
TensorRT Inference
with TensorFlow

Pooya Davoodi (NVIDIA)
Chul Gwon (Clarifai)
Guangda Lai (Google)
Trevor Morris (NVIDIA)

March 20, 2019

TensorFlow

● Powerful experimentation for research

● Easy model building

● Robust ML production anywhere

An end-to-end open source machine learning platform

41m Downloads

NVIDIA TensorRT

● Optimize and Deploy neural networks in production environments

● Maximize throughput for latency-critical apps with optimizer and runtime

● Deploy responsive and memory efficient apps with INT8 & FP16

Platform for High-Performance Deep Learning Inference

300k Downloads in 2018

TF-TRT = TF + TRT

Why to use TF-TRT

● Optimize TF inference
● Simple API
● Possible to optimize even if parts of model are not supported by TRT
● Can still use TF echosystem
● Extract TRT optimized parts out of TF model, and execute standalone

AGENDA

● Performance & Accuracy

● How to use TF-TRT

● How TF-TRT works

● Customer experience: Clarifai

7

Throughput on NVIDIA GPU T4
Speedup for batch size 128

10x
9x

TF
TF-TRT FP16
TF-TRT INT8

Benchmark inference only (no I/O or preprocessing)
TensorFlow 1.13 in NVIDIA TensorFlow 19.03 containers
Scripts: https://github.com/tensorflow/tensorrt

https://github.com/tensorflow/tensorrt

8

Optimized models
● ResNet 10x
● MobileNet 9x
● Inception 8x
● VGG 7x
● NASNet L/M 4x
● SSD MobileNet v1 3x

Coming soon:

● Faster-RCNN, Mask-RCNN
● Neural Collaborative Filtering
● NLP: Transformer, BERT

SSD: available soon in NVIDIA containers and github.com/tensorflow/tensorflow/
Scripts: https://github.com/tensorflow/tensorrt

https://github.com/tensorflow/tensorflow/
https://github.com/tensorflow/tensorrt

9

Accuracy of FP16
Models TF FP32 TF-TRT FP16

Mobilenet V2 74.08 74.07

NASNet Mobile 73.97 73.87

ResNet 50 V2 76.43 76.40

VGG 16 70.89 70.91

Inception V3 77.99 77.97

SSD Mobilenet v1 23.062 23.073

Top1 metric for classification models.
mAP for detection models.
Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

FP16 accuracy is within 0.1% of
FP32 accuracy.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

10

Accuracy of INT8
Models TF FP32 TF-TRT INT8

Mobilenet V2 74.08 73.90

NASNet Mobile 73.97 73.55

ResNet 50 V2 76.43 76.30

VGG 16 70.89 70.78

Inception V3 77.99 77.85

Top1 metric for classification models.
Complete data: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

INT8 accuracy is within 0.2% of
FP32 accuracy, except one
model that’s within 0.5%.

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models

11

Supported TensorFlow operators
Most of important ops are supported

67 operators are supported
Not all types of inputs or attributes are supported.

Examples of supported operators:

● Gather, (Strided)Slice, Topk
● Convolution: depthwise, dilated convolution
● Shape related: ExpandDims, Reshape, Squeeze
● NMS (Non-Max Suppression): highly effective in performance

List of supported ops: https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#support-ops

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#support-ops

12

ResNet-50 v1.5

● 741 nodes → 12 nodes

● Including 1 TRT node

13

SSD Mobilenet v1

● 1772 nodes → 277 nodes

● Including 4 TRT nodes

Where to use TF-TRT

15

Monthly release of Tensorflow

- Nano, Xavier, TX2

How to setup

- Install Jetpack
- Install TF dependencies (numpy, libjpeg8-dev, requests, h5py, etc)
- Install TF

- pip install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42

tensorflow-gpu

https://docs.nvidia.com/deeplearning/dgx/index.html#installing-frameworks-for-jetson

