
TensorRT Inference
with TensorFlow

Pooya Davoodi (NVIDIA)
Chul Gwon (Clarifai)
Guangda Lai (Google)
Trevor Morris (NVIDIA)

March 20, 2019



TensorFlow

● Powerful experimentation for research

● Easy model building

● Robust ML production anywhere

An end-to-end open source machine learning platform

41m Downloads



NVIDIA TensorRT

● Optimize and Deploy neural networks in production environments

● Maximize throughput for latency-critical apps with optimizer and runtime

● Deploy responsive and memory efficient apps with INT8 & FP16

Platform for High-Performance Deep Learning Inference

300k Downloads in 2018



TF-TRT = TF + TRT



Why to use TF-TRT

● Optimize TF inference
● Simple API
● Possible to optimize even if parts of model are not supported by TRT
● Can still use TF echosystem
● Extract TRT optimized parts out of TF model, and execute standalone



AGENDA

● Performance & Accuracy

● How to use TF-TRT

● How TF-TRT works

● Customer experience: Clarifai
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Throughput on NVIDIA GPU T4
Speedup for batch size 128

10x
9x

TF
TF-TRT FP16
TF-TRT INT8

Benchmark inference only (no I/O or preprocessing)
TensorFlow 1.13 in NVIDIA TensorFlow 19.03 containers
Scripts: https://github.com/tensorflow/tensorrt 

https://github.com/tensorflow/tensorrt
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Optimized models
● ResNet                  10x
● MobileNet                9x
● Inception                  8x
● VGG                        7x
● NASNet L/M            4x
● SSD MobileNet v1   3x

Coming soon:

● Faster-RCNN, Mask-RCNN
● Neural Collaborative Filtering
● NLP: Transformer, BERT

SSD: available soon in NVIDIA containers and github.com/tensorflow/tensorflow/ 
Scripts: https://github.com/tensorflow/tensorrt 

https://github.com/tensorflow/tensorflow/
https://github.com/tensorflow/tensorrt


9

Accuracy of FP16
Models TF FP32 TF-TRT FP16

Mobilenet V2 74.08 74.07

NASNet Mobile 73.97 73.87

ResNet 50 V2 76.43 76.40

VGG 16 70.89 70.91

Inception V3 77.99 77.97

SSD Mobilenet v1 23.062 23.073

Top1 metric for classification models.
mAP for detection models.
Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

FP16 accuracy is within 0.1% of 
FP32 accuracy.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models
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Accuracy of INT8
Models TF FP32 TF-TRT INT8

Mobilenet V2 74.08 73.90

NASNet Mobile 73.97 73.55

ResNet 50 V2 76.43 76.30

VGG 16 70.89 70.78

Inception V3 77.99 77.85

Top1 metric for classification models.
Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

INT8 accuracy is within 0.2% of 
FP32 accuracy, except one 
model that’s within 0.5%.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models
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Supported TensorFlow operators
Most of important ops are supported

67 operators are supported
Not all types of inputs or attributes are supported.

Examples of supported operators:

● Gather, (Strided)Slice, Topk
● Convolution: depthwise, dilated convolution
● Shape related: ExpandDims, Reshape, Squeeze
● NMS (Non-Max Suppression): highly effective in performance

List of supported ops: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#support-ops 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#support-ops


12

ResNet-50 v1.5

● 741 nodes → 12 nodes

● Including 1 TRT node



13

SSD Mobilenet v1

● 1772 nodes  → 277 nodes

● Including  4 TRT nodes



Where to use TF-TRT
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Monthly release of Tensorflow

- Nano, Xavier, TX2

How to setup

- Install Jetpack
- Install TF dependencies (numpy, libjpeg8-dev, requests, h5py, etc)
- Install TF

- pip install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 

tensorflow-gpu

https://docs.nvidia.com/deeplearning/dgx/index.html#installing-frameworks-for-jetson

