TensorRT Inference with TensorFlow

Pooya Davoodi (NVIDIA) Chul Gwon (Clarifai) Guangda Lai (Google) Trevor Morris (NVIDIA)

March 20, 2019

TensorFlow

An end-to-end open source machine learning platform

- Powerful experimentation for research
- Easy model building
- Robust ML production anywhere

Platform for High-Performance Deep Learning Inference

- Optimize and Deploy neural networks in production environments
- Maximize throughput for latency-critical apps with optimizer and runtime

• Deploy responsive and memory efficient apps with INT8 & FP16

300k Downloads in 2018

TF-TRT = TF + TRT

Why to use TF-TRT

- Optimize TF inference
- Simple API
- Possible to optimize even if parts of model are not supported by TRT
- Can still use TF echosystem
- Extract TRT optimized parts out of TF model, and execute standalone

AGENDA

- Performance & Accuracy
- How to use TF-TRT
- How TF-TRT works
- Customer experience: Clarifai

Throughput on NVIDIA GPU T4

Speedup for batch size 128

Benchmark inference only (no I/O or preprocessing) TensorFlow 1.13 in NVIDIA TensorFlow 19.03 containers Scripts: <u>https://github.com/tensorflow/tensorrt</u>

Optimized models

- ResNet 10x
- MobileNet **9x**
- Inception
 8x
- VGG **7x**
- NASNet L/M 4x
- SSD MobileNet v1 3x

Coming soon:

- Faster-RCNN, Mask-RCNN
- Neural Collaborative Filtering
- NLP: Transformer, BERT

SSD: available soon in NVIDIA containers and <u>github.com/tensorflow/tensorflow/</u> Scripts: <u>https://github.com/tensorflow/tensorrt</u>

Accuracy of FP16

Models	TF FP32	TF-TRT FP16
Mobilenet V2	74.08	74.07
NASNet Mobile	73.97	73.87
ResNet 50 V2	76.43	76.40
VGG 16	70.89	70. <mark>91</mark>
Inception V3	77.99	77.97
SSD Mobilenet v1	23.062	23.0 <mark>73</mark>

FP16 accuracy is within 0.1% of FP32 accuracy.

Top1 metric for classification models.

mAP for detection models.

Complete data: <u>https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models</u>

Accuracy of INT8

Models	TF FP32	TF-TRT INT8
Mobilenet V2	74.08	7 <mark>3.90</mark>
NASNet Mobile	73.97	73. <mark>55</mark>
ResNet 50 V2	76.43	76. <mark>30</mark>
VGG 16	70.89	70. <mark>78</mark>
Inception V3	77.99	77. <mark>85</mark>

INT8 accuracy is within 0.2% of FP32 accuracy, except one model that's within 0.5%.

Top1 metric for classification models.

Complete data: <u>https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#verified-models</u>

Supported TensorFlow operators

Most of important ops are supported

67 operators are supported Not all types of inputs or attributes are supported.

Examples of supported operators:

- Gather, (Strided)Slice, Topk
- Convolution: depthwise, dilated convolution
- Shape related: ExpandDims, Reshape, Squeeze
- NMS (Non-Max Suppression): highly effective in performance

List of supported ops: <u>https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html#support-ops</u>

SSD Mobilenet v1

Where to use TF-TRT

TF-TRT on Jetson Platform

Monthly release of Tensorflow

- Nano, Xavier, TX2

How to setup

- Install Jetpack
- Install TF dependencies (numpy, libjpeg8-dev, requests, h5py, etc)
- Install TF
 - pip install --extra-index-url https://developer.download.nvidia.com/compute/redist/jp/v42 tensorflow-gpu

https://docs.nvidia.com/deeplearning/dgx/index.html#installing-frameworks-for-jetson

Cloud inferencing solutions

Multiple models scalable across GPUs

- TensortRT Inference Server (TRTIS)
 - TensorRT, TensorFlow, and other inferencing engines
 - Monthly release in containers
 - github.com/NVIDIA/tensorrt-inference-server
- TensorFlow Serving (TFS)
 - TF-TRT with TensorFlow >=1.13
 - TRT 5.0
 - <u>tensorflow.org/serving</u>
 - Maximizing Utilization for Data Center Inference with TRTIS, <u>Wed 11am 220C, 12pm Hall3</u>
 - TensorFlow Extended: How to Take AI from Experimentation to Production, Wed 11am 210F