TF-TRT on Jetson Platform

https://docs.nvidia.com/deeplearning/dgx/index.html#installing-frameworks-for-jetson

16

Cloud inferencing solutions
Multiple models scalable across GPUs

● TensortRT Inference Server (TRTIS)
○ TensorRT, TensorFlow, and other inferencing engines
○ Monthly release in containers
○ github.com/NVIDIA/tensorrt-inference-server

● TensorFlow Serving (TFS)
○ TF-TRT with TensorFlow >=1.13
○ TRT 5.0
○ tensorflow.org/serving

● Maximizing Utilization for Data Center Inference with TRTIS, Wed 11am 220C, 12pm Hall3
● TensorFlow Extended: How to Take AI from Experimentation to Production, Wed 11am 210F

https://github.com/NVIDIA/tensorrt-inference-server
http://tensorflow.org/serving

TF-TRT API

18

Inference workflow

TF-TRT
Frozen Graph

TensorFlow Run InferenceTrain Model

Optimize with
TF-TRT

Train Model
SavedModel Run Inference

Optimize with
TF-TRT

Train Model
Checkpoints Run InferenceFreeze Graph

TF-TRT
SavedModel

19

TF-TRT API in TensorFlow <=1.13
One API call returns a TF-TRT optimized graph

20

TF-TRT API in TensorFlow > 1.13
contrib → compiler
Python class

NVIDIA Tensor Core

22

Tensor Cores in GPU Volta/Turing
Easy to enable

● TensorRT enables Tensor Cores automatically

23

Profile to verify Tensor Core usage
Multiple profilers

● nvprof
● NVIDIA NSight Systems
● NVIDIA NSight Compute
● NVIDIA DLProf
● TensorFlow Profiler

GTC

● Profiling Deep Learning Networks, Tuesday, Poonam Chitale, David Zier
● Deep Learning Developer Tools for Network Optimization, Wed 4-6pm Hall 3

24

nvprof for verifying Tensor Core usage
h884, h1688, i8816

$ nvprof python run_inference.py
...
==87== Profiling result:
 Type Time(%) Time Calls Avg Min Max Name
 GPU activities: 20.85% 1.41948s 46080 30.804us 14.688us 694.17us trt_turing_h1688cudnn_128x128_ldg8_relu_exp_interior_nhwc_tn_v1
 17.88% 1.21692s 32104 37.905us 13.120us 127.78us trt_turing_h1688cudnn_128x128_ldg8_relu_exp_small_nhwc_tn_v1
 10.91% 742.33ms 34034 21.811us 6.3680us 58.335us void cuScale::scale<__half, __half, bool=1, cuScale::Mode, bool=0, ...
 7.77% 528.65ms 10080 52.445us 13.184us 437.02us trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_interior_nhwc_...
 5.75% 391.27ms 8104 48.280us 13.216us 127.01us trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_small_nhwc_tn...
 4.27% 290.90ms 4736 61.423us 672ns 9.1938ms [CUDA memcpy HtoD]
 4.19% 284.93ms 2080 136.99us 26.847us 367.39us trt_volta_scudnn_128x64_relu_interior_nn_v1
 2.59% 176.06ms 4106 42.878us 14.112us 702.43us trt_turing_h1688cudnn_128x128_ldg8_relu_exp_medium_nhwc_tn_v1
 2.53% 172.25ms 1152 149.53us 75.807us 263.33us volta_cgemm_32x32_tn
 2.44% 165.84ms 8010 20.703us 2.3040us 48.575us void cuPad::pad<__half, int4, int=128, bool=0>...
 2.16% 146.81ms 2218 66.189us 2.2400us 72.767us void cuInt8::nchwTonhwc<float, int=32, int=32, int=2>...
 1.30% 88.795ms 2000 44.397us 43.679us 62.111us void Eigen::internal::EigenMetaKernel<Eigen::TensorEvaluator...
 1.20% 81.957ms 2106 38.916us 13.664us 449.08us trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_medium_nhwc...
 1.16% 78.870ms 2034 38.775us 30.880us 452.12us trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_large_nhwc_tn...
 1.06% 71.838ms 2002 35.883us 22.176us 45.888us trt_volta_h884gemm_64x64_ldg8_relu_nn_v1
 0.99% 67.413ms 2002 33.673us 31.200us 35.104us void nvinfer1::poolCoalescedC<nvinfer1::PoolingType, int=3, bool=0>...

