<ANVIDIA. *

MAXIMIZING UTILIZATION FOR DATA
CENTER INFERENCE WITH TENSORRT
INFERENCE SERVER

David Goodwin, Soyoung Jeong "

AGENDA

Important capabilities to maximize data center utilization
TensorRT Inference Server architecture for maximum utilization
Multi-frameworks
Multi-models

Model concurrency

Real-world use-case: Naver

2 NVIDIA.

MAXIMIZING UTILIZATION

Often GPU is not fully utilized by a single model... increase utilization by:
Supporting a variety of model frameworks
Supporting concurrent model execution, one or multiple models
Supporting many model types: CNN, RNN, “stateless”, “stateful”
Enabling both “online” and “offline” inference use cases

Enabling scalable, reliable deployment

3 NVIDIA.

TENSORRT INFERENCE SERVER

Architected for Maximum Datacenter Utilization

Support a variety of model frameworks
TensorRT, TensorFlow, Caffe2, custom

Support concurrent model execution, one or multiple models
Multi-model, multi-GPU and asynchronous HTTP and GRPC request handling

Support many model types: CNN, RNN, “stateless”, “stateful”
Multiple scheduling and batching algorithms

Enable both “online” and “offline” inference use cases
Batch 1, batch n, dynamic batching

Enable scalable, reliable deployment
Prometheus metrics, live/ready endpoints, Kubernetes integration

4

<ANVIDIA.

EXTENSIBLE ARCHITECTURE

MODEL REPOSITORY Extensible backend architecture allows multiple
framework and custom support

Buguestiosponrstiwtlon e Extensible scheduler architecture allows support
= for different model types and different batching
P —" s strategies
NVIDIA TensorRT Schoormodel o ittt

Inference Server

Leverage CUDA to support model concurrency
and multi-GPU

Scheduler

5 NVIDIA.

MODEL REPOSITORY

File-system based repository of the models loaded and served by the inference server

Model metadata describes framework, scheduling, batching, concurrency and other aspects of
each model

ModelX ModelZ
platform: TensorRT platform: TensorFlow
scheduler: default scheduler: sequence-batcher
concurrency: ... concurrency: ...

ModelY

platform: TensorRT
scheduler: dynamic-batcher
concurrency: ...

6 NVIDIA.

BACKEND ARCHITECTURE

Backend acts as interface between inference requests and a standard or custom framework
Supported standard frameworks: TensorRT, TensorFlow, Caffe2
Providers efficiently communicate inference request inputs and outputs (HTTP or GRPC)

Efficient data movement, no additional copies

ModelX Backend

TensorRT Runtime

Default
Scheduler

v

ModelX Inference
Request

Input

Output Tensors
7 <ANVIDIA.

ModelX Inference

Request

ModelY Inference

Request

ModelZ Inference
Request

MULTIPLE MODELS

ModelZ Backend

TensorFlow

Runtime
Sequence

Ratcher

ModelY Backend TensorRT Runtime

Dynamic

RBatcher

ModelX Backend TensorRT Runtime

Default -

Scheduler

8

<ANVIDIA.

MODEL CONCURRENCY

Multiple Models Sharing a GPU

By default each model gets one instance on each available GPU (or 1 CPU instance if no GPUs)

Each instance has an execution context that encapsulates the state needed by the runtime to
execute the model

Mndel7 Rarcrkend
NMAAAIlV RDaAl,AanA

ModelX Backena TensorRT Runtime

Default
Scheduler

Context

9 <ANVIDIA.

MODEL CONCURRENCY

Multiple Instances of the Same Model

Model metadata allows multiple instances to be configured for each model

Multiple model instances allow multiple inference requests to be executed simultaneously

ModelX Backena TensorRT Runtime

Default Context

Scheduler

Context

Context

10

<ANVIDIA.

MODEL CONCURRENCY

Multiple Instances of Multiple Models

ModelZ Backend TensorElow

Piintima

~ 1 [l

Mogel¥" Backend TensorRT Runtime

~

ModelX Backenad TensorRT Runtime

Context

Default
Scheduler

Context

Context

11 <ANVIDIA.

