

Distributed Meta Optimization of Reinforcement Learning Agents

Greg Heinrich, Iuri Frosio - GTC San Jose, March 2019

AGENDA

Contents

Introduction to Reinforcement Learning

Introduction to Metaoptimization (on distributed systems) / Maglev

Metaoptimization and Reinforcement Learning (on distributed systems)

HyperTrick

Results

Conclusion

GPU-Based A3C for Deep Reinforcement Learning (RL)

keywords: GPU, A3C, RL

M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, J. Kautz, **Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU**, ICLR 2017 (available at). Open source implementation:

Learning to accomplish a task

GPU-BASED A3C FOR DEEP REINFORCEMENT LEARNING Definitions

✓ Environment

√ Agent

 \checkmark Observable status \mathbf{S}_{t}

 \checkmark Reward R_t

 \checkmark Action a_t

 \checkmark Policy $a_t = \pi(S_t)$

Definitions

6 📀 NVIDIA

Definitions

Objective: maximize expected discounted rewards

Value of a state

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s \right]$$

Expected

Reward discounted

Given that state

The role of γ : short or far-sighted agents $0 < \gamma < 1$, usually 0.99

GPU-Based A3C for Deep Reinforcement Learning (RL)

keywords: GPU, A3C, RL

M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, J. Kautz, **Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU**, ICLR 2017 (available at). Open source implementation:

Asynchronous Advantage Actor-Critic (Mnih et al., arXiv:1602.01783v2, 2015)

GPU-Based A3C for Deep Reinforcement Learning (RL)

keywords: GPU, A3C, RL

M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, J. Kautz, **Reinforcement Learning through Asynchronous Advantage Actor-Critic on a GPU**, ICLR 2017 (available at). Open source implementation:

MAPPING DEEP PROBLEMS TO A GPU

A3C

A3C

A3C

GA3C (INFERENCE)

GA3C (TRAINING)

trainers

GA3C

trainers

CPU & GPU UTILIZATION IN GA3C

For larger DNNs - bandwidth limited, do not scale to multiple GPUs!

Role of t_max

Role of t_max

t_max affects bias, variance, computational cost (number of updates per second, batch size)

Other parameters and stability

Hyperparameter search in 2015: The search for the optimal learning rate:

Asynchronous Methods for Deep Reinforcement Learning

Figure 2. Scatter plots of scores obtained by asynchronous advantage actor-critic on five games (Beamrider, Breakout, Pong, Q*bert, Space Invaders) for 50 different learning rates and random initializations. On each game, there is a wide range of learning rates for which all random initializations acheive good scores. This shows that A3C is quite robust to learning rates and initial random weights.

https://arxiv.org/pdf/1602.01783.pdf

GA3C on distributed systems

- RL is unstable, metaoptimization for optimal hyperparameters search
- E.g. learning rate may affect the **stability** and **speed of convergence**
- GA3C does not scale to multiple GPUs (bandwidth limited), but ... We can run parallel instances of GA3C on a distributed system
- The discount factor γ affects the final aim (short or farsighted agent)
- The t_max factor affects the computational cost and stability* of GA3C

* See G. Heinrich, I. Frosio, Metaoptimization on a Distributed System forDeep Reinforcement Learning, <u>ttps://arxiv.org/abs/1902.02725</u>.

AGENDA

Contents

Introduction to Reinforcement Learning

Introduction to Metaoptimization (on distributed systems) / Maglev

Metaoptimization and Reinforcement Learning (on distributed systems)

HyperTrick

Results

Conclusion

It is as easy as flying a Concorde.

GA3C Agent

- Topology parameters
 - Number of layers and their width
 - Choice of activations

Training parameters

- Learning rate
- Reward decay rate (γ)
- back-propagation window size (tmax)
- Choice of optimizer
- Number of training episodes
- Data parameters
 - Environment model.
- Exhaustive search is intractable

How does a standard optimization algorithm fare?

Example: Tree of Parzen Estimators

- Two Parameters, one Metric to minimize.
- Optimization Trade-offs:
 - Exploitation v.s. exploration.
 - Wall time v.s. resource efficiency.
- Optimization packages start with a Random Search.
- Tens of experiments are needed before historical records can be leveraged.
- Warm Starts are needed to cut down complexity over time.

The Need for Diversity

Metric Variance

- Non-determinism makes individual experiments inconclusive.
- A change can only be considered an improvement if it works under a variety of conditions.
- Meta Optimization should be part of data scientists' daily routine.

The Complexity of Evaluating Models

Complex Pipelines

- Evaluation cannot be reduced to a single
 Python function, or
 Docker container.
- Meta Optimization must be independent of task scheduling.

Project MagLev: Machine Learning Platform

Architecture

- Scalable Platform for Traceable Machine Learning Workflows
- Self-Documented Experiments
- Services can be used in isolation, or combined for maximum traceability.

Typical Setup

Main SDK Features

- All common parameter types.
- Early-termination methods.
- Standard + custom parameter picking methods.

AGENDA

Contents

Introduction to Reinforcement Learning

Introduction to Metaoptimization (on distributed systems) / Maglev

Metaoptimization and Reinforcement Learning (on distributed systems)

HyperTrick

Results

Conclusion

META OPTIMIZATION + GA3C

Hyper Parameters and Preview of results.