25

What if not using Tensor Core
● Hardware: GPU Volta or Turing

● Configuration
○ precision_mode: FP16 or INT8

○ Dimensions must be multiples of 8

● Tensor Core may not be the fastest

● Unsupported case

● Report to NVIDIA

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html

INT8 Quantization

27

TensorRT’s INT8 Quantization Approach

-127 127

-6.0 6.0

FP32

INT8

0.0

Quantize(r = 6.0)

-3.4e+38 3.4e+38

0

2.76

58

Quantize(x, r) = round(s * clip(x, -r, r))
where s = 127 / r

28

Two Methods for Determining Quantization Ranges
1. Calibration

○ Recommended method
○ Works with most models with minimal accuracy loss (<1%)

2. Quantization-Aware Training
○ Model the quantization error during training
○ Quantization ranges are learned
○ Can provide better accuracy than calibration

29

TF-TRT calibration API in TensorFlow <=1.13

30

TF-TRT calibration API in TensorFlow <=1.13

31

TF-TRT calibration API in TensorFlow <=1.13

32

TF-TRT calibration API in TensorFlow > 1.13

33

Quantization-Aware Training
● Can increase accuracy beyond calibration
● Insert quantization nodes into your pretrained model

○ Experimental

● Finetune model to adapt for quantization error
● Give model to TF-TRT

Relu

Conv2D

FakeQuant

FakeQuant

BatchNorm

range

range

How TF-TRT Works

35

Under the hood:

● Phase 1: graph partition
○ Partition the TF Graph: TRT-compatible vs. TRT-incompatible
○ Wrap each TRT-compatible subgraph in a single node (TRTEngineOp)
○ Use the new node to replace the subgraph

● Phase 2: layer conversion
○ For each new node, build a TensorRT network (a graph containing TensorRT layers)

● Phase 3: engine optimization
○ Optimize the network and use it to build a TensorRT engine

TRT-incompatible subgraphs remain untouched and are handled by TF runtime

Do the inference with TF interface

How TF-TRT works

36

Example

Add

Conv2D

input (shape unknown)

Reshape

BatchNorm BatchNorm

Cast

Relu

37

● Visit all nodes
● Mark them as TRT-compatible or

TRT-incompatible based on:
○ Operation type
○ Attribute settings

Legend
 TRT-compatible
 TRT-incompatible

Phase 1: mark TRT-compatible nodes

Add

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Relu

Before execution

38

● Cluster nodes into
TRT-compatible subgraphs

● The result should be a direct
acyclic graph (DAG)

● Doesn’t create circular
dependency

Phase 1: cluster marked nodes

Add

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Relu

Before execution

39

Phase 1: cluster marked nodes

Add

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Relu

● Cluster nodes into
TRT-compatible subgraphs

● The result should be a direct
acyclic graph (DAG)

● Doesn’t create circular
dependency

Before execution

40

Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into
TRT-compatible subgraphs

● The result should be a direct
acyclic graph (DAG)

● Doesn’t create circular
dependency

Before execution

41

Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into
TRT-compatible subgraphs

● The result should be a direct
acyclic graph (DAG)

● Doesn’t create circular
dependency

Before execution

42

Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into
TRT-compatible subgraphs

● The result should be a direct
acyclic graph (DAG)

● Doesn’t create circular
dependency

?