CONCURRENT EXECUTION TIMELINE

dddddd Time

Incoming Inference
Requests

CONCURRENT EXECUTION TIMELINE

GPU Activity Over Time

Execute ModelX

dddddd Time

Incoming Inference
Requests

CONCURRENT EXECUTION TIMELINE

GPU Activity Over Time

Execute ModelX

Execute ModelX
X X X > > >

dddddd Time

Incoming Inference
Requests

CONCURRENT EXECUTION TIMELINE

GPU Activity Over Time

Execute ModelX
Execute ModelX
> > X > > >

Execute ModelX

dddddd Time

Incoming Inference
Requests

CONCURRENT EXECUTION TIMELINE

GPU Activity Over Time

Execute ModelX
Execute ModelX
Execute ModelX

Execute ModelY

Incoming Inference
Requests

CONCURRENT EXECUTION TIMELINE

GPU Activity Over Time

Execute ModelX
Execute ModelX

Execute ModelX
Execute ModelY

Execute ModelY
> >- >

Incoming Inference
Requests

CONCURRENT EXECUTION TIMELINE

GPU Activity Over Time

Execute ModelY
> > >

Incoming Inference
Requests

SHARING A GPU

CUDA Enables Multiple Model Execution on a GPU

ModelY Backend TensorRT Runtime

Dynamic Context

Batcher

Context

ModelX Backend TensorRT Runtime CUDA Streams

Context

Default
Scheduler

L
)
-
aQ
=
)
)
®
2
o)
2
@
Q
c
@
-

Context

Context

19 <ANVIDIA.

MUTLI-GPU

Execution Contexts Can Target Multiple GPUs

ModelY Backend TensorRT Runtime

Dynamic Context

Batcher

Context

ModelX Backend TensorRT Runtime CUDA Streams

Context

IaAinNnaliNce AlpRAANIPLI

Default
Scheduler

I
)
Q
aQ
=
)
L
®
Q)
o)
-y
@
Q
c
)
@

Context

Context

20 <ANVIDIA.

CUSTOM FRAMEWORK

Integrate Custom Logic Into Inference Server

Provide implementation of your “framework”/”runtime” as shared library

Implement simple API: Initialize, Finalize, Execute

All inference server features are available: multi-model, multi-GPU, concurrent execution,

scheduling and batching algorithms, etc.
libcustom.so

ModelCustom Backend Custom Wrapper

Default Custom
v Scheduler Runtime

Providers
21 <ANVIDIA.

ModelCustom

‘ Inference Request

Input

Tensors

Output
Tensors P

SCHEDULER ARCHITECTURE

Scheduler responsible for managing all inference requests to a given model
Distribute requests to the available execution contexts

Each model can configure the type of scheduler appropriate for the model

Model Backend Runtime

Context

Scheduler

Context

22 <ANVIDIA.

DEFAULT SCHEDULER

Distribute Individual Requests Across Available Contexts

ModelX Backend Runtime

Batch-1 Request
Batch-4 Request /

\

Default Context

Scheduler

Context

DEFAULT SCHEDULER

Distribute Individual Requests Across Available Contexts

ModelX Backend Runtime

Default Context

Scheduler

E:E: Context

Incoming requests to ModelX
queued in scheduler

DEFAULT SCHEDULER

Distribute Individual Requests Across Available Contexts

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at

the same time. ModelX Backend Runtime

Utilization = 3/8 = 37.5%

Default - Context

Scheduler

E: E Context

requests assigned in order
to ready contexts

25 <ANVIDIA.

DEFAULT SCHEDULER

Distribute Individual Requests Across Available Contexts

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at

the same time. ModelX Backend Runtime

Utilization = 2/8 = 25%

Default - Context

Scheduler

E [] Context

When context completes a
new request is assigned

26 <ANVIDIA.

DEFAULT SCHEDULER

Distribute Individual Requests Across Available Contexts

Assuming GPU is fully utilized by
executing 2 batch-4 inferences at

the same time. ModelX Backend

Runtime

Default E Context

Utilization = 4/8 = 50%

Scheduler

Context

When context completes a
new request is assigned

27 <ANVIDIA.

