
Advances in computational
mechanics using GPUs

Nicolin Govender (Surrey,UJ), Charley Wu (Surrey),Daniel Wilke (UP)

Computational Methods
CFD

(Volume of Fluid ,Finite Difference)
Finite Element

(FEM)

(1951) (1956)

Discrete Element
(DEM)

Even at home..Discrete nature cannot be ignored

Treats material as a continuum, computationally cheap.

Focus of this talk:
Particulate Material

Second most manipulated substance on the planet after water.

Granular material is out of this world!

Particulate Sizes and Interaction

Log10 (m) Particle Size

Importance of considering
physical interaction

Solution Classes

Event Based
(Monte Carlo)

Proximity Based
(Molecular Dynamics)

Contact Based
(DEM, Impulse)

At particle level
embarrassingly parallel.
Instruction complexity
some what divergent.

At particle level
embarrassingly parallel.
Instruction complexity
fairly similar.

At particle level
embarrassingly parallel.
Instruction complexity is
divergent for complex shape.

Particle Number: Numerous papers keyword: “large scale”, showing
hundreds of thousands to a few millions of particles taking months to run.

Particulate DEM, A
geomechanics Perspectives,
O’Sullivan 2011

Numbers of particles vs time in DEM papers (CPU)

On typical computers! Not clusters !

What we want

What we have

Challenges in DEM

Ellipsoids:
Better estimation of shape, contact detection more expensive spheres.

Clumped spheres:
Requires many spheres to create a given shape.
Surface has artificial roughness (raspberry effect).
Computationally very expensive for complex shapes.

Super quadratics:
More accurate than clumped spheres for many shapes.
Can become expensive to solve.
Difficulties encountered for concave exponents.

Polyhedra:
Most general of all shapes, physically most accurate.
Computationally very expensive.

Particle Shape: Spheres are the simplest of shapes and when “large scale” is for spheres.

Actual Shape

John Lane, A Review of Discrete Element Method (DEM) Particle Shapes and Size Distributions for Lunar Soil , NASA, 2011

Challenges in DEM

On typical computers! Not clusters !

DEM Algorithm

• Collision detection is a well known problem in computer science.
• Various spatial partitioning algorithms to reduce from O(N).

• Uniform grid and BVH are the most popular in DEM.
• Uniform grid is the fastest when particles are similar sized.
• Expensive in terms of memory when domain is dispersed.
• BVH is ideal when objects move little relative to each other.

• Largest computational cost is collision detection.
• All objects need to be tested against each other O(N) complexity.

Who are my neighbors?
A common question in a

number of areas.

The game changer

2009: Talk at SC on using OpenGL for
collision detection between points and
geometric primitives for MC.

2010: Started with CUDA MD (emulated)

2011: Papers by Radake, Ge using
GPUs for DEM with spheres.

2012: First DEM code for polyhedra
on GPU, (100k to 32 million).

2013: CUDA research center and
hosting on git of Blaze-DEM

2014: PhD and invited talk @ DEM 8

2015: ROCKY commercial DEM code

2017: EDEM OpenCL

2019: We still set the standard ☺

GPU Implementation
• For spherical particles we are as fast as we can be. Bottle neck is with global memory access

speed (task is SIMD). Force computation requires various values to be loaded from memory.
MEMORY BOUND

• Using shared memory not possible as threads are run per particle so no data dependence
on other particles (cannot be tiled). Even with the NN of each particle nothing is common.
Shared Memory DOES NOT HELP

• Each particle needs to check if its current contact existed in the previous step. Within each
thread loop over all previous particle contacts (History).
Register Pressure

Benchmark for spherical particles

Cost $ 16000 for CPUs
*(Price at launch in 2013)= $ 96000

10 Million 1mm Particles, dt = 3.5E-6

Liggghts-P: 60 Cores: 1 second = 46 hours

Reported 40x speed up over a commercial code

Blaze-DEM: 1 GTX 980 : 1 second = 3.2 hours

Cost $ 500

GPU 15X Faster, 30X Cheaper Gan et al. Needed 32 GPUS to get similar
performance. Y He is 500x slower than us.

• In terms of spheres we are happy as we can be, as the compute per particle vs the memory
transactions is low. Achieved goal of increasing particle number in a reasonable time.

• Polyhedra require a detailed contact check this takes 80% of the time. The NN search for
spheres is used as the first check to prune neighbors.

• Various methods for testing collision detection between polyhedra. Most popular is the
common plane which is an iterative method, used by commercial codes.

GPU Implementation

Re-formulated for GPU (Govender 2013)
only face planes are tested.

Finite number of planes: faces
and cross between edges.

1. Problems when edges are involved.
2. Divergent threads
3. Normal is not uniquely defined!

Polyhedra in commercial software

Star CCM+: 4000 particles in 2018!

http://mdx2.plm.automation.siemens.com/blog/david-mann/star-ccm-v1204-preview-
model-realistic-particle-shapes-polyhedral-dem-particles

I will use a dt of 1e-4 340s for 1s on GTX 1080 GPU.
1000X more steps and its correct!

http://mdx2.plm.automation.siemens.com/blog/david-mann/star-ccm-v1204-preview-

Our Approach

• Do it correct, when dealing with 3D
object the contact region is a volume.

