GTC, Santa Jose, 2019

Video-Based Activity Forecasting for Construction Safety Monitoring Use Cases

Speaker: Shuai Tang University of Illinois at Urbana-Champaign

Contributors: Mani Golparvar Fard (University of Illinois) Milind Naphade (Nvidia), Murali Gopalakrishna (Nvidia), Amit Goel (Nvidia)

NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Worker Dies From Falling 50 Feet



References: California FACE Report #07CA009

14 Worker Deaths Every Day In The US

20.7% of all worker deaths were in construction

OSHA estimates that eliminating top 4 hazards in construction save 581 workers' lives

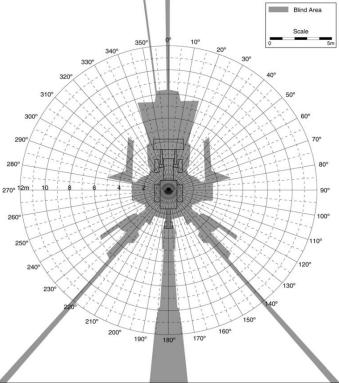
Falls: 381 deaths (39.2%) Struck By Object: 80 deaths (8.2%) Electrocution: 71 deaths (7.3%) Caught-In/Between: 50 deaths (5.1%)

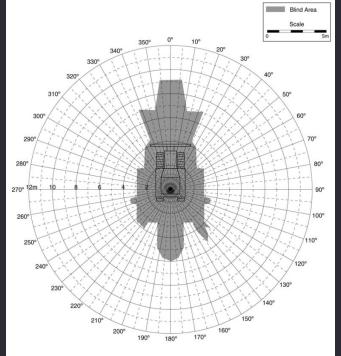
Cars

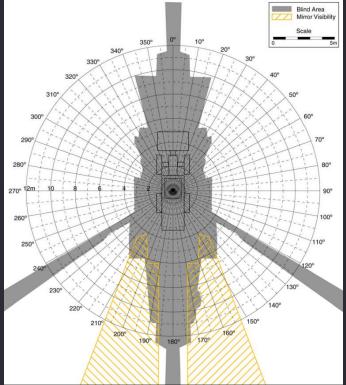
'Careless' foreman crushes woman, 19, with backhoe at Bexar County construction site

By Caleb Downs Updated 7:18 pm CST, Tuesday, January 24, 2017

'Careless' Operator Crushes Worker With Backhoe







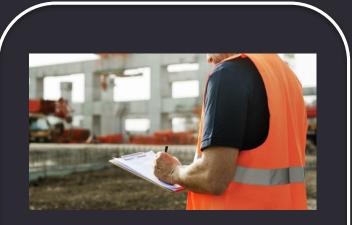
Non-fatal Injuries In Construction

Safety incidents 971 fatal cases 79,810 non-fatal cases involving days away from work

\$1.3 trillion construction expenditure each year

Financial impact of safety Around \$4 million cost per fatal case, Over \$42,000 average cost per non-fatal case.

Motivation



Frequency

Safety inspections are taken typically weekly.

Accuracy

50% hazards not recognized by workers

Proactiveness

Safety measurements are often retrospective



Overreaching Goal: Visual-based activity forecasting towards predictive safety monitoring

