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Outline

Problem statement

Efforts in generative molecular deep learning methods

Our approach

• Hardware/software

• Tooling

• Data curation 

• Model Training and convergence

• Latent space analysis and inference

• Generative capability evaluation
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Problem statement

Can a molecular generative deep learning system 

be trained to deliver new molecular designs 

relevant to our research needs?
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Introduction: Generative Molecular Systems

Challenges: 

• Molecular encoding (Canonical SMILES)

• Molecular descriptors (100’s)

• Vastness of chemical search space (1060)

• Unknown structure/property relationships f(n)

• Promise of the latent space dimensionality (32-bit)

• Limits on data set used for training (ChEMBL, ZINC)

• Organization of target properties within the latent space (AlogP)

• Molecule discovery workflow (post-filtering)
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Attraction of Molecular VAE/GANs

Convert discrete molecules to 

continuous latent representations 
• Molecules are discrete entities

• Subtle molecular transformations have large 

differences in performance

Undocumented benefit to using 

negative data in ml/dl
• Availability of a molecular structure axis in DL 

that is not generally available to ML

• Tendency in science to “move on” relative to 

negative or poor results Gomez-Bombarelli, et al., ACS Cent. Sci., 2018, 4 (2), pp 268–276
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General intro on methods: VAEs

Generally there are numerous methods appearing in the open 

literature:

• Chemical VAE

• Grammar VAE

• Junction Tree

• ATNC RL

• FC-NN (NVIDIA-Dow)

The best way to go is not entirely clear.

Junction Tree – may be best because of the more natural graph representation – but 

it may constrain diversity

FC-NN is potentially more efficient.

7



Inferencing Comparison to Literature

Method Reconstruction Validity

Chem-VAE 44 % 1 %lit.

Dow-Chem-VAE 94 % 10 %

Grammar-VAE                    54 %                             7 % lit.

SD-VAE 76 % 44 % lit.

Graph-VAE                          - 14 % lit.

JT-VAE 77 % 100 % lit.

Dow-FC-NN 90 % -- %

ATNC-RL - 71 % lit. 

Knowns Inferenced(unknown)
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Models and Training Details
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Model Details: Architectures Explored

3 Variational AutoEncoders

• chemVAE
Gomez-Bombarelli, et al, 2018 (Harvard)

• Junction Tree VAE
Jin et al, 2018 (MIT)

• Fully convolutional VAE
(NVIDIA-Dow)

Similar in setup
Different in details

10

molecules in

molecules out

Property 
Predictor



Model Details: Differences In Inputs

chemVAE fcVAE jtVAE

Input Smiles Smiles Molecular Graph
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Model Details: Differences In Sequence Modeling

chemVAE fcnVAE jtnn

Layer type used 
for sequence 

modeling

Teachers forcing Residual block Gated Recurrent Unit

Lamb et al, 2016
Bai et al, 2018 Cho et al,  2014
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Model Training Details: Data Compilation



NVIDIA DGX-1
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Model Training Details: Hardware



Container: Docker container

Standard
Lightweight
Secure

Packages
Chemistry:  RDKit, DeepChem

Data Processing:  Numpy, Pandas, Rapids

ML/DL:   SciKitLearn, Keras, Tensorflow, Pytorch, XGBoost

Tuning/Scaling Up:   Hyperopt, Horovod
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Model Training Details: Software Environment
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Model Training Details: Hyperparameter Optimization



Horovod

• Data Parallelism
• Network Optimal
• User friendly
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Model Training Details: Distributed Model Training
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Model Training Details: Latent Space Organization



Generative Capability
Evaluation
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Hit Rate Analysis  ( > 0 hits/1000 attempts)

ChEMBL TEST = 11800 test molecules inferenced (1000 attempts)

Model Hit Rate

C-VAE

55550 94.4 %

JT-NN

7 100 %

FC-NN

14587* 94 %

C-VAE
655 TEST molecules not decoding
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VAE Hit rate: Molecules that never decoded

Analysis of molecules from 

ChEMBL-TEST (655) that did 

not decode with 1000 attempts:

1. SMILES string length distribution for 

the non-decoding molecules

2. Inference study increased to 10,000 

attempts/molecule

a. 549/655 still never decoded

b. 16 % successful decoded at least once 

on 10,000 additional attempts

c. One molecule decoded an additional 44 

times

SMILES Length

C
o
u
n
t Distribution is not remarkable 

compared to ChEMBL
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Distribution of SMILES string lengths

E. Putin, et al.,

Mol. Pharmaceutics 2018, 15, 4386-4397

Length categories 
= 4095

DL
INPUT

DL
OUTPUT

C-VAE
55550 Length categories 

= 9616

118,000

22



Distance calculation and performance

GPU enabled–distance matrix calculation:

1. Characterizing latent space

2. Support inferencing 

a. Nearest neighbor analysis

b. Gaussian process support

Rough method comparison:

(30,000 molecules, 900 x 106 distances)

Python (Simple, non-vectorized)

5 x 105 (DGX-1)

Scipy.spatial.distance.euclidean

104 (DGX-1)

Numba/CUDA

1 (DGX-1)
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Latent Space Vectors (Kernel Density Est)
C-VAE, JT-NN, FC-NN

Epoch 55500

24



How far apart are the molecules in the Latent Space?

ChEMBL (118,000 molecules)

Select 1000 molecules

Calc. Dist. Matrix & plot

Early epoch 2500

Epoch 55500
Mean = 3.2
Std. dev. = 0.38
Max = 4.8
Min =  0.3

distance

distance

co
u
n
t

co
u
n
t
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Interpolation from the Latent Space

Linear interpolation

• Stepping through training set and 

linearly interpolating between 

endpoints chosen from the training 

set

Spherical-linear interpolation

• Stepping through training set and 

spherical-linearly interpolating 

between endpoints chosen from the 

training set

Hyperspheres

• Utilizing the distance matrix to select 

point for expanding hyperspheres

Comment on 
JT-NN BO 

search & expand
approach

Latent space coordinates

Latent space coordinates
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Molecular Interpolation in a Continuous Design Space

LERP/SLERP

Algorithm only chose points across the whole of the training set (118,000 molecules) and 

then interpolated between points in ranges to ensure that, at a minimum, each molecule became 

an end-point for interpolation

From ChEMBL

From ChEMBL
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Inferencing followed by molecular filtering

Unique 

and Valid 

SMILES 

1,500,000

Inferenced

15,000,000
Too

many
(F,Cl,Br,I)

Too

many

rings

Too

many

X-H

Too

many

O, N

Too

many
RotBnds

Too

Many

Other

-90 %

-6 % -21 % -1 %

-3 % -97 % -90 %

300
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• Ertl, P.; Schuffenhauer, A., J. Cheminf. 2009, 1:8
• Ertl, P.; Landrum, G. https://github.com/rdkit/rdkit/tree/master/Contrib/SA_Score

The SAScore across:

INPUT: ChEMBL (118,000)
OUTPUT: Inferenced_e55500
TEST: Dow

Synthetic Accessibility Score
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Conclusions

C-VAE

Chem-VAE modeled after Bombarelli works better than reported and 

delivers good molecules.  The time/epoch is high and the number of epochs 

needed is ~ 50,000. 

JT-NN

Junction Tree converges faster, is a more natural representation of 

molecules, and delivers good molecules.

FC-NN

Fully Convolutional works well, converges faster than C-VAE, and 

delivers good molecules.
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