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Worker Dies From Falling 50 Feet

2
References: California FACE Report #07CA009
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14 Worker Deaths Every Day In The US

20.7% of all worker deaths were in construction

OSHA estimates that eliminating top 4 hazards in construction

save 581 workers’ lives

Falls: 381 deaths (39.2%)

Struck By Object: 80 deaths (8.2%)

Electrocution: 71 deaths (7.3%)

Caught-In/Between: 50 deaths (5.1%)
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'Careless’ Operator Crushes Worker With Backhoe
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References: https://www.cdc.gov/niosh/topics /highwayworkzones/bad/pdfs/catre port2.pdf



Non-fatal Injuries In Construction

▪ Safety incidents
▪ 971 fatal cases
▪ 79,810 non-fatal cases involving days away from work

▪ $1.3 trillion construction expenditure each year

▪ Financial impact of safety
▪ Around $4 million cost per fatal case,
▪ Over $42,000 average cost per non-fatal case.
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Motivation
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Frequency

Safety inspections are 
taken typically weekly.

Accuracy

50% hazards not 
recognized by workers

Proactiveness

Safety measurements 
are often retrospective

Image sources: Google Image



Overreaching Goal:
Visual-based activity forecasting towards 

predictive safety monitoring



Opportunity - Growth In Visual Data
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200-1,000 pictures per day ~1,000 pictures per day Time-Lapse pictures every 5-15min

~2,000 images per week 1-5 scans/month1-10 videos per day
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Video sources: RAAMAC Lab
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Video sources: Jun Yang, RAAMAC Lab



Video sources: RAAMAC Lab



Documentation, Intervention, Near-Miss Reporting
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Near-miss ReportingRight-time Intervention

Image sources: Left: http://www.energysafetycanada.com/files/safety-alerts/Safety%20Alert%20-%2010.2018%20-%20Final.pdf Right: http://www.energysafetycanada.com/files/safety-alerts/Safety%20Alert-13%202016.pdf
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Big Picture - Computer Vision & Jobsite Cameras

Detect, Track, Model Worker Activities

Understand Work Context

Predict Next Sequence of Activities



Social LSTM (Alahi et al. 2016)
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Vanilla LSTM (Graves, 2013)T= 1 T= 2

x1y1
x2y2

15Slide: Alexandre Alahi

Activity Forecasting – Computer Vision
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Social LSTMT= 1 T= 2

Details on social pooling for person 2 (in white)

Top view
16

Activity Forecasting – Computer Vision

Social LSTM (Alahi et al. 2016)

Slide: Alexandre Alahi
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Social LSTMT= 1 T= 2

Details on social pooling for person 2 (in white)
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Activity Forecasting – Computer Vision

Social LSTM (Alahi et al. 2016)

Occupancy map
Slide: Alexandre Alahi

Top view
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Social LSTMT= 1 T= 2

Details on social pooling for person 2 (in white)
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Activity Forecasting – Computer Vision

Social LSTM (Alahi et al. 2016)

Slide: Alexandre Alahi

h1

h3

H2

Social tensorOccupancy mapTop view



Social LSTM learned to turn around a group

1
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19Slide: Alexandre Alahi

Activity Forecasting – Computer Vision

Social LSTM (Alahi et al. 2016)
● Black line is the ground truth trajectory
● Gray line is the past
● Heatmap is the predicted distribution



Social LSTM (Alahi et al. 2016)
● Black line is the ground truth trajectory
● Gray line is the past
● Heatmap is the predicted distribution

Social LSTM learned to turn around a group

1
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20Slide: Alexandre Alahi

Activity Forecasting – Computer Vision



From Crowd Scenes To Construction Sites
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Crowd scenes from  UCY and ETH dataset Example construction sites, Google Image
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Construction sites often change drastically 

D1 D5 D10

D14 D19 D21

From Crowd Scenes To Construction Sites
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Approach – data-driven, context rich, 

and sequence-to-sequence models



Model Architecture (Social LSTM)