Opportunity - Growth In Visual Data

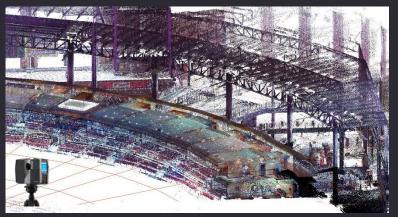
200-1,000 pictures per day

~1,000 pictures per day

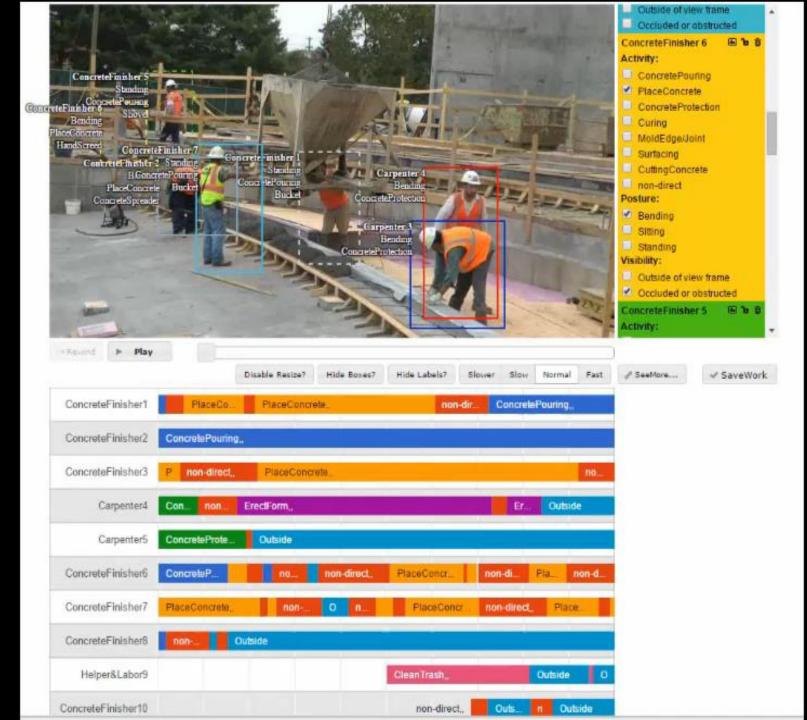
Time-Lapse pictures every 5-15min

1-10 videos per day

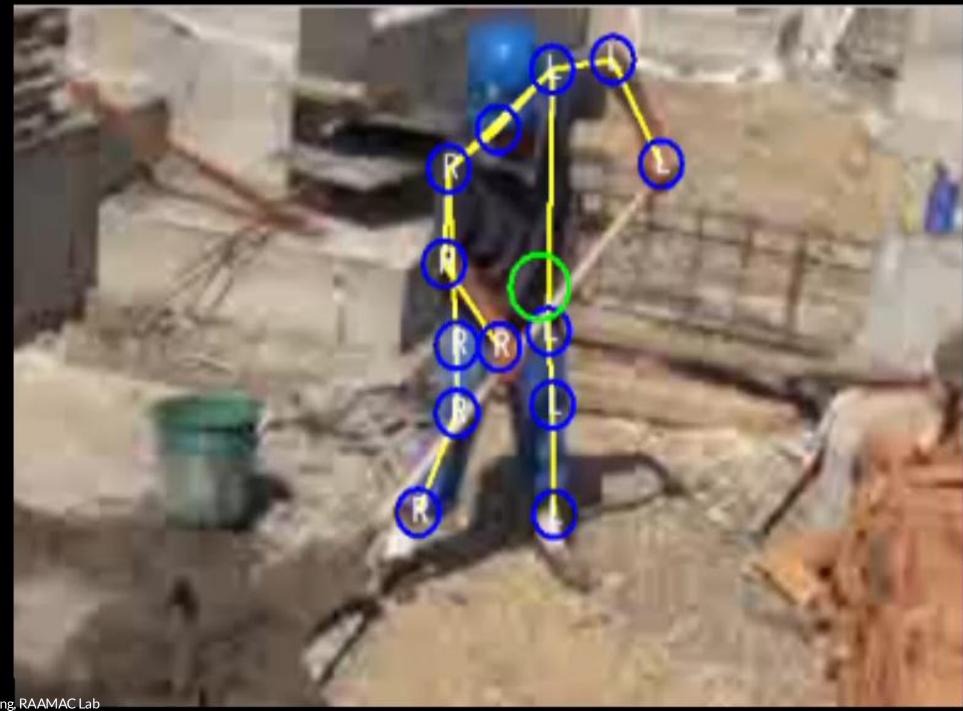
~2,000 images per week



1-5 scans/month



Video sources: RAAMAC Lab



Video sources: Jun Yang, RAAMAC Lab

Model name: newmark Descriptor: BRISK

Number of cameras: 226 Number of 3D points: 40665 Mean Squared Error (MSE): 2.61 Track length (avg, min, max): 2.80221, 2, 61

32

[Camera #13]

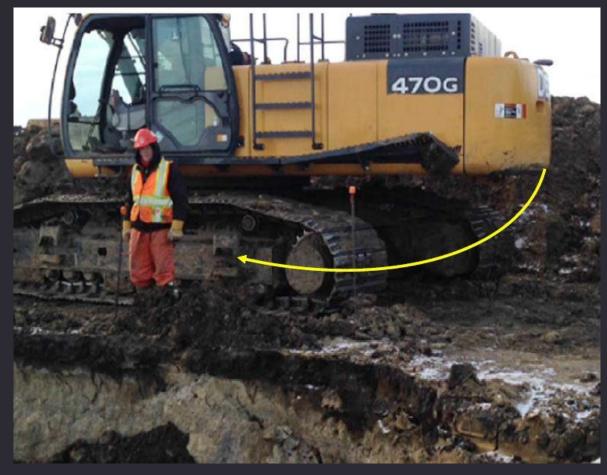
Focal length: 2985.48 pixels (-0.191913) Number of visible points: 522 points Reprojection error: 1.10483 pixels Rotation matrix:

0.998927 0.0140339 0.0441637 -0.00394474 0.975334 -0.220701 -0.0461717 0.22029 0.974343 Translation vector: -0.11053 0.106308 -0.336207