TF-TRT on Jetson Platform

https://docs.nvidia.com/deeplearning/dgx/index.html#installing-frameworks-for-jetson
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Cloud inferencing solutions
Multiple models scalable across GPUs

● TensortRT Inference Server (TRTIS)
○ TensorRT, TensorFlow, and other inferencing engines
○ Monthly release in containers
○ github.com/NVIDIA/tensorrt-inference-server 

● TensorFlow Serving (TFS)
○ TF-TRT with TensorFlow >=1.13 
○ TRT 5.0
○ tensorflow.org/serving

● Maximizing Utilization for Data Center Inference with TRTIS, Wed 11am 220C, 12pm Hall3
● TensorFlow Extended: How to Take AI from Experimentation to Production, Wed 11am 210F

https://github.com/NVIDIA/tensorrt-inference-server
http://tensorflow.org/serving


TF-TRT API
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Inference workflow

TF-TRT
Frozen Graph

TensorFlow Run InferenceTrain Model

Optimize with 
TF-TRT

Train Model
SavedModel Run Inference

Optimize with 
TF-TRT

Train Model
Checkpoints Run InferenceFreeze Graph

TF-TRT
SavedModel



19

TF-TRT API in TensorFlow <=1.13
One API call returns a TF-TRT optimized graph
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TF-TRT API in TensorFlow > 1.13
contrib → compiler
Python class



NVIDIA Tensor Core



22

Tensor Cores in GPU Volta/Turing
Easy to enable

● TensorRT enables Tensor Cores automatically 
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Profile to verify Tensor Core usage
Multiple profilers

● nvprof 
● NVIDIA NSight Systems
● NVIDIA NSight Compute
● NVIDIA DLProf
● TensorFlow Profiler

GTC

● Profiling Deep Learning Networks, Tuesday, Poonam Chitale, David Zier
● Deep Learning Developer Tools for Network Optimization, Wed 4-6pm Hall 3



24

nvprof for verifying Tensor Core usage
h884, h1688, i8816

$ nvprof python run_inference.py
...
==87== Profiling result:
            Type  Time(%)      Time     Calls       Avg       Min       Max  Name
 GPU activities:   20.85%  1.41948s     46080  30.804us  14.688us  694.17us  trt_turing_h1688cudnn_128x128_ldg8_relu_exp_interior_nhwc_tn_v1
                   17.88%  1.21692s     32104  37.905us  13.120us  127.78us  trt_turing_h1688cudnn_128x128_ldg8_relu_exp_small_nhwc_tn_v1
                   10.91%  742.33ms     34034  21.811us  6.3680us  58.335us  void cuScale::scale<__half, __half, bool=1, cuScale::Mode, bool=0, ...
                    7.77%  528.65ms     10080  52.445us  13.184us  437.02us  trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_interior_nhwc_...
                    5.75%  391.27ms      8104  48.280us  13.216us  127.01us  trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_small_nhwc_tn...
                    4.27%  290.90ms      4736  61.423us     672ns  9.1938ms  [CUDA memcpy HtoD]
                    4.19%  284.93ms      2080  136.99us  26.847us  367.39us  trt_volta_scudnn_128x64_relu_interior_nn_v1
                    2.59%  176.06ms      4106  42.878us  14.112us  702.43us  trt_turing_h1688cudnn_128x128_ldg8_relu_exp_medium_nhwc_tn_v1
                    2.53%  172.25ms      1152  149.53us  75.807us  263.33us  volta_cgemm_32x32_tn
                    2.44%  165.84ms      8010  20.703us  2.3040us  48.575us  void cuPad::pad<__half, int4, int=128, bool=0>...
                    2.16%  146.81ms      2218  66.189us  2.2400us  72.767us  void cuInt8::nchwTonhwc<float, int=32, int=32, int=2>...
                    1.30%  88.795ms      2000  44.397us  43.679us  62.111us  void Eigen::internal::EigenMetaKernel<Eigen::TensorEvaluator...
                    1.20%  81.957ms      2106  38.916us  13.664us  449.08us  trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_medium_nhwc...
                    1.16%  78.870ms      2034  38.775us  30.880us  452.12us  trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_large_nhwc_tn...
                    1.06%  71.838ms      2002  35.883us  22.176us  45.888us  trt_volta_h884gemm_64x64_ldg8_relu_nn_v1
                    0.99%  67.413ms      2002  33.673us  31.200us  35.104us  void nvinfer1::poolCoalescedC<nvinfer1::PoolingType, int=3, bool=0>...
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What if not using Tensor Core
● Hardware: GPU Volta or Turing