- Learning Rate: log uniform distribution over [1e-5, 1e-2] interval.
- tmax: quantized (q=1) log uniform distribution over [2, 100] interval.
- *γ*: one of {0.9, 0.95, 0.99, 0.995, 0.999, 0.9995, 0.9999}

	1					
Game	Episodes per Phase	N_p	r	α (min[α], E[α])	Score (GA3C)	Score (HyperTrick)
Boxing	2500	10	25%	48.2% (18.87%, 37.75%)	92	98
Centipede	2500	10	25%	52.2% (18.87%, 37.75%)	7386	8707
Ms Pacman	2500	10	25%	46.1% (18.87%, 37.75%)	1978	2112
Pong	2500	5	25%	59.1% (30.51%, 61.02%)	18	18

AGENDA

Contents

Introduction to Reinforcement Learning

Introduction to Metaoptimization (on distributed systems) / Maglev

Metaoptimization and Reinforcement Learning (on distributed systems)

HyperTrick

Results

Conclusion

HYPERTRICK

Early Termination Without Compromise

Successive Halving (SH) ^[1]

Terminate $\frac{1}{2}$ of workers every N*2^P units of work (P is a phase index).

- Requires synchronization between workers.
- Assumes relative perf over time is constant.

HYPERTRICK

Early Termination Without Compromise

Successive Halving (SH) ^[1]

Terminate $\frac{1}{2}$ of workers every N*2^P units of work (P is a phase index).

- Requires synchronization between workers.
- Assumes relative perf over time is constant.

HyperBand^[2]

Run several instances of SH in parallel with different values of N.

 Does not assume constant relative perf but still requires synchronization.

HYPERTRICK

Early Termination Without Compromise

Successive Halving (SH) ^[1]

Terminate $\frac{1}{2}$ of workers every N*2^P units of work (P is a phase index).

- Requires synchronization between workers.
- Assumes relative perf over time is constant.

HyperBand^[2]

Run several instances of SH in parallel with different values of N.

Does not assume constant relative perf but still requires synchronization.

HyperTrick ^[3]

Parameters:

- N: total number of workers.
- r: eviction rate per phase P.

Worker:

MagLev:

- Let earliest $N(1-\sqrt{r})(1-r^{P})$ run.
- Others are terminated, if in bottom √r quantile.
- Expected number of workers at end of phase P is N(1-r)^P

[1] <u>https://arxiv.org/abs/1502.07943</u> [2] <u>http://arxiv.org/abs/1603.06560</u> [3] <u>https://arxiv.org/abs/1902.02725</u> ³⁸ ³⁸ ³⁸

HYPERTRICK v.s. SUCCESSIVE HALVING 16 workers on 6 nodes running up to 4 iterations

Must support preemption

HyperTrick

No context switches, shorter wall time

AGENDA

Contents

Introduction to Reinforcement Learning

Introduction to Metaoptimization (on distributed systems) / Maglev

Metaoptimization and Reinforcement Learning (on distributed systems)

HyperTrick

Results

Conclusion

PONG Videos of Trained Agents

 γ =0.9 (short-sighted)

 γ =0.995 (far-sighted)

HYPERTRICK Terminate Underperformers

HYPERTRICK Comparison Against HyperBand

Experimental Comparison of HyperTrick v.s. HyperBand

Game	Method	Best Score	Total Wall Time	Time To Best Score		Best Config	
					LR	γ	T_{max}
Boxing	HyperBand	96	51h	29h	$3.3e^{-4}$	0.99	13
	HyperTrick	95	38h	13h	$3.3e^{-4}$	0.99	13
Centipede	HyperBand	8521	42h	2h	$5.4e^{-3}$	0.9995	72
	HyperTrick	8667	38h	29h	$1.2e^{-4}$	0.9999	33
Pacman	HyperBand	2456	31h	26h	$1.6e^{-4}$	0.95	73
	HyperTrick	2243	27h	16h	$1.6e^{-4}$	0.95	73
Pong	HyperBand	17.5	48h	47h	2.0^{-3}	0.95	64
	HyperTrick	17.8	39h	22h	$5.9e^{-4}$	0.995	6

Table 3: HyperBand vs HyperTrick results on four Atari games.

META OPTIMIZATION + GA3C

Conclusion

Take Away

RL is unstable => meta optimization is useful.

Hypertrick, a new algorithm for metaoptimization.

GA3C + HyperTrick + Maglev is effective.

Our paper: https://arxiv.org/abs/1902.02725

GA3C:

https://github.com/NVlabs/GA3C

MagLev info: Yehia Khoja (ykhoja@nvidia.com)

Related Talks				
S9649	Wed 9:00am	NVIDIA's AI Infrastructure for Self-Driving Cars	Clement Farabet	
S9613	Wed 10:00am	Deep Active Learning	Adam Lesnikowski	
S9911	Wed 2:00pm	Determinism In Deep Learning	Duncan Riach	
S9630	Thu 2:00pm	Scaling Up DL for Autonomous Driving	Jose Alvarez	
S9987	Thu 9:00am	MagLev: production-grade AI platform	Divya Vavili	