TF-TRT API

TF-TRT API in TensorFlow <=1.13

One API call returns a TF-TRT optimized graph

```
import tensorflow.contrib.tensorrt as trt
converted_graph_def = trt.create_inference_graph(
    input_graph_def=frozen_graph,
    outputs=['logits', 'classes'])
```

import tensorflow.contrib.tensorrt as trt

```
trt.create_inference_graph(
```

```
input_saved_model_dir=input_saved_model_dir,
```

output_saved_model_dir=output_saved_model_dir)

TF-TRT API in TensorFlow > 1.13

contrib \rightarrow compiler Python class

```
from tensorflow.python.compiler.tensorrt import trt_convert as trt
converter = trt.TrtGraphConverter(
    input_saved_model_dir=input_saved_model_dir)
converter.convert()
converter.save(output_saved_model_dir)
```

pip install tensorflow-gpu==2.0.0-alpha0

NVIDIA Tensor Core

Tensor Cores in GPU Volta/Turing

Easy to enable

• TensorRT enables Tensor Cores automatically

converter = trt.TrtGraphConverter(input_saved_model_dir=input_saved_model_dir, precision_mode="FP16" OR "INT8")

Profile to verify Tensor Core usage Multiple profilers

- nvprof
- NVIDIA NSight Systems
- NVIDIA NSight Compute
- NVIDIA DLProf
- TensorFlow Profiler

GTC

- Profiling Deep Learning Networks, Tuesday, Poonam Chitale, David Zier
- Deep Learning Developer Tools for Network Optimization, Wed 4-6pm Hall 3

nvprof for verifying Tensor Core usage h884, h1688, i8816

\$ nvprof python run_inference.py

==87== Profiling result:

Type Time(%) Time	Calls Avg	Min Max Name	
GPU activities: 20.85% 1.419	48s 46080 30.8	304us 14.688us 694	.17us trt_turing_h1688cudnn_128x128_ldg8_relu_exp_interior_nhwc_tn_v1
17.88% 1.21692s	32104 37.905us	13.120us 127.78us	<pre>trt_turing_h1688cudnn_128x128_ldg8_relu_exp_small_nhwc_tn_v1</pre>
10.91% 742.33ms	34034 21.811us	6.3680us 58.335u	s void cuScale::scale <half,half, bool="0,</td" cuscale::mode,=""></half,half,>
7.77% 528.65ms	10080 52.445us	13.184us 437.02us	<pre>trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_interior_nhwc</pre>
5.75% 391.27ms	8104 48.280us	13.216us 127.01us	trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_small_nhwc_tn
4.27% 290.90ms	4736 61.423us	672ns 9.1938ms	[CUDA memcpy HtoD]
4.19% 284.93ms	2080 136.99us	26.847us 367.39us	trt_volta_ <mark>scudnn</mark> _128x64_relu_interior_nn_v1
2.59% 176.06ms	4106 42.878us	14.112us 702.43us	trt_turing_h1688cudnn_128x128_ldg8_relu_exp_medium_nhwc_tn_v1
2.53% 172.25ms	1152 149.53us	75.807us 263.33us	volta_ <mark>cgemm</mark> _32x32_tn
2.44% 165.84ms	8010 20.703us	2.3040us 48.575us	void cuPad::pad <half, bool="0" int="128," int4,=""></half,>
2.16% 146.81ms	2218 66.189us	2.2400us 72.767us	void cuInt8::nchwTonhwc <float, int="2"></float,>
1.30% 88.795ms	2000 44.397us	43.679us 62.111us	void Eigen::internal::EigenMetaKernel <eigen::tensorevaluator< td=""></eigen::tensorevaluator<>
1.20% 81.957ms	2106 38.916us	13.664us 449.08us	trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_medium_nhwc
1.16% 78.870ms	2034 38.775us	30.880us 452.12us	trt_turing_h1688cudnn_256x64_sliced1x2_ldg8_relu_exp_large_nhwc_tn
1.06% 71.838ms	2002 35.883us	22.176us 45.888us	trt_volta_ <mark>h884</mark> gemm_64x64_ldg8_relu_nn_v1
0.99% 67.413ms	2002 33.673us	31.200us 35.104us	<pre>void nvinfer1::poolCoalescedC<nvinfer1::poolingtype, bool="0" int="3,"></nvinfer1::poolingtype,></pre>

What if not using Tensor Core

- Hardware: GPU Volta or Turing
- Configuration
 - precision_mode: FP16 or INT8
 - Dimensions must be multiples of 8
- Tensor Core may not be the fastest
- Unsupported case
- Report to NVIDIA

https://docs.nvidia.com/deeplearning/dgx/integrate-tf-trt/index.html

INT8 Quantization

TensorRT's INT8 Quantization Approach

Two Methods for Determining Quantization Ranges

- 1. Calibration
 - Recommended method
 - Works with most models with minimal accuracy loss (<1%)