43

Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into
TRT-compatible subgraphs

● The result should be a direct
acyclic graph (DAG)

● Doesn’t create circular
dependency

loop

44

Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

● Cluster nodes into
TRT-compatible subgraphs

● The result should be a direct
acyclic graph (DAG)

● Doesn’t create circular
dependency

Before execution

45

Phase 1: cluster marked nodes

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

To break the loop: create separate
clusters

Before execution

46

Phase 1: remove small clusters

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

Drop clusters with #nodes less than
minimum_segment_size.

Trade-off:
● Too small: overheads of too many

clusters (e.g. extra memcpy to
cast dtype)

● Too large: missing TRT
optimizations

Before execution

47

Phase 1: partition result

Conv2D

input

Reshape

BatchNorm BatchNorm

Cast

Add

Relu

The cluster with Reshape is dropped.Before execution

48

TRTEngineOp

Phase 1: create TRTEngineOp

Conv2D

input

Reshape

BatchNorm

Cast

Add

Relu

● Wrap the TRT-compatible
subgraph in a custom op called
TRTEngineOp

● Use the new op to replace the
subgraph

BatchNorm

Before execution

49

TRTEngineOp

Phase 1: handle unknown shapes

Conv2D

input (shape unknown)

Reshape

BatchNorm

Cast

Add

Relu

BatchNorm

● Input shape are still unknown
● Unknown shapes are common in

TensorFlow graphs, e.g.
input = tf.placeholder(
 tf.float32, shape=[None, None])

● Challenge: TRT requires known
shapes when building the network

Before execution

50

TRTEngineOp

Phase 1: handle unknown shapes

Conv2D

input (shape unknown)

Reshape

BatchNorm

Cast

Add

Relu

Two solutions:
● Make all the shapes known (use

graph with full shapes specified,
may require extra work)

● Postpone TensorRT optimization
to execution phase, when shapes
will be fully specified
(is_dynamic_op=True. Default is
False)

BatchNorm

Before execution

51

During execution Input shapes are fully specified at
runtime

Phase 2: create TRT network

TRTEngineOp

Conv2D

BatchNorm

Add

Relu

BatchNorm

shape A
[4, 8, 8, 3]

shape B
[4, 9, 9, 5]

…

52

During execution ● There is an LRU engine cache in
TRTEngineOp

● Keys of the cache are input
shapes

● If cache miss, build a new engine
● If cache is full, evict an old engine

Phase 2: TRT engine cache

TRTEngineOp

Conv2D

BatchNorm

Add

Relu

BatchNorm

shape A
[4, 8, 8, 3]

shape B
[4, 9, 9, 5]

…

53

During execution ● Traverse the nodes in topological
order

● Each TF node is converted to one
or more TRT layers

Phase 2: TF ops to TRT layers conversion

TRTEngineOp

IConvolutionLayer

BatchNorm

Add

Relu

BatchNorm

shape A
[4, 8, 8, 3]

shape B
[4, 9, 9, 5]

…

54

During execution Finishing TRT network creation.

Next: build TRT engine (phase 3)

Phase 2: TF ops to TRT layers conversion

TRTEngineOp

IConvolutionLayer

IScaleLayer

IElementWiseLayer

IActivationLayer

IScaleLayer

shape A
[4, 8, 8, 3]

shape B
[4, 9, 9, 5]

…

55

During execution Optimization from TensorRT library
● Layer & Tensor fusion
● Precision calibration
● Kernel auto-tuning

These optimizations:
● Invisible to user
● Applied to current GPU

Phase 3: build TRT engine

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A
[4, 8, 8, 3]

shape B
[4, 9, 9, 5]

56

During execution TF tensors: all dimensions are treated
similarly

TRT:
● First dimension is special, called

“batch dimension”
● TRT uses batch dim for

optimizations

TRT batch dimension

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A
[4, 8, 8, 3]

shape B
[4, 9, 9, 5]

57

During execution Batch dimension is determined by:

● Input shapes during execution
(when is_dynamic_op=True, like
this case)

● max_batch_size parameter (when
is_dynamic_op=False, not listed
here)

TRT batch dimension

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A
[4, 8, 8, 3]

shape B
[4, 9, 9, 5]

58

During execution New inputs with a different batch
dimension.