For i ‘th trajectory at time t … predict i ‘s  location at t+1

(𝑥𝑡 , 𝑦𝑡) Embed Layer

Social 

Feature at t

LSTM 
Decoder

Mixture Density 
Network(MDN)

MDN output at 
t+1

Embed Layer

(𝑥𝑡+1, 𝑦𝑡+1)

Concatenation

Tensors

Model parameters
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j’th bivariate Gaussian:

[ 𝜋𝑡+1
𝑗

, 𝜇𝑡+1
𝑗

, 𝜎𝑡+1
𝑗

, 𝜌𝑡+1
𝑗

]



Model Architecture (Social LSTM)
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Embed Layer

Social 
Feature at 

t+1

LSTM 

Decoder
MDN

MDN output at 

t+2

Embed Layer

(𝑥𝑡+2, 𝑦𝑡+2)

.

.

.

.

.

.

(𝑥𝑡+𝑆, 𝑦𝑡+𝑆)

For i ‘th trajectory at time t … predict i ‘s  location at t+1



Model Architecture (Ours)
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For i ‘th trajectory at time t … predict i ‘s  location at {t+s1 , t+s2 , … , t+sk }

.

.

.

.

.

(𝑥𝑡 ,𝑦𝑡) LSTM Encoder

OccuMap at t

LSTM Decoder MDN MDN output at t+s1

Trajectory 
feature at t

MDN output at t+sk

MDN output at t+s2Object Class of i

(𝑥𝑡+𝑆1 ,𝑦𝑡+𝑆1)

(𝑥𝑡+𝑆2 ,𝑦𝑡+𝑆2)

(𝑥𝑡+𝑆𝑘, 𝑦𝑡+𝑆𝑘)

Concatenation

Tensors

Model parameters



Model Architecture (Ours) - Occupancy Map
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Color Code and Movement

Blue South West to North East
Lime: North East to South West
Red: East to West

Yellow: North to South

Length: Average length of all 

trajectories belonging to the cluster

Thickness: Cluster size (number of 

Trajectories in the cluster)

Trajectory Features From Common Trajectories
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Model Architecture (Ours)
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Model Architecture (Ours)

Iteratively Use Predicted Locations As Inputs Lead to Large Deviations



Model Architecture (Ours)
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Concatenation

Tensors

Model parameters
[ MDN parameters at t+s]

The j’th Gaussian Parameters: 

[ 𝜋𝑡+𝑠
𝑗 , 𝜇𝑡+𝑠

𝑗 , 𝜎𝑡+𝑠
𝑗 , 𝜌𝑡+𝑠

𝑗 ]

Negative Log-
likelihood (NLL) 
over all Gaussians 
of all traj.

Training time

I𝑡+𝑠 = argmax
𝑗

𝜋𝑡+𝑠
𝑗

Inference time

(𝑥𝑡+𝑠 ,𝑦𝑡+𝑠) = 𝜇𝑡+𝑠
𝐼𝑡+𝑠

.

.

.

.

.

(𝑥𝑡 ,𝑦𝑡) LSTM Encoder

OccuMap at t

LSTM Decoder MDN MDN output at t+s1

Trajectory 
feature at t

MDN output at t+sk

MDN output at t+s2Object Class of i

(𝑥𝑡+𝑆1 ,𝑦𝑡+𝑆1)

(𝑥𝑡+𝑆2 ,𝑦𝑡+𝑆2)

(𝑥𝑡+𝑆𝑘, 𝑦𝑡+𝑆𝑘)

For i ‘th trajectory at time t … predict i ‘s  location at {t+s1 , t+s2 , … , t+sk }
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1

Image courtesy of Berni de Nina

Case Study At Nvidia Voyager Site

270 m (887 ft.) by 34 m (110 ft.)



