Our Team

DOW TEAM:
Ellen Du, Joey Storer
Sukrit Mukhopadhyay
Matthew Christianson
Hein Koelman, Ryan Marson
William Edsall, Bart Rijksen
Jonathan Moore
Christopher Roth, Peter Margl
Clark Cummins, Dave Magley

NVIDIA TEAM/Alumni:
Abe Stern, Michelle Gill,
John Ashley, Alex Volkov
Outline

Problem statement

Efforts in generative molecular deep learning methods

Our approach
 • Hardware/software
 • Tooling
 • Data curation
 • Model Training and convergence
 • Latent space analysis and inference
 • Generative capability evaluation
Can a molecular generative deep learning system be trained to deliver new molecular designs relevant to our research needs?
Introduction: Generative Molecular Systems

Challenges:
• Molecular encoding (Canonical SMILES)
• Molecular descriptors (100’s)
• Vastness of chemical search space \(10^{60}\)
• Unknown structure/property relationships \(f(n)\)
• Promise of the latent space dimensionality (32-bit)
• Limits on data set used for training (ChEMBL, ZINC)
• Organization of target properties within the latent space (AlogP)
• Molecule discovery workflow (post-filtering)
Attraction of Molecular VAE/GANs

Convert discrete molecules to continuous latent representations
• Molecules are discrete entities
• Subtle molecular transformations have large differences in performance

Undocumented benefit to using negative data in ml/dl
• Availability of a molecular structure axis in DL that is not generally available to ML
• Tendency in science to “move on” relative to negative or poor results

General intro on methods: VAEs

Generally there are numerous methods appearing in the open literature:

• Chemical VAE
• Grammar VAE
• Junction Tree
• ATNC RL
• FC-NN (NVIDIA-Dow)

The best way to go is not entirely clear.

Junction Tree – may be best because of the more natural graph representation – but it may constrain diversity

FC-NN is potentially more efficient.
Inferencing Comparison to Literature

<table>
<thead>
<tr>
<th>Method</th>
<th>Reconstruction</th>
<th>Validity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Knowns</td>
<td>Inferenced(unknown)</td>
</tr>
<tr>
<td>Chem-VAE</td>
<td>44 %</td>
<td>1 % lit.</td>
</tr>
<tr>
<td>Dow-Chem-VAE</td>
<td>94 %</td>
<td>10 %</td>
</tr>
<tr>
<td>Grammar-VAE</td>
<td>54 %</td>
<td>7 % lit.</td>
</tr>
<tr>
<td>SD-VAE</td>
<td>76 %</td>
<td>44 % lit.</td>
</tr>
<tr>
<td>Graph-VAE</td>
<td>-</td>
<td>14 % lit.</td>
</tr>
<tr>
<td>JT-VAE</td>
<td>77 %</td>
<td>100 % lit.</td>
</tr>
<tr>
<td>Dow-FC-NN</td>
<td>90 %</td>
<td>-- %</td>
</tr>
<tr>
<td>ATNC-RL</td>
<td>-</td>
<td>71 % lit.</td>
</tr>
</tbody>
</table>
Models and Training Details
Model Details: Architectures Explored

3 Variational AutoEncoders

- chemVAE

- Junction Tree VAE
 Jin et al, 2018 (MIT)

- Fully convolutional VAE
 (NVIDIA-Dow)

Similar in setup
Different in details
Model Details: Differences In Inputs

<table>
<thead>
<tr>
<th></th>
<th>chemVAE</th>
<th>fcVAE</th>
<th>jtVAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Smiles</td>
<td>Smiles</td>
<td>Molecular Graph</td>
</tr>
<tr>
<td></td>
<td>ClC1c[nH]cn1</td>
<td>ClC1c[nH]cn1</td>
<td></td>
</tr>
</tbody>
</table>

Graph:
- ClC1c[nH]cn1

SMILES:
- ClC1c[nH]cn1

One-hot encoding:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>C</th>
<th>c</th>
<th>1</th>
<th>c</th>
<th>nH</th>
<th>c</th>
<th>n</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>nH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cl</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

JT.nn Encoder output
- h_{T_G}
- h_{G}

Molecular vector
- Z_G

New Molecular vector
- Z_G

New Tree vector
- Z_T

$z = [Z_T, Z_G]$
Model Details: Differences In Sequence Modeling

<table>
<thead>
<tr>
<th></th>
<th>chemVAE</th>
<th>fcnVAE</th>
<th>jtnn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer type used</td>
<td>Teachers forcing</td>
<td>Residual block</td>
<td>Gated Recurrent Unit</td>
</tr>
<tr>
<td>for sequence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>modeling</td>
<td>Lamb et al, 2016</td>
<td>Bai et al, 2018</td>
<td>Cho et al, 2014</td>
</tr>
</tbody>
</table>
Model Training Details: Data Compilation