We can reuse an engine for a new
input, if:

● engine batch size >= batch dim of
new input, and

● non-batch dims match the new
input

Otherwise: redo phase 2&3

Handle different batch dimensions

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A1
[2, 8, 8, 3]

shape B1
[2, 9, 9, 5]

59

During execution New inputs with different shapes
(different non-batch dimensions)

Handle different input shapes

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A2
[4, 7, 7, 4]

shape B2
[4, 9, 9, 5]

60

During execution ● Cache is full, evict old engine
● Use larger

maximum_cached_engines to
avoid that.

● Will consume more CPU/GPU
resource, but usually not a
problem in practice

Handle different input shapes

TRTEngineOp

TRT engine for
(A [4, 8, 8, 3],
B [4, 9, 9, 5])

shape A2
[4, 7, 7, 4]

shape B2
[4, 9, 9, 5]

TRT engine for
(A2 [4, 7, 7, 4],
B2 [4, 9, 9, 5])

61

Future of TF-TRT
● Dynamic shapes

○ Certains tensors have variable shape (NLP)

● TF 2.0 for calibration
● Support for more TF ops and models

○ Faster-RCNN, Mask-RCNN
○ Neural Collaborative Filtering
○ NLP: Transformer, BERT

• Founded by Matt Zeiler in 2013
• SF Office - Clarifai Research
• DC Office - Public Sector
• 90+ employees

About Clarifai
63

• $40M+ in Venture
Capital Funding

• Image and video recognition
• Clarifai Portal
• On-prem deployment
• Edge/ Mobile SDK

NEW

• General Model - v1.5
• Demographics
• Color
• Moderation / NSFW
• Retail Analytics
• Public Safety
• Face Detection/Recognition
• Aerial
• Satellite

Clarifai Models

Clarifai Platform

• Process images faster! Often need to trade off
between speed and accuracy

– Use case for public sector work: Need object
detectors to work real-time for full motion video

• Take advantage of NVIDIA suite of tools, including
DeepStream, NVIDIA Inference Engine

• Edge processing with NVIDIA Xavier

• Started with our latest General Model (version 1.5)

Why TensorRT?

Frames Per Second

Batch Size Native TF TF-TRT fp32 TF-TRT fp16 TF-TRT int8

1 67.5 (1x) 187.0 (2.8x) 225.6 (3.3x) 303.9 (4.5x)

4 226.0 (1x) 464.0 (2.1x) 718.6 (3.2x) 721.7 (3.2x)

8 319.2 (1x) 590.5 (1.8x) 949.2 (3.0x) 1017.0 (3.2x)

16 410.6 (1x) 743.9 (1.8x) 1220.3 (3.0x) 1334.0 (3.2x)

Latency (ms)

1 14.8 (1x) 5.35 (2.8x) 4.43 (3.3x) 3.29 (4.5x)

4 17.7 (1x) 8.62 (2.1x) 5.57 (3.2x) 5.54 (3.2x)

8 25.1 (1x) 13.6 (1.8x) 8.43 (3.0x) 7.87 (3.2x)

16 39.0 (1x) 21.5 (1.8x) 13.1 (3.0x) 12.0 (3.2x)

Speed Performance using (TF-)TRT 67

• Started with TF-TRT

• Converted our General v1.5
model

• Over 3x speedup over our
native TF frozen graph with
minimal modifications

• Over 3x decrease in latency

Speed Performance using TRT 68

Batch Size Native TF TRT fp32 TRT fp16

1 67.5 (1x) 257.2 (3.8x) 332.7(4.9x)