DYNAMIC BATCHING SCHEDULER

Default scheduler takes advantage of multiple model instances
But GPU utilization dependent on the batch-size of the inference request

Batching is often on of the best ways to increase GPU utilization

Dynamic batch scheduler (aka dynamic batcher) forms larger batches by combining multiple
inference request

28 NVIDIA.

DYNAMIC BATCHING SCHEDULER

Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend Runtime

Batch-1 Request
Batch-4 Request /

\

Context

Dynamic

Batcher

Context

DYNAMIC BATCHING SCHEDULER

Group Requests To Form Larger Batches, Increase GPU Utilization

ModelY Backend Runtime

Context

Dynamic

Batcher

E:E: Context

Incoming requests to ModelY
queued in scheduler

DYNAMIC BATCHING SCHEDULER

Group Requests To Form Larger Batches, Increase GPU Utilization

Dynamic batcher configuration for
ModelY can specify preferred
batch-size. Assume 4 gives best ModelY Backend

utilization. Runtime

Dynamic batcher groups requests
to give 100% utilization

Context

E Context

Dynamic

Batcher

31

<ANVIDIA.

SEQUENCE BATCHING SCHEDULER

Default and dynamic-batching schedulers work with models; each request is
scheduled and executed independently

Some models are , a sequence of inference requests must be routed to the same
model instance

“Online” ASR, TTS, and similar models
Models that use LSTM, GRU, etc. to maintain state across inference requests
Multi-instance and batching required by these models to maximum GPU utilization

Sequence-batching scheduler provides dynamically batching for stateful models

NVIDIA.

SEQUENCE BATCHING SCHEDULER

Dynamic Batching for Stateful Models

ModelZ Backend

Sequence: 3 inference requests Runtime

Context

Sequence

Batcher

Context

Sequence: 5 inference requests

SEQUENCE BATCHING SCHEDULER

Dynamic Batching for Stateful Models

ModelZ Backend Runtime

Context

Sequence

Batcher

Context

Inference requests arrive
in arbitrary order

SEQUENCE BATCHING SCHEDULER

Dynamic Batching for Stateful Models

Context has available slots, not used
waiting requests due to stateful model
requirement

ModelZ Backend Runtime

Context

Sequence

Batcher

Context

Sequence batcher allocates context slot
to sequence and routes all requests to
that slot

35 <ANVIDIA.

SEQUENCE BATCHING SCHEDULER

Dynamic Batching for Stateful Models

ModelZ Backend Runtime

Context

Sequence

Batcher

HSxu 4 3 %::‘I Context

Sequence batcher allocates context slot
to sequence and routes all requests to
that slot

SEQUENCE BATCHING SCHEDULER

Dynamic Batching for Stateful Models

ModelZ Backend Runtime

Context

Sequence

Batcher

Context

Sequence batcher allocates context slot
to sequence and routes all requests to
that slot

SEQUENCE BATCHING SCHEDULER

Dynamic Batching for Stateful Models

On a fully-loaded server, all context
slots would be occupied by

sequences. ModelZ Backend Runtime
As soon as one sequence ends

another is allocated to the slot. Context

Sequence
Batcher

'y w2 Context

MAXIMIZING DATA CENTER UTILIZATION WITH
TENSORRT INFERENCE SERVER

Support a variety of model frameworks
Support many model types: CNN, RNN, “stateless”, “stateful”

Support multi-model and multi-instance via CUDA streams

Provide scheduling / batching algorithms for both “stateless” and “stateful” models

nnnnnnn

NAVER USE-CASE

NAVER

Korea No. 1 Search Engine & Internet Company

all KT & 12:05 @ © 72%()4
HlOJL1& AIZ{HOIX| 2

& naver.com ©

w NAVER

i

3 RS M= gt /Y M WE HEI v 527

oY 2t 823 XAIN 4Y Pay DTV AR {A

LA o0 ARXX XtSk Of3f+ H|EL|A 4
_ T j 1 o o
32+ @ Fali7H2 |52zt 3%k of3h My Connect with people

g : =] " = . - -
s g ileimianaied NAVER Sign in "IAIBR], kAR o) SCHS". | AR QIMIE|= K|
11.5% A3 oY) gl

4.7% DEUT ENEARIIE)