- 2. Quantization-Aware Training
 - Model the quantization error during training
 - Quantization ranges are learned
 - Can provide better accuracy than calibration

TF-TRT calibration API in TensorFlow <=1.13

```
import tensorflow.contrib.tensorrt as trt
calib_graph = trt.create_inference_graph(...
precision_mode='INT8',
use_calibration=True)
```

TF-TRT calibration API in TensorFlow <=1.13

```
import tensorflow.contrib.tensorrt as trt
calib_graph = trt.create_inference_graph(...
    precision_mode='INT8',
    use_calibration=True)
with tf.session() as sess:
    tf.import_graph_def(calib_graph)
    for i in range(10):
        sess.run('output:0', {'input:0': my_next_data()})
```

TF-TRT calibration API in TensorFlow <=1.13

```
import tensorflow.contrib.tensorrt as trt
calib_graph = trt.create_inference_graph(...
    precision_mode='INT8',
    use_calibration=True)
with tf.session() as sess:
    tf.import_graph_def(calib_graph)
    for i in range(10):
        sess.run('output:0', {'input:0': my_next_data()})
converted_graph_def = trt.calib_graph_to_infer_graph(calib_graph)
```

TF-TRT calibration API in TensorFlow > 1.13

```
from tensorflow.python.compiler.tensorrt import trt_convert as trt
converter = trt.TrtGraphConverter(...)
converter.convert()
converter.calibrate(
    fetch_names=['output:0'],
    num_runs=10,
    feed_dict_fn=lambda: {'input:0': my_next_data()})
converter.save(output_saved_model_dir)
```

Quantization-Aware Training

- Can increase accuracy beyond calibration
- Insert quantization nodes into your pretrained model
 - Experimental
- Finetune model to adapt for quantization error
- Give model to TF-TRT

```
converter = trt.TrtGraphConverter(
    input_saved_model_dir=input_saved_model_dir,
    precision_mode="INT8",
    use_calibration=False)
converter.convert()
converter.save(output_saved_model_dir)
```


How TF-TRT Works

How TF-TRT works

Under the hood:

- Phase 1: graph partition
 - Partition the TF Graph: TRT-compatible vs. TRT-incompatible
 - Wrap each TRT-compatible subgraph in a single node (TRTEngineOp)
 - Use the new node to replace the subgraph
- Phase 2: layer conversion
 - For each new node, build a TensorRT network (a graph containing TensorRT layers)
- Phase 3: engine optimization
 - Optimize the network and use it to build a TensorRT engine

TRT-incompatible subgraphs remain untouched and are handled by TF runtime

Do the inference with TF interface

Example

Phase 1: mark TRT-compatible nodes

- Visit all nodes
- Mark them as TRT-compatible or TRT-incompatible based on:
 - Operation type
 - Attribute settings

Legend

TRT-compatible

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```


- Cluster nodes into TRT-compatible subgraphs
- The result should be a direct acyclic graph (DAG)
- Doesn't create circular dependency

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```


- Cluster nodes into TRT-compatible subgraphs
- The result should be a direct acyclic graph (DAG)
- Doesn't create circular dependency

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```


- Cluster nodes into TRT-compatible subgraphs
- The result should be a direct acyclic graph (DAG)
- Doesn't create circular dependency

- Cluster nodes into TRT-compatible subgraphs
- The result should be a direct acyclic graph (DAG)
- Doesn't create circular dependency

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```


- Cluster nodes into TRT-compatible subgraphs
- The result should be a direct acyclic graph (DAG)
- Doesn't create circular dependency

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```


- Cluster nodes into TRT-compatible subgraphs
- The result should be a direct acyclic graph (DAG)
- Doesn't create circular dependency

- Cluster nodes into TRT-compatible subgraphs
- The result should be a direct acyclic graph (DAG)
- Doesn't create circular dependency

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```


To break the loop: create separate clusters

Phase 1: remove small clusters

Drop clusters with #nodes less than minimum_segment_size.

