el
X

M
od

el
Y

M
od

el
Y

M
od

el
Y

Execute ModelX

Execute ModelX

15

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
od

el
X

M
od

el
X

M
od

el
X

M
od

el
Y

M
od

el
Y

M
od

el
Y

Execute ModelX

Execute ModelX

Execute ModelX

16

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
od

el
X

M
od

el
X

M
od

el
X

M
od

el
Y

M
od

el
Y

M
od

el
Y

Execute ModelX

Execute ModelX

Execute ModelX

Execute ModelY

17

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
od

el
X

M
od

el
X

M
od

el
X

M
od

el
Y

M
od

el
Y

M
od

el
Y

Execute ModelX

Execute ModelX

Execute ModelX

Execute ModelY

Execute ModelY

18

CONCURRENT EXECUTION TIMELINE
GPU Activity Over Time

Time

Incoming Inference
Requests

M
od

el
X

M
od

el
X

M
od

el
X

M
od

el
Y

M
od

el
Y

M
od

el
Y

Execute ModelX

Execute ModelX

Execute ModelX

Execute ModelY

Execute ModelY

Execute ModelY

19

SHARING A GPU
CUDA Enables Multiple Model Execution on a GPU

ModelY Backend

Dynamic
Batcher

TensorRT Runtime

Context

Context

ModelX Backend

Default
Scheduler

TensorRT Runtime

Context

Context

Context

CUDA Streams

GPU

H
ardw

are S
cheduler

20

MUTLI-GPU
Execution Contexts Can Target Multiple GPUs

ModelY Backend

Dynamic
Batcher

TensorRT Runtime

Context

Context

ModelX Backend

Default
Scheduler

TensorRT Runtime

Context

Context

Context

CUDA Streams

GPU
H

ardw
are S

cheduler
GPU

H
ardw

are S
cheduler

21

CUSTOM FRAMEWORK
Integrate Custom Logic Into Inference Server

Provide implementation of your “framework”/”runtime” as shared library

Implement simple API: Initialize, Finalize, Execute

All inference server features are available: multi-model, multi-GPU, concurrent execution,
scheduling and batching algorithms, etc.

ModelCustom Backend

Default
Scheduler

Custom Wrapper

M
od

el
Cu

st
om

In

fe
re

nc
e

Re
qu

es
t

Output
Tensors

Input
Tensors

Providers

Custom
Runtime

libcustom.so

22

SCHEDULER ARCHITECTURE

Scheduler responsible for managing all inference requests to a given model

Distribute requests to the available execution contexts

Each model can configure the type of scheduler appropriate for the model

Model Backend

Scheduler

Runtime

Context

Context

23

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default
Scheduler

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

24

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default
Scheduler

Runtime

Context

Context

Incoming requests to ModelX
queued in scheduler

25

DEFAULT SCHEDULER

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at
the same time.

Utilization = 3/8 = 37.5%

Distribute Individual Requests Across Available Contexts

ModelX Backend

Default
Scheduler

Runtime

Context

Context

requests assigned in order
to ready contexts

26

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default
Scheduler

Runtime

Context

Context

 When context completes a
new request is assigned

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at
the same time.

Utilization = 2/8 = 25%

27

DEFAULT SCHEDULER
Distribute Individual Requests Across Available Contexts

ModelX Backend

Default
Scheduler

Runtime

Context

Context

 When context completes a
new request is assigned

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at
the same time.

Utilization = 4/8 = 50%

28

DYNAMIC BATCHING SCHEDULER

Default scheduler takes advantage of multiple model instances

But GPU utilization dependent on the batch-size of the inference request

Batching is often on of the best ways to increase GPU utilization

Dynamic batch scheduler (aka dynamic batcher) forms larger batches by combining multiple
inference request

Group Requests To Form Larger Batches, Increase GPU Utilization

29

DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic
Batcher

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

30

DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic
Batcher

Runtime

Context

Context

Incoming requests to ModelY
queued in scheduler

31

DYNAMIC BATCHING SCHEDULER
Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend

Dynamic
Batcher

Runtime

Context

Context

Dynamic batcher configuration for
ModelY can specify preferred
batch-size. Assume 4 gives best
utilization.