4 226.0 (1x) 592.4 (2.6x) 1050.1 (4.6x)

8 319.2 (1x) 805.7 (2.5x) 1591.2 (5.0x)

16 410.6 (1x) 972.4 (2.3x) 2046.7 (5.0x)

• Converted our General v1.5
model directly to TRT via
Universal Framework Format
(UFF)

• Required 2 custom plugins
(courtesy of NVIDIA)

– StridedSlice

– Pad

• ~5x speedup over our native TF
frozen graph

Results Metrics using (TF-)TRT 69

• Compared effects on accuracy from
using TRT

• Comparison of values from each
element of the sigmoid layer (11k
per image)

• ~550 images

Min Max Mean

Native-FP32 -6.4e-6 5.6e6 5.5e-8

Native-FP16 -0.016 0.016 8.4e-5

Native-INT8 -0.83 0.86 0.0050

Results Metrics using (TF-)TRT (cont’) 70

• Top-K recall - how many elements do we
need to include from the TRT result to
obtain the Top-K from our native TF graph

• FP32 results were identical

• FP16 mostly agreed, with +3 as the largest
discrepancy

• Int8 had the most discrepancy

Int8 Max Mean

Top-1 55 0.4

Top-3 118 1.4

Top-5 122 2.7

Example Results

Jon Howe
NVIDIA

Clarifai fp32 TFTRT fp32 TFTRT fp16 TFTRT int8

child: 0.990
cute: 0.988
cheerful: 0.972
outdoors: 0.970
fun: 0.969
portrait: 0.968
summer: 0.949
happiness: 0.946
people: 0.925
nature: 0.922

child: 0.990
cute: 0.988
cheerful: 0.972
outdoors: 0.970
fun: 0.969
portrait: 0.968
summer: 0.949
happiness: 0.946
people: 0.925
nature: 0.921

child: 0.990
cute: 0.988
cheerful: 0.972
outdoors: 0.969
fun: 0.968
summer: 0.948
portrait: 0.948
happiness: 0.945
people: 0.924
nature: 0.922

child: 0.991
outdoors: 0.980
portrait: 0.976
cute: 0.975
fun: 0.974
nature: 0.966
summer: 0.959
happiness: 0.958
cheerful: 0.955
people: 0.950

More Example Results
Clarifai fp32 TFTRT fp32 TFTRT fp16 TFTRT int8

market: 1.000
stall: 1.000
merchant: 1.000
sell: 0.999
people: 0.999
grow: 0.998
vendors: 0.996
marketplace: 0.993
shopping: 0.993
booth: 0.992

market: 1.000
stall: 1.000
merchant: 1.000
sell: 0.999
people: 0.999
grow: 0.998
vendors: 0.996
marketplace: 0.993
shopping: 0.993
booth: 0.992

market: 1.000
stall: 1.000
merchant: 1.000
sell: 0.999
people: 0.999
grow: 0.998
vendors: 0.996
marketplace: 0.993
shopping: 0.993
booth: 0.992

market: 1.000
merchant: 0.999
stall: 0.999
people: 0.998
sell: 0.998
grow: 0.997
vendors: 0.993
shopping: 0.990
booth: 0.989
stock: 0.986

Eran Nussinovitch
Clarifai

• Over 3x speed up and 3x decrease in latency with our General Model v1.5

using TF-TRT

– Minimal effort/impact on existing setup

– Greater speed up possible with some degradation in accuracy

• ~5x speed up with our General Model using TRT

– More effort vs TF-TRT - needed some custom plugins

• Next steps - conversion of object detection model to TRT

Conclusions / Future Work

74

TF-TRT Examples and documentation
Examples repository,
with links to documentation

https://github.com/tensorflow/tensorrt

- Image classification
- MobileNet, NASNet, ResNet, VGG, Inception

- Object detection
- SSD, Faster-RCNN, Mask-RCNN

https://github.com/tensorflow/tensorrt

Thank You