● Configuration
○ precision_mode: FP16 or INT8

○ Dimensions must be multiples of 8

● Tensor Core may not be the fastest

● Unsupported case

● Report to NVIDIA

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html 

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html


INT8 Quantization
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TensorRT’s INT8 Quantization Approach

-127 127

-6.0 6.0

FP32

INT8

0.0

Quantize(r = 6.0)

-3.4e+38 3.4e+38

0

2.76

58

Quantize(x, r) = round(s * clip(x, -r, r))
where s = 127 / r
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Two Methods for Determining Quantization Ranges
1. Calibration

○ Recommended method
○ Works with most models with minimal accuracy loss (<1%)

2. Quantization-Aware Training
○ Model the quantization error during training
○ Quantization ranges are learned
○ Can provide better accuracy than calibration
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TF-TRT calibration API in TensorFlow <=1.13
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TF-TRT calibration API in TensorFlow <=1.13
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TF-TRT calibration API in TensorFlow <=1.13
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TF-TRT calibration API in TensorFlow > 1.13
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Quantization-Aware Training
● Can increase accuracy beyond calibration
● Insert quantization nodes into your pretrained model

○ Experimental

● Finetune model to adapt for quantization error
● Give model to TF-TRT

Relu

Conv2D

FakeQuant

FakeQuant

BatchNorm

range

range



How TF-TRT Works
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Under the hood:

● Phase 1: graph partition
○ Partition the TF Graph: TRT-compatible vs. TRT-incompatible
○ Wrap each TRT-compatible subgraph in a single node (TRTEngineOp)
○ Use the new node to replace the subgraph

● Phase 2: layer conversion
○ For each new node, build a TensorRT network (a graph containing TensorRT layers)

● Phase 3: engine optimization
○ Optimize the network and use it to build a TensorRT engine

TRT-incompatible subgraphs remain untouched and are handled by TF runtime

Do the inference with TF interface

How TF-TRT works
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Example

Add

Conv2D

input (shape unknown)

Reshape

BatchNorm BatchNorm

Cast

Relu
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● Visit all nodes
● Mark them as TRT-compatible or 

TRT-incompatible based on:
○ Operation type
○ Attribute settings

Legend
             TRT-compatible
             TRT-incompatible

Phase 1: mark TRT-compatible nodes

Add

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Relu

Before execution
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● Cluster nodes into 
TRT-compatible subgraphs

● The result should be a direct 
acyclic graph (DAG)

● Doesn’t create circular 
dependency

Phase 1: cluster marked nodes

Add

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Relu

Before execution
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Phase 1: cluster marked nodes

Add

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Relu

● Cluster nodes into 
TRT-compatible subgraphs

● The result should be a direct 
acyclic graph (DAG)

● Doesn’t create circular 
dependency

Before execution
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Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into 
TRT-compatible subgraphs

● The result should be a direct 
acyclic graph (DAG)

● Doesn’t create circular 
dependency

Before execution
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Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into 
TRT-compatible subgraphs

● The result should be a direct 
acyclic graph (DAG)

● Doesn’t create circular 
dependency

Before execution
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Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into 
TRT-compatible subgraphs

● The result should be a direct 
acyclic graph (DAG)

● Doesn’t create circular 
dependency

?
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Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into 
TRT-compatible subgraphs

● The result should be a direct 
acyclic graph (DAG)

● Doesn’t create circular 
dependency

loop
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Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into 
TRT-compatible subgraphs

● The result should be a direct 
acyclic graph (DAG)

● Doesn’t create circular 
dependency

Before execution



45

Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

To break the loop: create separate 
clusters

Before execution
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Phase 1: remove small clusters

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

Drop clusters with #nodes less than 
minimum_segment_size.