Dynamic batcher groups requests
to give 100% utilization

32

SEQUENCE BATCHING SCHEDULER

Default and dynamic-batching schedulers work with stateless models; each request is
scheduled and executed independently

Some models are stateful, a sequence of inference requests must be routed to the same
model instance

“Online” ASR, TTS, and similar models

Models that use LSTM, GRU, etc. to maintain state across inference requests

Multi-instance and batching required by these models to maximum GPU utilization

Sequence-batching scheduler provides dynamically batching for stateful models

Dynamic Batching for Stateful Models

33

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence
Batcher

Runtime

Context

Context

Sequence: 3 inference requests

123

12345

Sequence: 5 inference requests

34

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence
Batcher

Runtime

Context

Context123 12345

Inference requests arrive
 in arbitrary order

35

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence
Batcher

Runtime

Context

Context123 12345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot

Context has available slots, not used
waiting requests due to stateful model

requirement

36

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence
Batcher

Runtime

Context

Context23 2345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot

37

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence
Batcher

Runtime

Context

Context3
345

Sequence batcher allocates context slot
to sequence and routes all requests to

that slot

38

SEQUENCE BATCHING SCHEDULER
Dynamic Batching for Stateful Models

ModelZ Backend

Sequence
Batcher

Runtime

Context

Context45

On a fully-loaded server, all context
slots would be occupied by
sequences.

As soon as one sequence ends
another is allocated to the slot.

39

MAXIMIZING DATA CENTER UTILIZATION WITH
TENSORRT INFERENCE SERVER

Recap

Expand the number of models available to share the GPU

Support a variety of model frameworks

Support many model types: CNN, RNN, “stateless”, “stateful”

Enable multiple models and multiple instances to execute concurrently on GPU

Support multi-model and multi-instance via CUDA streams

Enable many model types to exploit large batches which have higher GPU utilization

Provide scheduling / batching algorithms for both “stateless” and “stateful” models

40

NAVER USE-CASE

41

NAVER
Korea No. 1 Search Engine & Internet Company

42

DATA ENGINEERING PLATFORM

43

C3DL PLATFORM

YARN-based DL platform for Search
Division’s DL R&D

CPU / GPU scheduler based on YARN
(https://github.com/naver/hadoop)

Both training/inference supported

Since 2016

44

Batc
h

Serving

Streaming

Service

Datasets Training Model Inference

WHY TRTIS IN C3DL?
Can be used for several types of Inference Services

45

WHY TRTIS FOR C3DL?

Supports HTTP / gRPC

Each Data Handling with numpy-like format

Dynamic Model Deployment with Model Store

Optimized for Container-based Provisioning

Multi-model / Multi-GPU supported

Multi Framework supported

Optimized for Large-Scale Inference Service

46

Input Queue Output Queue

TRTI
S

Data
Source

Data
Sink

Producer Consumer

Model
Converter Trained

Model

model

dataraw

datavector

dataoutput

data

gRPC

request/response

Model
Repository

Inference
Client gRPC

request/response

C3 DL INFERENCE

47

FUTURE PLANS

More Use cases with TRTIS

More Inference on GPUs: Image as well as Text-based

More cost-efficient Inference : T4 adoption

More Collaboration with NVIDIA: Applying TRT for more Models

47

48

MAXIMIZE GPU UTILIZATION WITH TENSORRT
INFERENCE SERVER

Try It Today!

The TensorRT Inference Server is available as a ready-to-run Docker image on the NVIDIA
Compute Cloud. https://ngc.nvidia.com/catalog/containers/nvidia:tensorrtserver

The TensorRT Inference Server is open-source. Read the docs, build the source, file issues,
contribute pull requests! https://github.com/NVIDIA/tensorrt-inference-server

Questions, feedback?

Connect with the Experts: NVIDIA TensorRT Inference Server
Wednesday, 3/20/19 | 12:00 - 13:00 - SJCC Hall 3 Pod D (Concourse Level)