BScore: 9.02655

Documentation, Intervention, Near-Miss Reporting

Right-time Intervention



Near-miss Reporting

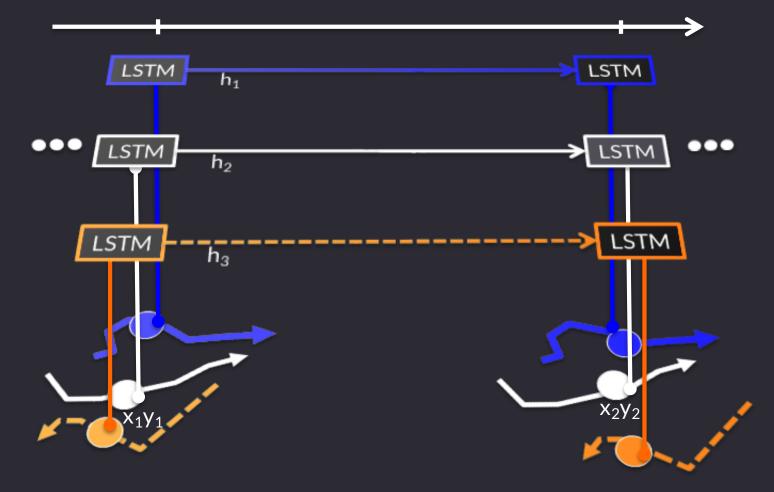
Big Picture - Computer Vision & Jobsite Cameras

Detect, Track, Model Worker Activities Understand Work Context Predict Next Sequence of Activities

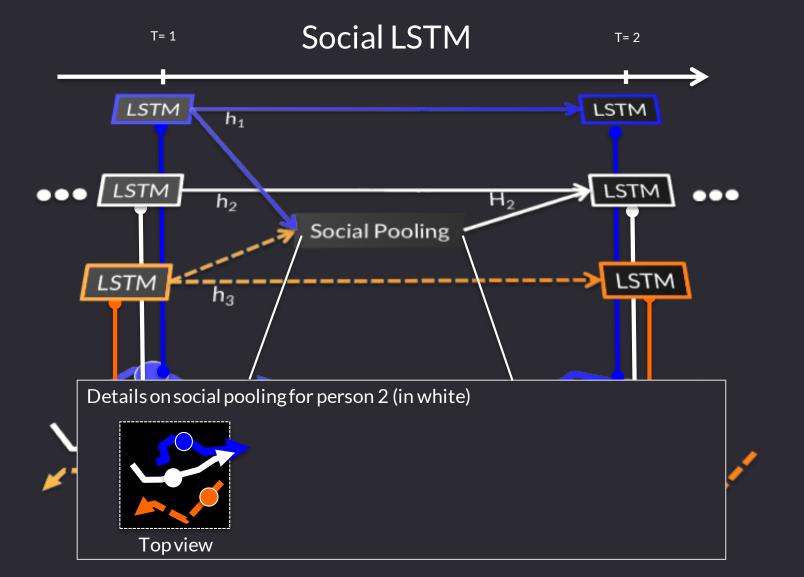
Social LSTM (Alahi *et al.* 2016)

