

# Using Tensor Swapping and NVLink to Overcome GPU Memory Limits with TensorFlow

Sam Matzek

### Deep learning is memory constrained

- •GPUs have limited memory
- •Neural networks are growing deeper and wider
- •Amount and size of data to process is always growing

## GPU Memory Usage



## Model Training in GPU Memory



#### Model Training with Tensor Swapping





#### TensorFlow Large Model Support Graph Modifications



https://arxiv.org/pdf/1807.02037.pdf

## Enabling TensorFlow Large Model Support

Keras API

#### Estimator API

## What's possible with Large Model Support?

- •10x image resolution Keras ResNet50
- •10x image resolution DeepLabV3 2D image segmentation
- •5x MRI resolution 3D U-Net 3D image segmentation

## 3D U-Net image segmentation

•3D U-Net generally has high memory usage requirements
•International Multimodal Brain Tumor Segmentation Challenge (BraTS)
•Existing Keras model with TensorFlow backend

# Effect of 2x resolution on Dice Coefficients (higher is better)

Whole Tumor

Low Res High Res





**Tumor Core** 

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

**Enhancing Tumor** 

#### Low Res High Res



# "Swapping makes everything slow"



## Typical GPU connectivity



#### POWER9 CPU to GPU connectivity



## Effects of NVLink 2.0 on Large Model Support

PCIe connected GPU training one high res 3D MRI with large model support

| 1     | 40 s   | 14        | 11 s | 1       | 42 s      | 6.1183 | 36 s | 143 s |        | 144 s |      |      | 145 s | _       |       |
|-------|--------|-----------|------|---------|-----------|--------|------|-------|--------|-------|------|------|-------|---------|-------|
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
| 111   |        |           |      |         | 1         |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        | 11   |       |        |       |      |      |       |         |       |
| 111   |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
|       | 1.0.0  |           |      |         |           |        |      | 1     |        |       | 1    | 1    |       | 1.1     |       |
| NVL11 | nk 2.0 |           |      | GPU tra | .1111<br> | ng one | h1   | gh re | s 3D ] | MRI   | with | larg | e mo  | odel su | uppor |
| 6     | i6 s   | 2.46749 s | 5    | 68      |           |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         | E.        |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |
|       |        |           |      |         |           |        |      |       |        |       |      |      |       |         |       |

## Effects of NVLink 2.0 on epoch times

2500

Epoch times at high resolution with swapping



## Effects of NVLink 2.0 on GPU Utilization



## Multi-GPU model training with NVLink 2.0



## Patches versus whole image



#### Overhead of Large Model Support with NVLink 2.0



MRI resolution (cubed)

#### Overhead of Large Model Support with NVLink 2.0 ResNet50 on POWER9 with 32GB NVIDIA Volta V100



Image resolution (squared)

#### Overhead of Large Model Support with NVLink 2.0



Using bs=16, fine\_tune\_batch\_norm=true, measured on 32GB GPU with TensorFlow 1.13, CUDA 10.1, cuDNN 7.5

## Large Model Support with NVLink 2.0

- Tensor swapping can be used to overcome GPU memory limits
- Allows training of:
  - deeper models
  - higher resolution data
  - larger batch sizes
- NVLink 2.0 between CPU and GPU allow tensor swapping with minimal overhead

## More information

TensorFlow Large Model Support <u>https://github.com/IBM/tensorflow-large-model-support</u>

TFLMS: Large Model Support in TensorFlow by Graph Rewriting <a href="https://arxiv.org/pdf/1807.02037.pdf">https://arxiv.org/pdf/1807.02037.pdf</a>

TensorFlow Large Model Support Case Study https://developer.ibm.com/linuxonpower/2018/07/27/tensorflow-large-model-support-case-study-3d-image-segmentation

Performance of 3DUnet Multi GPU Model for Medical Image Segmentation using TensorFlow Large Model Support <a href="http://ibm.biz/3dunet-tflms-multigpu">http://ibm.biz/3dunet-tflms-multigpu</a>

Fast and Accurate 3D Medical Image Segmentation with Data-swapping Method <u>https://arxiv.org/abs/1812.07816</u>

Data-parallel distributed training of very large models beyond GPU capacity <u>https://arxiv.org/abs/1811.12174</u>

POWER9 server with NVLink 2.0 connections between CPU and GPU (IBM AC922): <a href="https://www.ibm.com/us-en/marketplace/power-systems-ac922">https://www.ibm.com/us-en/marketplace/power-systems-ac922</a>