Trade-off:

- Too small: overheads of too many clusters (e.g. extra memcpy to cast dtype)
- Too large: missing TRT optimizations

<pre>converter = trt.TrtGraphConverter(</pre>
<pre>input_saved_model_dir=model_dir,</pre>
<pre>minimum_segment_size=3,</pre>
is_dynamic_op=True,
<pre>maximum_cached_engines=1)</pre>

Phase 1: partition result

The cluster with Reshape is dropped.

converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)

Phase 1: create TRTEngineOp

- Wrap the TRT-compatible subgraph in a custom op called TRTEngineOp
- Use the new op to replace the subgraph

Phase 1: handle unknown shapes

- Input shape are still unknown
- Unknown shapes are common in TensorFlow graphs, e.g. input = tf.placeholder(

tf.float32, shape=[None, None])

• Challenge: TRT requires known shapes when building the network

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

Phase 1: handle unknown shapes

Two solutions:

- Make all the shapes known (use graph with full shapes specified, may require extra work)
- Postpone TensorRT optimization to execution phase, when shapes will be fully specified (is_dynamic_op=True. Default is False)

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

Phase 2: create TRT network

Input shapes are fully specified at runtime

Phase 2: TRT engine cache

- There is an LRU engine cache in TRTEngineOp
- Keys of the cache are input shapes
- If cache miss, build a new engine
- If cache is full, evict an old engine

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

Phase 2: TF ops to TRT layers conversion

- Traverse the nodes in topological order
- Each TF node is converted to one or more TRT layers

Phase 2: TF ops to TRT layers conversion

Finishing TRT network creation.

Next: build TRT engine (phase 3)

Phase 3: build TRT engine

Optimization from TensorRT library

- Layer & Tensor fusion
- Precision calibration
- Kernel auto-tuning

These optimizations:

- Invisible to user
- Applied to current GPU

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

TRT batch dimension

TF tensors: all dimensions are treated similarly

TRT:

- First dimension is special, called "batch dimension"
- TRT uses batch dim for optimizations

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

TRT batch dimension

Batch dimension is determined by:

- Input shapes during execution (when is_dynamic_op=True, like this case)
- max_batch_size parameter (when is_dynamic_op=False, not listed here)

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

Handle different batch dimensions

New inputs with a different batch dimension.

We can reuse an engine for a new input, if:

- engine batch size >= batch dim of new input, and
- non-batch dims match the new input

Otherwise: redo phase 2&3

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

Handle different input shapes

New inputs with different shapes (different non-batch dimensions)

converter = trt.TrtGraphConverter(input_saved_model_dir=model_dir, minimum_segment_size=3, is_dynamic_op=True, maximum_cached_engines=1)

Handle different input shapes

- Cache is full, evict old engine
- Use larger maximum_cached_engines to avoid that.
- Will consume more CPU/GPU resource, but usually not a problem in practice

```
converter = trt.TrtGraphConverter(
input_saved_model_dir=model_dir,
minimum_segment_size=3,
is_dynamic_op=True,
maximum_cached_engines=1)
```

Future of TF-TRT

- Dynamic shapes
 - Certains tensors have variable shape (NLP)
- TF 2.0 for calibration
- Support for more TF ops and models
 - Faster-RCNN, Mask-RCNN
 - Neural Collaborative Filtering
 - NLP: Transformer, BERT

Belarifai

About Clarifai

- Founded by Matt Zeiler in 2013
- SF Office Clarifai Research
- DC Office Public Sector
- 90+ employees

• \$40M+ in Venture Capital Funding

- Image and video recognition
- Clarifai Portal
- On-prem deployment
- Edge/ Mobile SDK

Clarifai Models

- General Model v1.5
- Demographics
- Color
- Moderation / NSFW
- Retail Analytics
- Public Safety
- Face Detection/Recognition
- Aerial
- Satellite

Why TensorRT?

- Process images faster! Often need to trade off between speed and accuracy
 - Use case for public sector work: Need object detectors to work real-time for full motion video
- Take advantage of NVIDIA suite of tools, including DeepStream, NVIDIA Inference Engine
- Edge processing with NVIDIA Xavier
- Started with our latest General Model (version 1.5)

Speed Performance using (TF-)TRT

- Started with TF-TRT
- Converted our General v1.5 model
- Over 3x speedup over our native TF frozen graph with minimal modifications
- Over 3x decrease in latency

Frames Per Second				
Batch Size	Native TF	TF-TRT fp32	TF-TRT fp16	TF-TRT int8
1	67.5 (1x)	187.0 (2.8x)	225.6 (3.3x)	303.9 (4.5x)
4	226.0 (1x)	464.0 (2.1x)	718.6 (3.2x)	721.7 (3.2x)
8	319.2 (1x)	590.5 (1.8x)	949.2 (3.0x)	1017.0 (3.2x)
16	410.6 (1x)	743.9 (1.8x)	1220.3 (3.0x)	1334.0 (3.2x)
Latency (ms)				
1	14.8 (1x)	5.35 (2.8x)	4.43 (3.3x)	3.29 (4.5x)
4	17.7 (1x)	8.62 (2.1x)	5.57 (3.2x)	5.54 (3.2x)
8	25.1 (1x)	13.6 (1.8x)	8.43 (3.0x)	7.87 (3.2x)
16	39.0 (1x)	21.5 (1.8x)	13.1 (3.0x)	12.0 (3.2x)