15

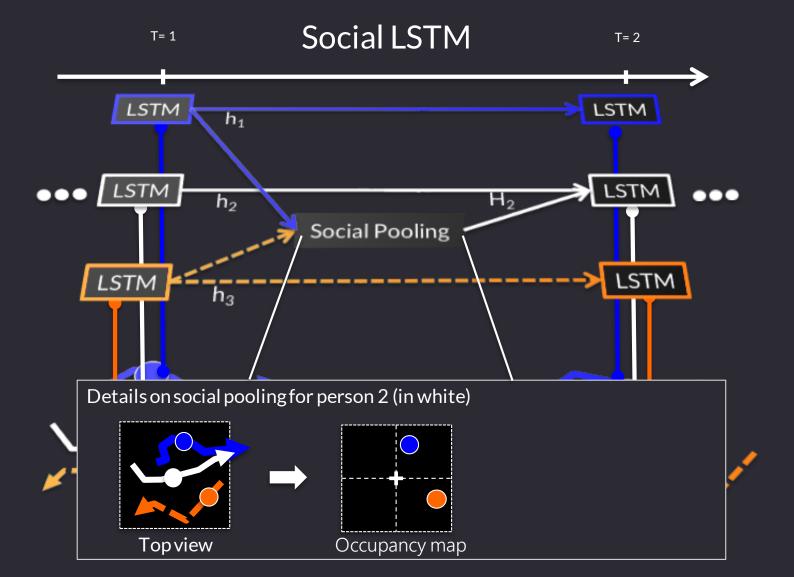
T= 1 Vanilla LSTM (Graves, 2013) T= 2



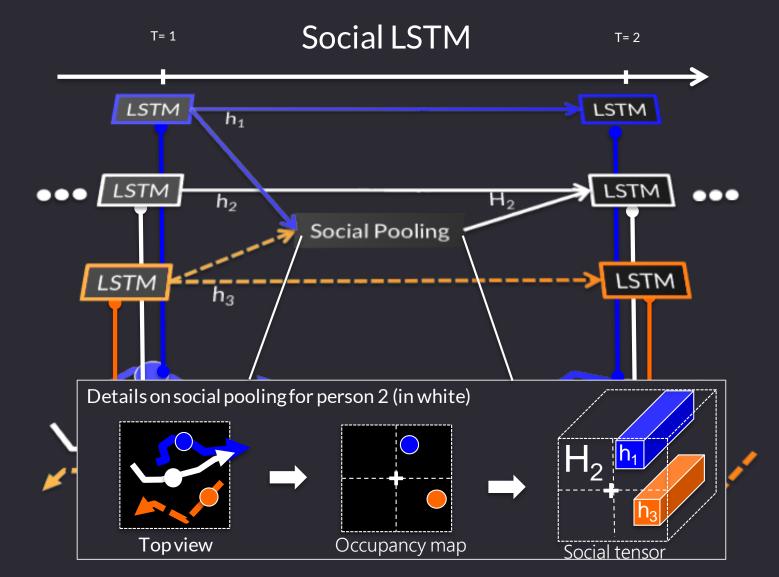
Social LSTM (Alahi *et al.* 2016)



Social LSTM (Alahi *et al.* 2016)

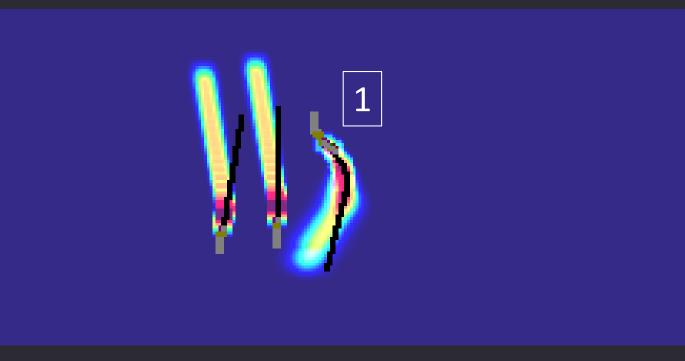


Social LSTM (Alahi et al. 2016)



Social LSTM (Alahi *et al.* 2016)

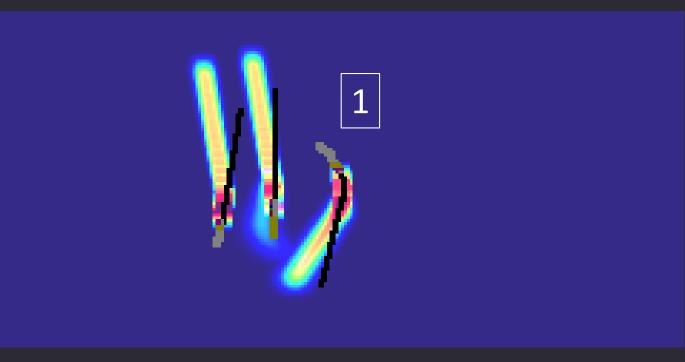
- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution



Social LSTM learned to turn around a group

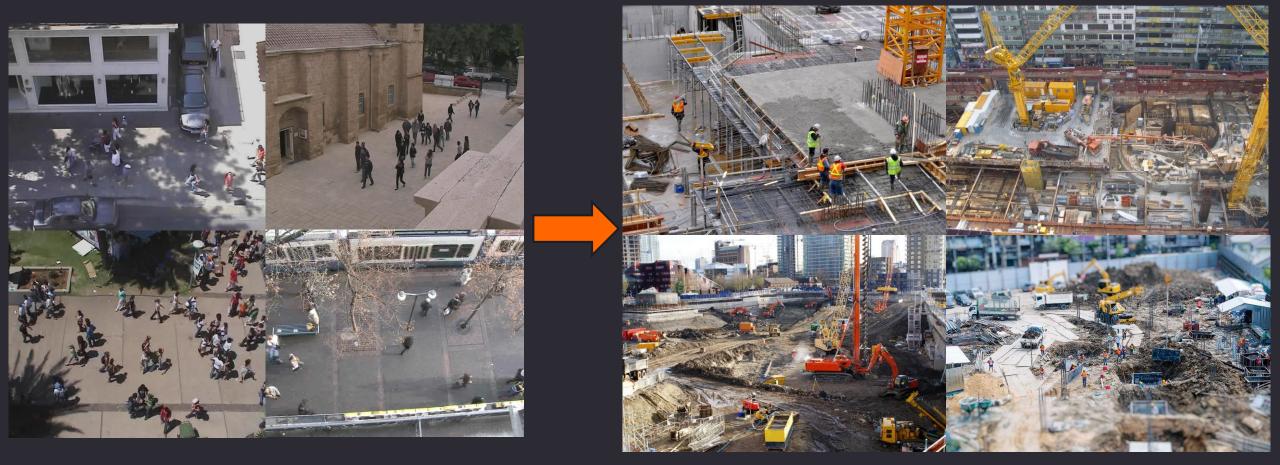
Social LSTM (Alahi *et al.* 2016)

- Black line is the ground truth trajectory
- Gray line is the past
- Heatmap is the predicted distribution