Trade-off:
● Too small: overheads of too many 

clusters (e.g. extra memcpy to 
cast dtype)

● Too large: missing TRT 
optimizations

Before execution



47

Phase 1: partition result

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

The cluster with Reshape is dropped.Before execution
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TRTEngineOp

Phase 1: create TRTEngineOp

Conv2D

input

Reshape

BatchNorm

Cast

Add

Relu

● Wrap the TRT-compatible 
subgraph in a custom op called 
TRTEngineOp

● Use the new op to replace the 
subgraph

BatchNorm

Before execution
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TRTEngineOp

Phase 1: handle unknown shapes

Conv2D

input (shape unknown)

Reshape

BatchNorm

Cast

Add

Relu

BatchNorm

● Input shape are still unknown
● Unknown shapes are common in 

TensorFlow graphs, e.g.
input = tf.placeholder(
    tf.float32, shape=[None, None])

● Challenge: TRT requires known 
shapes when building the network

Before execution
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TRTEngineOp

Phase 1: handle unknown shapes

Conv2D

input (shape unknown)

Reshape

BatchNorm

Cast

Add

Relu

Two solutions:
● Make all the shapes known (use 

graph with full shapes specified, 
may require extra work)

● Postpone TensorRT optimization 
to execution phase, when shapes 
will be fully specified 
(is_dynamic_op=True. Default is 
False)

BatchNorm

Before execution
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During execution Input shapes are fully specified at 
runtime

Phase 2: create TRT network

TRTEngineOp

Conv2D

BatchNorm

Add

Relu

BatchNorm

shape A
[4, 8, 8, 3] 

shape B
[4, 9, 9, 5] 

…
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During execution ● There is an LRU engine cache in 
TRTEngineOp 

● Keys of the cache are input 
shapes

● If cache miss, build a new engine
● If cache is full, evict an old engine

Phase 2: TRT engine cache

TRTEngineOp

Conv2D

BatchNorm

Add

Relu

BatchNorm

shape A
[4, 8, 8, 3] 

shape B
[4, 9, 9, 5] 

…
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During execution ● Traverse the nodes in topological 
order

● Each TF node is converted to one 
or more TRT layers

Phase 2: TF ops to TRT layers conversion

TRTEngineOp

IConvolutionLayer

BatchNorm

Add

Relu

BatchNorm

shape A
[4, 8, 8, 3] 

shape B
[4, 9, 9, 5] 

…
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During execution Finishing TRT network creation.

Next: build TRT engine (phase 3)

Phase 2: TF ops to TRT layers conversion

TRTEngineOp

IConvolutionLayer

IScaleLayer

IElementWiseLayer

IActivationLayer

IScaleLayer

shape A
[4, 8, 8, 3] 

shape B
[4, 9, 9, 5] 

…
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During execution Optimization from TensorRT library
● Layer & Tensor fusion
● Precision calibration
● Kernel auto-tuning

These optimizations:
● Invisible to user
● Applied to current GPU

Phase 3: build TRT engine

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A
[4, 8, 8, 3] 

shape B
[4, 9, 9, 5] 
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During execution TF tensors: all dimensions are treated 
similarly

TRT:
● First dimension is special, called 

“batch dimension”
● TRT uses batch dim for 

optimizations

TRT batch dimension

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A
[4, 8, 8, 3] 

shape B
[4, 9, 9, 5] 
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During execution Batch dimension is determined by:

● Input shapes during execution 
(when is_dynamic_op=True, like 
this case)

● max_batch_size parameter (when 
is_dynamic_op=False, not listed 
here)

TRT batch dimension

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A
[4, 8, 8, 3] 

shape B
[4, 9, 9, 5] 



58

During execution New inputs with a different batch 
dimension.