Types of Hetero-atoms

CHEMBL Database (1.4×10^6)

Screening using Designed Metrics

Molecules Similar to Dow Set (118,000)
Model Training Details: Hardware

NVIDIA DGX-1

NVIDIA DGX-1 Specifications

<table>
<thead>
<tr>
<th>NVIDIA DGX-1 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUs</td>
</tr>
<tr>
<td>GPUs</td>
</tr>
<tr>
<td>System Memory</td>
</tr>
<tr>
<td>GPU Memory</td>
</tr>
<tr>
<td>Storage</td>
</tr>
<tr>
<td>Networking</td>
</tr>
<tr>
<td>Power</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>GPU Throughput</td>
</tr>
</tbody>
</table>
Model Training Details: Software Environment

Container: Docker container

Standard
Lightweight
Secure

Packages

Chemistry: RDKit, DeepChem
Data Processing: Numpy, Pandas, Rapids
ML/DL: SciKitLearn, Keras, Tensorflow, Pytorch, XGBoost
Tuning/Scaling Up: Hyperopt, Horovod
Model Training Details: Hyperparameter Optimization

Hyperopt
Model Training Details: Distributed Model Training

- Data Parallelism
- Network Optimal
- User friendly
Model Training Details: Latent Space Organization
Generative Capability Evaluation
Hit Rate Analysis (> 0 hits/1000 attempts)

ChEMBL TEST = 11800 test molecules inferenced (1000 attempts)

<table>
<thead>
<tr>
<th>Model</th>
<th>Hit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-VAE</td>
<td>94.4 %</td>
</tr>
<tr>
<td>55550</td>
<td></td>
</tr>
<tr>
<td>JT-NN</td>
<td>100 %</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>FC-NN</td>
<td>94 %</td>
</tr>
<tr>
<td>14587*</td>
<td></td>
</tr>
</tbody>
</table>

C-VAE
655 TEST molecules not decoding
VAE Hit rate: Molecules that never decoded

Analysis of molecules from ChEMBL-TEST (655) that did not decode with 1000 attempts:

1. SMILES string length distribution for the non-decoding molecules

2. Inference study increased to 10,000 attempts/molecule
 a. 549/655 still never decoded
 b. 16% successful decoded at least once on 10,000 additional attempts
 c. One molecule decoded an additional 44 times
Distribution of SMILES string lengths

E. Putin, et al.,
Mol. Pharmaceutics 2018, 15, 4386-4397
Distance calculation and performance

GPU enabled—distance matrix calculation:
1. Characterizing latent space
2. Support inferencing
 a. Nearest neighbor analysis
 b. Gaussian process support

Rough method comparison:
(30,000 molecules, 900 x 10^6 distances)
Python (Simple, non-vectorized)
5 x 10^5 (DGX-1)
Scipy.spatial.distance.euclidean
10^4 (DGX-1)
Numba/CUDA
1 (DGX-1)
Latent Space Vectors (Kernel Density Est)
C-VAE, JT-NN, FC-NN

Epoch 55500

C-VAE Latent Space Vector

JT-NN Latent Space Vector
How far apart are the molecules in the Latent Space?

ChEMBL (118,000 molecules)
Select 1000 molecules
Calc. Dist. Matrix & plot

Early epoch 2500
Epoch 55500

Mean = 3.2
Std. dev. = 0.38
Max = 4.8
Min = 0.3
Interpolation from the Latent Space

Linear interpolation
• Stepping through training set and linearly interpolating between endpoints chosen from the training set

Spherical-linear interpolation
• Stepping through training set and spherical-linearly interpolating between endpoints chosen from the training set

Hyperspheres
• Utilizing the distance matrix to select point for expanding hyperspheres

Comment on JT-NN BO search & expand approach
Molecular Interpolation in a Continuous Design Space

LERP/SLERP

Algorithm only chose points across the whole of the training set (118,000 molecules) and then interpolated between points in ranges to ensure that, at a minimum, each molecule became an end-point for interpolation.
Inferencing followed by molecular filtering

- Inferenced 15,000,000
 - Unique and Valid SMILES 1,500,000
 - Too many (F, Cl, Br, I) -90 %
 - Too many rings -21 %
 - Too many X-H -1 %
 - Too many O, N -3 %
 - Too many RotBnds -97 %
 - Too Many Other -90 %

300
Synthetic Accessibility Score

The SAScore across:

INPUT: ChEMBL (118,000)
OUTPUT: Inferenced_e55500
TEST: Dow

Conclusions

C-VAE

Chem-VAE modeled after Bombarelli works better than reported and delivers good molecules. The time/epoch is high and the number of epochs needed is \(\sim 50,000 \).

JT-NN

Junction Tree converges faster, is a more natural representation of molecules, and delivers good molecules.

FC-NN

Fully Convolutional works well, converges faster than C-VAE, and delivers good molecules.