Social LSTM learned to turn around a group

From Crowd Scenes To Construction Sites



Crowd scenes from UCY and ETH dataset

Example construction sites, Google Image

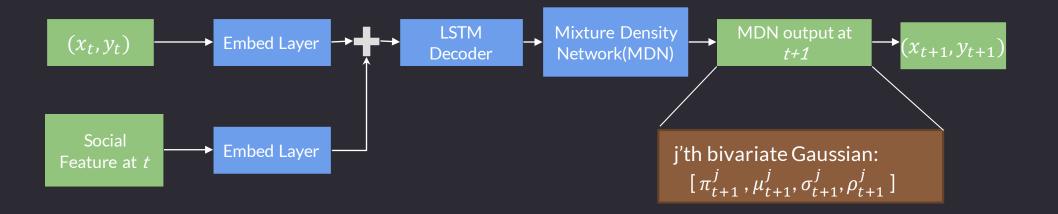
From Crowd Scenes To Construction Sites

Construction sites often change drastically

Approach – data-driven, context rich, and sequence-to-sequence models

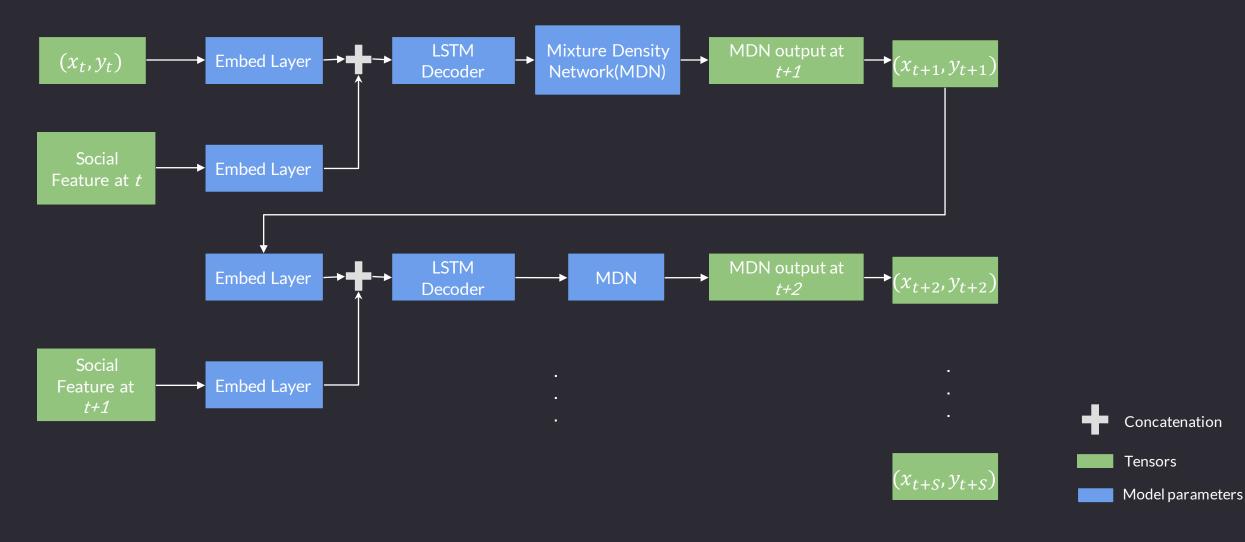
Model Architecture (Social LSTM)

For *i* 'th trajectory at time *t*... predict *i* 's location at *t*+1

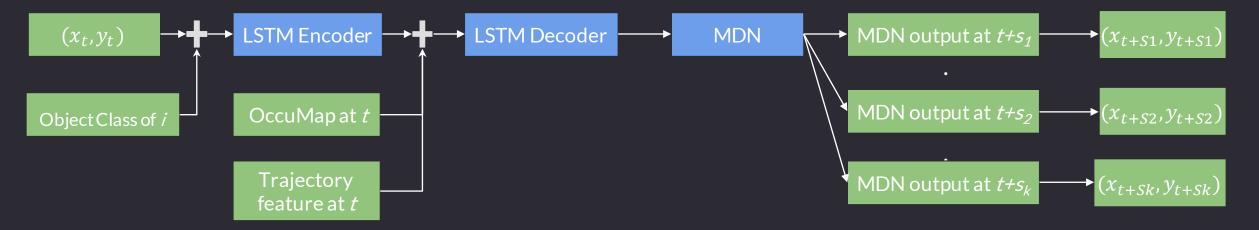


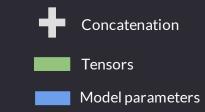
Model Architecture (Social LSTM)

For *i* 'th trajectory at time *t*... predict *i* 's location at *t*+1



For *i* 'th trajectory at time *t*... predict *i* 's location at { $t+s_1$, $t+s_2$, ..., $t+s_k$ }