We can reuse an engine for a new 
input, if:

● engine batch size >= batch dim of 
new input, and

● non-batch dims match the new 
input

Otherwise: redo phase 2&3

Handle different batch dimensions

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A1
[2, 8, 8, 3] 

shape B1
[2, 9, 9, 5] 
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During execution New inputs with different shapes 
(different non-batch dimensions)

Handle different input shapes

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A2
[4, 7, 7, 4] 

shape B2
[4, 9, 9, 5] 



60

During execution ● Cache is full, evict old engine
● Use larger 

maximum_cached_engines to 
avoid that.

● Will consume more CPU/GPU 
resource, but usually not a 
problem in practice

Handle different input shapes

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A2
[4, 7, 7, 4] 

shape B2
[4, 9, 9, 5] 

TRT engine for
(A2 [4, 7, 7, 4],
B2 [4, 9, 9, 5])
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Future of TF-TRT
● Dynamic shapes

○ Certains tensors have variable shape (NLP)

● TF 2.0 for calibration
● Support for more TF ops and models

○ Faster-RCNN, Mask-RCNN
○ Neural Collaborative Filtering
○ NLP: Transformer, BERT





• Founded by Matt Zeiler in 2013
• SF Office - Clarifai Research
• DC Office - Public Sector
• 90+ employees

About Clarifai
63

• $40M+ in Venture 
Capital Funding

• Image and video recognition
• Clarifai Portal
• On-prem deployment 
• Edge/ Mobile SDK

NEW



• General Model - v1.5
• Demographics
• Color
• Moderation / NSFW
• Retail Analytics
• Public Safety
• Face Detection/Recognition
• Aerial 
• Satellite

Clarifai Models



Clarifai Platform



• Process images faster!  Often need to trade off 
between speed and accuracy

– Use case for public sector work: Need object 
detectors to work real-time for full motion video

• Take advantage of NVIDIA suite of tools, including 
DeepStream, NVIDIA Inference Engine

• Edge processing with NVIDIA Xavier

• Started with our latest General Model (version 1.5)

Why TensorRT?



Frames Per Second

Batch Size Native TF TF-TRT fp32 TF-TRT fp16 TF-TRT int8

1 67.5 (1x) 187.0 (2.8x) 225.6 (3.3x) 303.9 (4.5x)

4 226.0 (1x) 464.0 (2.1x) 718.6 (3.2x) 721.7 (3.2x)

8 319.2 (1x) 590.5 (1.8x) 949.2 (3.0x) 1017.0 (3.2x)

16 410.6 (1x) 743.9 (1.8x) 1220.3 (3.0x) 1334.0 (3.2x)

Latency (ms)

1 14.8 (1x) 5.35 (2.8x) 4.43 (3.3x) 3.29 (4.5x)

4 17.7 (1x) 8.62 (2.1x) 5.57 (3.2x) 5.54 (3.2x)

8 25.1 (1x) 13.6 (1.8x) 8.43 (3.0x) 7.87 (3.2x)

16 39.0 (1x) 21.5 (1.8x) 13.1 (3.0x) 12.0 (3.2x)

Speed Performance using (TF-)TRT 67

• Started with TF-TRT

• Converted our General v1.5 
model

• Over 3x speedup over our 
native TF frozen graph with 
minimal modifications

• Over 3x decrease in latency



Speed Performance using TRT 68

Batch Size Native TF TRT fp32 TRT fp16

1 67.5 (1x) 257.2 (3.8x) 332.7(4.9x)

4 226.0 (1x) 592.4 (2.6x) 1050.1 (4.6x)