Forgot Username or Password? Sign up Of0F 7|RA A2 24| HES| AA)7|2
- M8 SA LIS IRsRE= A
doluis oto] Amx Py o MBE) A== 36 < |2 AR ERNEASNPARE
ASFURIR STHG| MM, 25|12 ChAE CHE Sl
Bj7 [20]= VEIA] 121229 £ MVPE? tETUxe sieid SIS chal= ch= 2
FAAGHE 5 FHAZAF MY A H < >
OF7 HIB2| =7) Hg Mot Ho|gol opEst M=9... 2|2 D= T X0|MHK] 201 2L 910| I ZiCt
sielET PSGE HET SHHH 27, {002 0] 4.
@ sorun MBN OSEN HBRATV NEWSIS TUEE Chireyl 2 OU™EBT=20/AI0E %
T R \1688-7711
weaya, oF ZEZ OMAI EOF
[BLOTER KBS© mydaily AENNE ECEE1 oHRQUE v = i|‘a:46,__- Saa=aM %AI HH(E2)
of K& SH1H =ICH FEETEERS
ENews24 AugRug SPOVEETH 2Hiptetce g AZABR Abletiis Q;
\ 17N
\l
= o+ cCIXiI ¥HMM JoB& It FF HIEL|A FARM ABM ZAHEAl 5 (> 21

M

<ANVIDIA.

DATA ENGINEERING PLATFORM

MapReduce HIVE HBase Zookeeper Ambari Hue
(Processing using (Analytical SQL on (NoSQL Database) (Coordination) (Cluster (Web Interface)
difference Hadoop) Management)

languages)

Deep Learning

; "1" Caffe

Zeppelin Kafka

Storm Oozie, Airflow
(Interactive data (Streaming (Streaming (Scheduling) (Support Long-live theano - e o IO
Flow Engine) analytics) Platform) Processing) Application) e ¢
Jupyter
.\/
APACH pr— APACHE =
Spb'riz §8kafko STORM &> docker
- Rireop il A datbe bt vy e

Resource
Management

Storage

42 <ANVIDIA.

C3DL PLATFORM

Since 2016

it 2 g YARN-be,\sed DL platform for Search
Division’s DL R&D

CPU / GPU scheduler based on YARN
(https://github.com/naver/hadoop)

Z ! GPU Devic®D
e P s 1
1 @ 1 Manager
i l

YARN C3 Distributed Shell

GPU

Both training/inference supported

|
|
I
I
| AR
|
I
I
I

YARN jocker YARN ocker YARN jocker
GANVIDIA. <ANVIDIA. EANVIDIA.
CUDA CUDA CUDA. e o o
\ Manager Manager Manager

e e e e e e e e o e e -

43 <ANVIDIA.

WHY TRTIS IN C3DL?

Can be used for several types of Inference Services
Datasets Training Model Inference

Service

44

WHY TRTIS FOR C3DL?

Supports HTTP / gRPC

Each Data Handling with numpy-like format
Dynamic Model Deployment with Model Store
Optimized for Container-based Provisioning
Multi-model / Multi-GPU supported

Multi Framework supported

45 NVIDIA.

model
e,

g8ior

datBut

data

Inference
Client

r Producer

Data
Source

Converter

SBkafka

Input Queue

DL INFERENCE

Repository Trained

Model
HIES]

@ANVIDIA.

TRTI INOqe]
S 119106q

Spcwr‘lgZ

] kafka. Consumer
Streaming Shtput Queue
Data
Sink

FUTURE PLANS

More Use cases with TRTIS
More Inference on GPUs: Image as well as Text-based
More cost-efficient Inference : T4 adoption

More Collaboration with NVIDIA: Applying TRT for more Models

47 NVIDIA.

MAXIMIZE GPU UTILIZATION WITH TENSORRT
INFERENCE SERVER

The TensorRT Inference Server is available as a ready-to-run Docker image on the NVIDIA
Compute Cloud.

The TensorRT Inference Server is open-source. Read the docs, build the source, file issues,
contribute pull requests!

Questions, feedback?

Wednesday, 3/20/19 | 12:00 - 13:00 - SJCC Hall 3 Pod D (Concourse Level)

nnnnnnn

- \ /
v N,
\ 5% 7
4 \ ‘
—— Y : |
) |
> i sl
| = |
— [7 YAl ~
- = \\- -

,\ \
N ‘
‘\

<SINVIDIA.