Model Architecture (Ours) - Occupancy Map



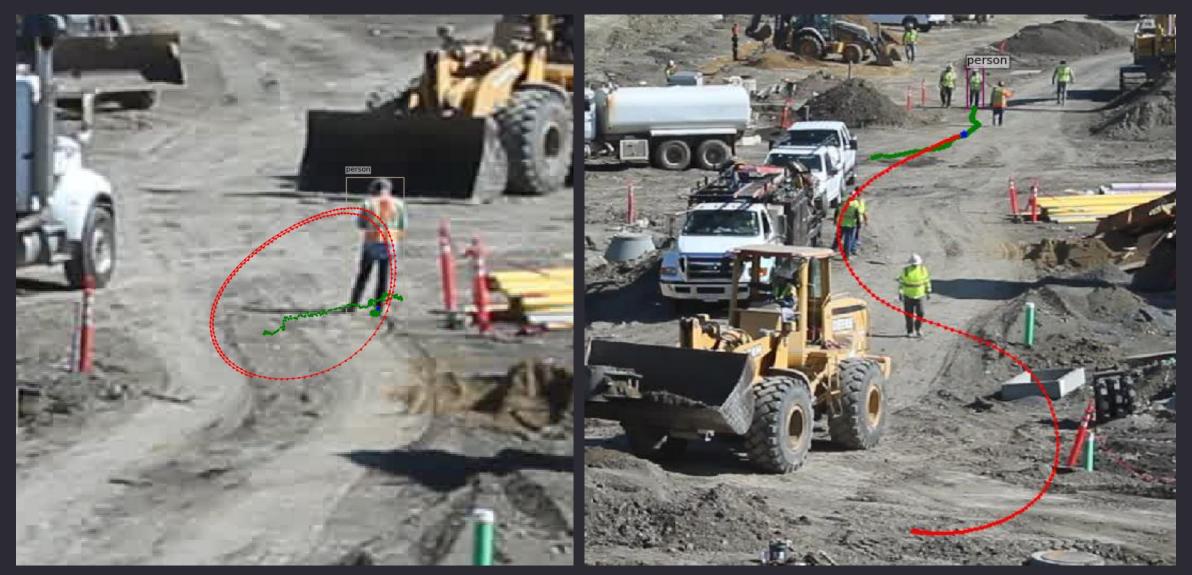
Trajectory Features From Common Trajectories

Color Code and Movement Blue South West to North East Lime: North East to South West Red: East to West Yellow: North to South

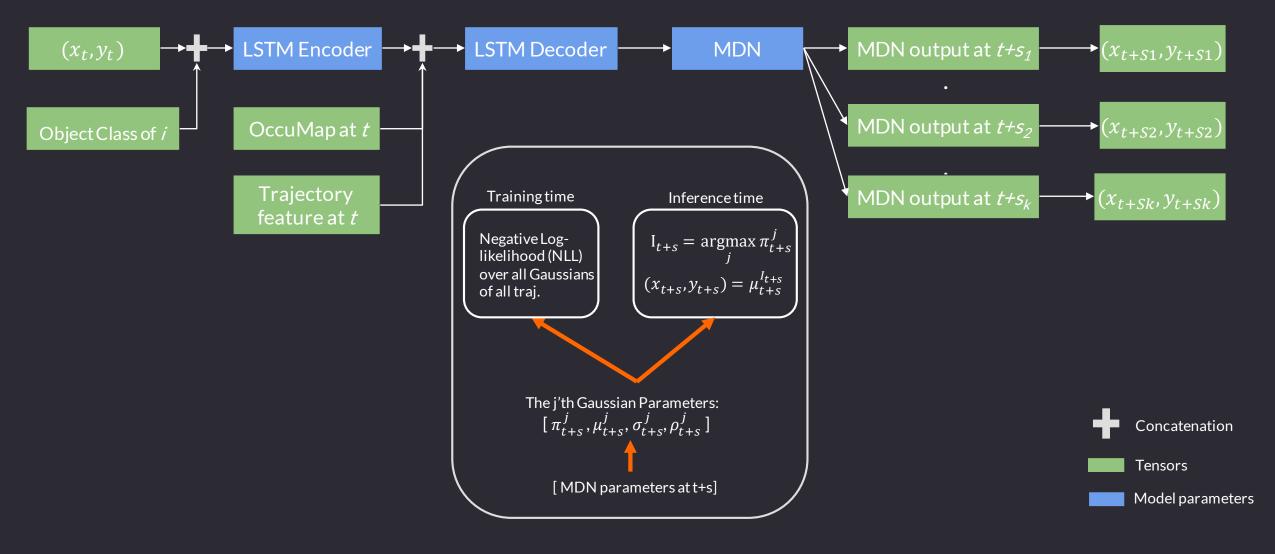
Length: Average length of all trajectories belonging to the cluster

Thickness: Cluster size (number of Trajectories in the cluster)

Iteratively Use Predicted Locations As Inputs Lead to Large Deviations



For *i* 'th trajectory at time *t*... predict *i* 's location at { $t+s_1$, $t+s_2$, ..., $t+s_k$ }



Case Study At Nvidia Voyager Site

Image courtesy of Berni de Nina 1 270 m (887 ft.) by 34 m (110 ft.)