Experiment Setup

▪ Voyager dataset:

• 1,464 mins (24.4 hrs) of 1080p videos

• Trainval set (from 76 clips): person 1630, vehicle 1752

• Test set (from 29 clips): person 143, vehicle 161

• Traj. duration : [30, 2000] steps , endpts dist. > 50 pixels

▪ TrajNet dataset:

• 58 scenes from UCY, ETH and SSD dataset

• 11,448 pedestrian traj.

• 20 steps each traj., world coordinates in meter.

32



Implementation Details

▪ Running on one RTX 2080 Ti GPU with Nvidia docker image

▪ Optimization tricks:

• gradient clipping to 50% gradient norm

• Adam optimizer, lr = 0.005, lr decay to 50%

▪ Dynamic length batches

▪ Pre-computed features for accelerating training speed.

▪ Training time:

• Voyager: 1 hr for 1000 epochs with 3 MDN output heads

• Trajnet: ~30 mins for 1700 epochs with 12 MDN output heads
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Experimental Results – Voyager dataset
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Group ID Method RMSE@10 RMSE@20 RMSE@40

Baselines

1 Linear Reg (𝑝 = 1) 62.47 68.59 82.51

2 VAR (𝑝 = 5) 46.85 90.27 163.02

3 MLP + Reg 14.17 27.08 50.16

4 LSTM+Reg 8.67 14.65 27.39

Ours

5 LSTM+MDN 7.42 13.26 25.25
6 LSTM+MDN (single output) 7.51 (0.22)* 13.30 (0.34) 25.20 (0.45)

7 LSTM+MDN+OccuMap 7.24 (0.02) 12.70 (0.008) 24.30 (0.01)

8 LSTM+MDN+Attribute 7.22 (0.0003) 12.95 (0.01) 24.74 (0.02)

9 LSTM+Traj. Feature 7.39 (0.03) 12.89 (0.05) 24.45 (0.03)

10 LSTM+MDN+OccuMap

+Attribute
7.30 (0.09) 12.71 (0.005) 24.22 (0.004)

11 LSTM+MDN+OccuMap

+Attribute + Traj. Feature
7.36 (0.04) 13.06 (0.03) 24.54 (0.008)

*  p-values against method 5 (LSTM+MDN),  p < 0.05 means two results are different with statistical significance

Experiment results and ablation study (error in pixels)



Experimental Results – TrajNet dataset
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Group ID Method Average error Final error Mean error

Social 

LSTM*

9 Occupancy LSTM 2.1105 3.12 1.101

10 Social LSTM 1.3865 2.098 0.675

Ours**

4 LSTM+Reg 1.039 1.382 0.696

5 LSTM+MDN 1.036 1.377 0.694

7 LSTM+MDN+OccuMap 1.028 1.370 0.686

*Unofficial Implementation from https://github.com/quancore/social-lstm

**cross validation result on train set because evaluation server not available

Tentative comparison between Social LSTM and Ours (error in meters)



Qualitative Results – Easy Example
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Qualitative Results – Easy Example
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Qualitative Results - Intermediate Difficulty
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Qualitative Results - Intermediate Difficulty 
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Qualitative Results – Hard Example
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Object Detection 

+
Object Tracking

Input video

Task: Forecast Entering Excavation Zone Events

1. Using trajectory forecasting model to predict 
person/vehicle’s future locations in 0.5/1.0/2.0 
seconds

2. Matching predictions to human-defined 
excavation zones.

A Safety Application Prototype
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Object detection + tracking:
• Mask RCNN (Resnet-101 backbone, Caffe2 Model zoo) for Person & Vehicle 
• SORT for tracking Person & Vehicle objects



Admin panel to modify regions of interest

A Safety Application Prototype

42



Viewer panel

A Safety Application Prototype
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Demo Video

A Safety Application Prototype
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Summary

▪ Improving construction safety requires more frequent, accurate 
and proactive inspections.

▪ We show detection, tracking, and trajectory forecasting models 
are promising ways to improve predictive construction safety 
management.
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