Speed Performance using TRT

- Converted our General v1.5 model directly to TRT via Universal Framework Format (UFF)
- Required 2 custom plugins (courtesy of NVIDIA)
 - StridedSlice
 - Pad
- ~5x speedup over our native TF frozen graph

Batch Size	Native TF	TRT fp32	TRT fp16
1	67.5 (1x)	257.2 (3.8x)	332.7(4.9x)
4	226.0 (1x)	592.4 (2.6x)	1050.1 (4.6x)
8	319.2 (1x)	805.7 (2.5x)	1591.2 (5.0x)
16	410.6 (1x)	972.4 (2.3x)	2046.7 (5.0x)

Results Metrics using (TF-)TRT

- Compared effects on accuracy from using TRT
- Comparison of values from each element of the sigmoid layer (11k per image)
- ~550 images

	Min	Max	Mean
Native-FP32	-6.4e-6	5.6e6	5.5e-8
Native-FP16	-0.016	0.016	8.4e-5
Native-INT8	-0.83	0.86	0.0050

Results Metrics using (TF-)TRT (cont')

- Top-K recall how many elements do we need to include from the TRT result to obtain the Top-K from our native TF graph
- FP32 results were identical
- FP16 mostly agreed, with +3 as the largest discrepancy
- Int8 had the most discrepancy

Int8	Max	Mean
Top-1	55	0.4
Тор-3	118	1.4
Top-5	122	2.7

Example Results

Jon Howe NVIDIA

<u>Clarifai fp32</u>	TFTRT fp32	TFTRT fp16	TFTRT int8
child: 0.990	child: 0.990	child: 0.990	child: 0.991
cute: 0.988	cute: 0.988	cute: 0.988	outdoors: 0.980
cheerful: 0.972	cheerful: 0.972	cheerful: 0.972	portrait: 0.976
outdoors: 0.970	outdoors: 0.970	outdoors: 0.969	cute: 0.975
fun: 0.969	fun: 0.969	fun: 0.968	fun: 0.974
portrait: 0.968	portrait: 0.968	summer: 0.948	nature: 0.966
summer: 0.949	summer: 0.949	portrait: 0.948	summer: 0.959
happiness: 0.946	happiness: 0.946	happiness: 0.945	happiness: 0.958
people: 0.925	people: 0.925	people: 0.924	cheerful: 0.955
nature: 0.922	nature: 0.921	nature: 0.922	people: 0.950

More Example Results

market: 1.000 stall: 1.000 merchant: 1.000 sell: 0.999 people: 0.999 grow: 0.998 vendors: 0.996 marketplace: 0.993 shopping: 0.992 marketplace: 0.992 booth: 0.992 marketplace: 0.992 marketplace: 0.993 booth: 0.992 marketplace: 0.992 marketplace: 0.993 booth: 0.992	0 999 8 93 990

Eran Nussinovitch Clarifai

Conclusions / Future Work

- Over 3x speed up and 3x decrease in latency with our General Model v1.5 using TF-TRT
 - Minimal effort/impact on existing setup
 - Greater speed up possible with some degradation in accuracy
- ~5x speed up with our General Model using TRT
 - More effort vs TF-TRT needed some custom plugins
- Next steps conversion of object detection model to TRT

TF-TRT Examples and documentation

Examples repository, with links to documentation

https://github.com/tensorflow/tensorrt

- Image classification
 - MobileNet, NASNet, ResNet, VGG, Inception
- Object detection
 - SSD, Faster-RCNN, Mask-RCNN

40 commits		1 branch	🏷 0 releases	11 contributors		ಶ್ಚು Apache-2.0		
Branch: master •	New pull request			Create new file	Upload files	Find File	Clone or downlo	
androzdowsk	i1996 and pooyadavo	odi update log print (#38) 🐰	12			Latest com	mit ecc5f18 2 days	
🖿 tftrt		update log print (#38)					2 days	
gitmodules		Update submodule				3 months		
		first commit				4 months		
README.md		Update README.md			4 days			
setup.py		added object detectio		4 months				
I README.md								
Docu	mentatio	on for Tens	sorRT in Tens	sorFlow	(TF-TF	RT)		

This repository contains a number of different examples that show how to use TF-TRT. TF-TRT is a part of TensorFlow that optimizes TensorFlow graphs using TensorRT. We have used these examples to verify the accuracy and performance of TF-TRT. For more information see Verified Models.

Examples

Thank You