Experiment Setup

Voyager dataset:

- 1,464 mins (24.4 hrs) of 1080p videos
- Trainval set (from 76 clips): person 1630, vehicle 1752
- Test set (from 29 clips): person 143, vehicle 161
- Traj. duration : [30, 2000] steps , endpts dist. > 50 pixels

TrajNet dataset:

- 58 scenes from UCY, ETH and SSD dataset
- 11,448 pedestrian traj.
- 20 steps each traj., world coordinates in meter.

Implementation Details

Running on one RTX 2080 Ti GPU with Nvidia docker image

Optimization tricks:

- gradient clipping to 50% gradient norm
- Adam optimizer, Ir = 0.005, Ir decay to 50%

Dynamic length batches

- Pre-computed features for accelerating training speed.
- Training time:
 - Voyager: 1 hr for 1000 epochs with 3 MDN output heads
 - Trajnet: ~30 mins for 1700 epochs with 12 MDN output heads

Experimental Results – Voyager dataset

Experiment results and ablation study (error in pixels)

Group	ID	Method	RMSE@10	RMSE@20	RMSE@40
Baselines	1	Linear Reg ($p = 1$)	62.47	68.59	82.51
	2	VAR(p = 5)	46.85	90.27	163.02
	3	MLP + Reg	14.17	27.08	50.16
	4	LSTM+Reg	8.67	14.65	27.39
Ours	5	LSTM+MDN	7.42	13.26	25.25
	6	LSTM+MDN (single output)	7.51 (0.22)*	13.30 (0.34)	25.20 (0.45)
	7	LSTM+MDN+OccuMap	7.24 (0.02)	12.70 (0.008)	24.30 (0.01)
	8	LSTM+MDN+Attribute	7.22 (0.0003)	12.95 (0.01)	24.74 (0.02)
	9	LSTM+Traj. Feature	7.39 (0.03)	12.89 (0.05)	24.45 (0.03)
	10	LSTM+MDN+OccuMap +Attribute	7.30 (0.09)	12.71 (0.005)	24.22 (0.004)
	11	LSTM+MDN+OccuMap +Attribute + Traj. Feature	7.36 (0.04)	13.06 (0.03)	24.54 (0.008)

* p-values against method 5 (LSTM+MDN), p < 0.05 means two results are different with statistical significance

Tentative comparison between Social LSTM and Ours (error in meters)

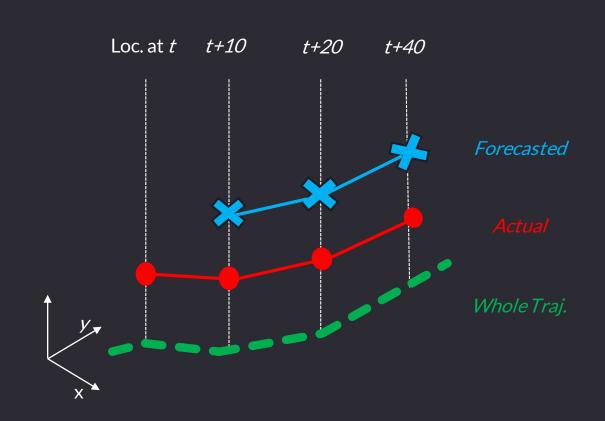
Group	ID	Method	Average error	Final error	Meanerror
Social LSTM*	9	Occupancy LSTM	2.1105	3.12	1.101
	10	Social LSTM	1.3865	2.098	0.675
Ours**	4	LSTM+Reg	1.039	1.382	0.696
	5	LSTM+MDN	1.036	1.377	0.694
	7	LSTM+MDN+OccuMap	1.028	1.370	0.686