8 319.2 (1x) 805.7 (2.5x) 1591.2 (5.0x)

16 410.6 (1x) 972.4 (2.3x) 2046.7 (5.0x)

• Converted our General v1.5 
model directly to TRT via 
Universal Framework Format 
(UFF)

• Required 2 custom plugins 
(courtesy of NVIDIA)

– StridedSlice

– Pad

• ~5x speedup over our native TF 
frozen graph 



Results Metrics using (TF-)TRT 69

• Compared effects on accuracy from 
using TRT

• Comparison of values from each 
element of the sigmoid layer (11k 
per image)

• ~550 images

Min Max Mean

Native-FP32 -6.4e-6 5.6e6 5.5e-8

Native-FP16 -0.016 0.016 8.4e-5

Native-INT8 -0.83 0.86 0.0050



Results Metrics using (TF-)TRT (cont’) 70

• Top-K recall - how many elements do we 
need to include from the TRT result to 
obtain the Top-K from our native TF graph

• FP32 results were identical

• FP16 mostly agreed, with +3 as the largest 
discrepancy

• Int8 had the most discrepancy 

Int8 Max Mean

Top-1 55 0.4

Top-3 118 1.4

Top-5 122 2.7



Example Results

Jon Howe
NVIDIA

Clarifai fp32 TFTRT fp32 TFTRT fp16 TFTRT int8

child: 0.990
cute: 0.988
cheerful: 0.972
outdoors: 0.970
fun: 0.969
portrait: 0.968
summer: 0.949
happiness: 0.946
people: 0.925
nature: 0.922

child: 0.990
cute: 0.988
cheerful: 0.972
outdoors: 0.970
fun: 0.969
portrait: 0.968
summer: 0.949
happiness: 0.946
people: 0.925
nature: 0.921

child: 0.990
cute: 0.988
cheerful: 0.972
outdoors: 0.969
fun: 0.968
summer: 0.948
portrait: 0.948
happiness: 0.945
people: 0.924
nature: 0.922

child: 0.991
outdoors: 0.980
portrait: 0.976
cute: 0.975
fun: 0.974
nature: 0.966
summer: 0.959
happiness: 0.958
cheerful: 0.955
people: 0.950



More Example Results
Clarifai fp32 TFTRT fp32 TFTRT fp16 TFTRT int8

market: 1.000
stall: 1.000
merchant: 1.000
sell: 0.999
people: 0.999
grow: 0.998
vendors: 0.996
marketplace: 0.993
shopping: 0.993
booth: 0.992

market: 1.000
stall: 1.000
merchant: 1.000
sell: 0.999
people: 0.999
grow: 0.998
vendors: 0.996
marketplace: 0.993
shopping: 0.993
booth: 0.992

market: 1.000
stall: 1.000
merchant: 1.000
sell: 0.999
people: 0.999
grow: 0.998
vendors: 0.996
marketplace: 0.993
shopping: 0.993
booth: 0.992

market: 1.000
merchant: 0.999
stall: 0.999
people: 0.998
sell: 0.998
grow: 0.997
vendors: 0.993
shopping: 0.990
booth: 0.989
stock: 0.986

Eran Nussinovitch
Clarifai



• Over 3x speed up and 3x decrease in latency with our General Model v1.5 

using TF-TRT

– Minimal effort/impact on existing setup

– Greater speed up possible with some degradation in accuracy

• ~5x speed up with our General Model using TRT

– More effort vs TF-TRT - needed some custom plugins

• Next steps - conversion of object detection model to TRT

Conclusions / Future Work
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TF-TRT Examples and documentation
Examples repository,
with links to documentation

https://github.com/tensorflow/tensorrt 

- Image classification
- MobileNet, NASNet, ResNet, VGG, Inception

- Object detection
- SSD, Faster-RCNN, Mask-RCNN

https://github.com/tensorflow/tensorrt


Thank You