• A convex hull is constructed to yield
the resulting contact polyhedron.

Still around 5x faster than ROCKY DEM
when using exact contact detection.

Full accuracy using half the precision…

• Problem is cast in ray tracing form, resulting
in a point cloud

GPU Implementation
• Broad phase cannot eliminate enough neighbors cheaply, even if we use OABB determine

intersection requires the polyhedron contact kernel which causes divergence.

• Adding a second pass on the output of broad phase does not reduce the computation time
by much.

• Reason is that even in the case of a few NN the fact that we have to create a local array for
the contact points as well as the faces of the resulting convex hull overflows registers and
spills in global memory (any in kernel array spills).

• Occupancy is very low as we are memory bound. Reducing to FP16 increases the speed but
that is due to the reduced memory overhead.

• Have to find a way to eliminate the use of local arrays for the storage of computed contact
points.
• Since each particle pair has to do this having it directly in global memory and then

splitting the computation does reduce divergence and increase speed but the memory
cost is far to great.

• Since occupancy is already low, we can manually launch the waves of blocks on the GPU.
Govender et al. (2018) FD Jacobian solver for heat transfer between bodies.

Multi GPU
• Classical domain decomposition is not general enough for DEM as particles are dynamic

creating load balancing issues.

• On a single node don’t need OpenMP, cudaPeer
is sufficient.

• Polyhedra have sufficient compute to hide data
transfer even when all data is transferred.

• Bi-direction bandwidth can be exploited.

• Compute for spheres is faster than hardware
bandwidth. Such an approach cannot work.

• Rocky for example uses domain decomp for
spheres with scaling > 1mil. However, they are 5x
slower than us so scaling is apparent due to a
slower compute…

Polyhedra

Coming soon a novel order and bucket
multi-gpu approach for arbitrary
domain's and particle shapes.

Assumption 1:
Do we really need shape

Granular Mixing

[1] Large-scale GPU based DEM modeling of mixing using irregularly shaped particles, Advanced Powder Tech. (2018)

Spheres are fine, we add
“rolling friction”

Still

Can rolling friction with spheres capture complex
behavior such as arching ?

To what extend does rolling friction mimic shape?

Assumption 2:
Ok we can stick our spheres
to get non-spherical shapes.

Can we do this with spheres or clumped spheres ?

Assumption 3:
Ok but it does not matter

on the larger scale.

Do we still get shape effects for large scale ?

Do we still get shape effects for large scale ?

Do we still get shape effects for large scale ?

Poly + Sphere 13 MW Sphere 11 MW

Flow Profile and Energy consumption

Milling

[1] Effect of particle shape on milling, Minerals Engineering (2018)

Ok this GPU thing its
for games not real science

right ?

Test 1: Contact stability

Test 2: Dynamic Motion

Test 3: For good measure typical FEM problem

Modeled in Blaze-DEM as bonded polyhedra

(a) (b)

Test 4: Not just pretty pictures..

Finally

Disclaimer: No CPU programmers where harmed during the making of these slides.

Design evaluation

⚫ 30x40 grate slots give a 10% higher flow rate through the discharger. 8% less

backflow and 5% less carry over flow

A B

Coupling With Fluid
• A large number of industrial processes requires both particulate

matter and liquid/air to be simulated.

• CFD(VOF) is the most common method for the simulation of fluid,
unfortunately apart from a few specific cases it does not fit the
GPU model.

• LBM is similar in spirit to CFD however it has a fixed number of
propagation directions in each node making it well suited to GPU
implementations.

• A weakness of LBM/CFD and grid based methods in general is that
free surfaces requires additional computation and memory.

• Mesh free methods like SPH are by far the most suited to the GPU
as the fluid is represented by particles. The free surface is also
“free”. Most popular for games/animations.

• However SPH is oth order accurate making its use in scientific
applications limited.

• Particles treated as a porous medium, unresolved flow around the
particles/structure. Drag models are needed, which still do not
capture shape effects correctly.

Multi-Physics Couplings
DualSPHysics : Unresolved Blaze SPH : Resolved 1st order gradient correction

Conclusions

● DEM simulations using the GPU computing is at the same physics fidelity as CPU
based codes.

● The increase in computational power gives us a large number of spherical particles
many times faster than CPU codes.

● The increase in computational power is used to do shape more accurately than CPU
based codes while being faster and allowing for millions of particles.

● The effect of particle shape is evident.

● Blaze-DEM is open-source to collaborators, have a look at researchgate.

● Submit an abstract for DEM 8, Sessions on particle shape and GPU/HPC .

● Always welcome GPU donations.

A man’s reach should exceed his grasp, or what are GPUs for…