*Unofficial Implementation from https://github.com/quancore/social-lstm

** cross validation result on train set because evaluation server not available

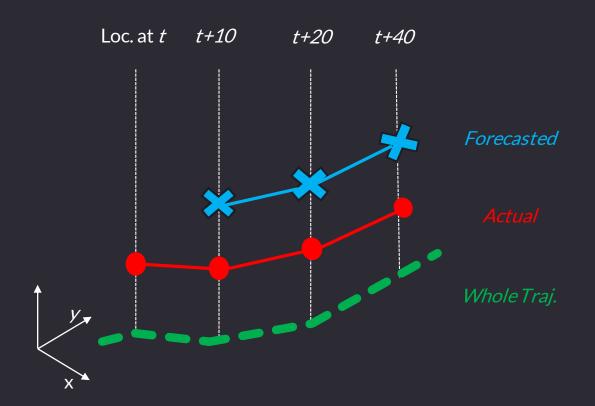
Qualitative Results – Easy Example

Qualitative Results – Easy Example

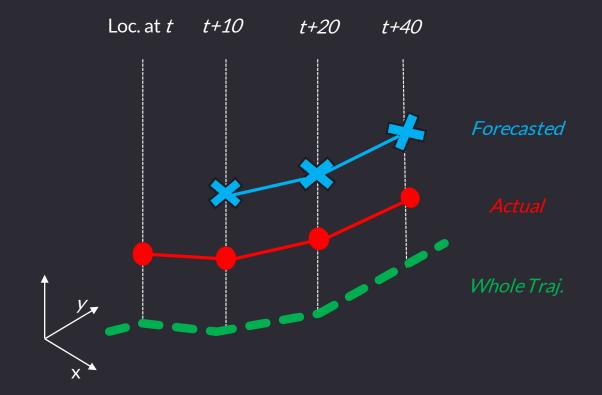


Qualitative Results - Intermediate Difficulty

Qualitative Results - Intermediate Difficulty



Qualitative Results – Hard Example



Input video

Object Detection + Object Tracking

Task: Forecast Entering Excavation Zone Events

- 1. Using trajectory forecasting model to predict person/vehicle's future locations in 0.5/1.0/2.0 seconds
- 2. Matching predictions to human-defined excavation zones.

Object detection + tracking:

- Mask RCNN (Resnet-101 backbone, Caffe2 Model zoo) for Person & Vehicle
- SORT for tracking Person & Vehicle objects

Admin panel to modify regions of interest

😣 🖨 🗊 🛛 Figure 1

Keyboard-binding instructions :

-press '1': Insert mode off and edit mode on; -press '2': Insert mode on and edit mode off; -press '3': export current polygons to visdom display; -press 'r': refresh frame

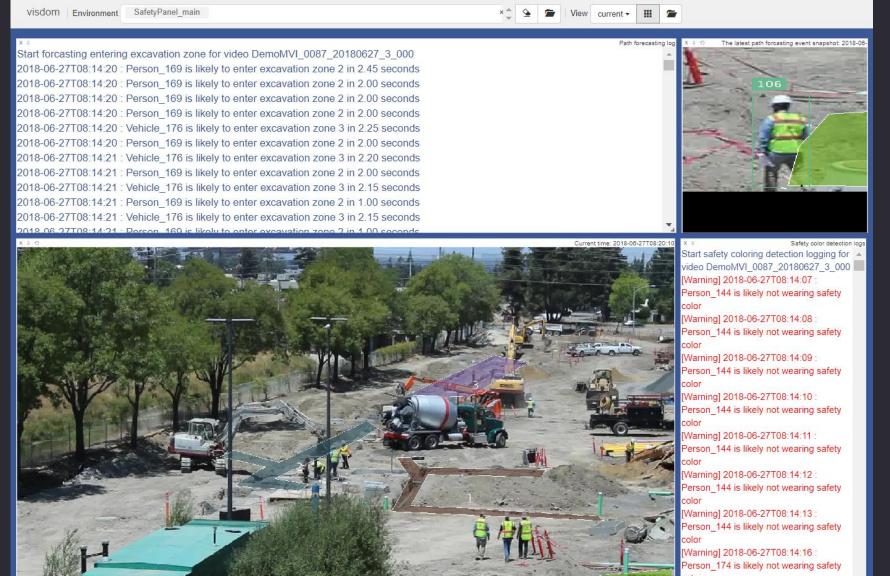
In insert mode:

click points and finish drawing by click back the first point -hold 'shift' and left mouse click to move the whole polygon; -hold left mouse click to move one vertex; -press 'esc' to start a new polygon

In edit mode:

-press '4': delete the polygon containing the point -press 't': toggle vertex markers on and off. -press 'd': delete the vertex under point when markers on -press 'i': insert a vertex at point when markers on, within 10 pixels of the line connecting two existing vertices. Ploy at time: 701, Insert new polygon mode: off

Viewer panel



The latest path forcasting event saapshor: 2018.0

Demo Video

Keyboard-binding instructions :

-press 11: insert mode off and edit mode on; -press 21: insert mode on and edit mode off; -press 21: export current polygons to visdom display; -press r7: refresh frame

In insert mode:

click points and finish drawing by click back the first point -hold 'shift' and left mouse click to move the whole polygon; -hold left mouse click to move one vertex; -press 'esc' to start a new polygon

In edit mode:

press 4": delete the polygon containing the point -press "C: toggle vertex markers on and off, -press "C: delete the vertex under point when markers on -press "C: insert a vertex at point when markers on, within 10 pixels of the line connecting two existing vertices.

Ploy at time: 2401, Insert new polygon mode: off

2018-06-27108:15:35 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:36 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:36 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:36 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:36 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:36 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:36 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:37 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:37 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:37 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:37 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27108:15:37 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds

2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.00 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-06-27T08:15:37 : Person_96 is likely to enter excavation zone 1 in 2.15 seconds 2018-26-27T08:15 seconds 2018-26-27T08:15 seconds 2018-26-27T08:15

- Improving construction safety requires more frequent, accurate and proactive inspections.
- We show detection, tracking, and trajectory forecasting models are promising ways to improve predictive construction safety management.

GTC, Santa Jose, 2019

Video-Based Activity Forecasting for Construction Safety Monitoring Use Cases

NIZ VIZ VIZ VIZ

Shuai Tang stang30@illinois.edu

N721/12/12/12/12/12

ANZ STANDAR STAND

IVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN