Exascale Deep Learning for Climate Analytics

Thorsten Kurth^{*}, Josh Romero^{*}, Sean Treichler, Mayur Mudigonda, Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massimiliano Fatica, Prabhat, Michael Houston

GTC Silicon Valley 03/17/2019, San Jose, CA

The Team

Thorsten Kurth

Sean Treichler

Josh Romero

Ankur Mahesh

Michael Matheson

Jack Deslippe

Mayur Mudigonda

Nathan Luehr

Everett Phillips

Massimiliano Fatica

Prabhat

Michael Houston

Socio-Economic Impact of **Extreme Weather Events**

- tropical cyclones and atmospheric rivers have major impact on modern economy and society
- CA: 50% of rainfall through atmospheric rivers
- FL: flooding, influence on insurance premiums and home prices
- \$200B worth of damage in 2017
- costs of ~\$10B/event for large events

Katrina 2005

Harvey 2017

Berkeley 2019

Understanding Extreme Weather Phenomena

- will there be more hurricanes?
- will they be more intense?
- will they make landfall more often?
- will atmospheric rivers carry more water?
- can they help mitigate droughts and decrease risk of forest fires?
- will they cause flooding and heavy precipitation?

14M variables/3h

O(1) variables/y

Impact Quantification of Extreme Weather Events

- detect hurricanes and atmospheric rivers in climate model projections
- enable geospatial analysis of EW events and statistical impact studies for regions around the world
- flexible and scalable detection algorithm
- gear up for future simulations with ~1 km² spatial resolution

Unique Challenges for Climate Analytics

- interpret as segmentation problem
- 3 classes background (BG), tropical cyclones (TC), atmospheric rivers (AR) deep learning has proven successful for these tasks
- climate data is complex
 - high imbalance more than 95% of pixels are background
 - high variance shape of events change
 - many input channels w/ different properties
 - high resolution required
 - no static *background*, highly variable in space and time

Unique Challenges for Deep Learning

- need labeled data for supervised approach
 - can be leveraged from existing heuristic-based approaches
- define neural network architecture
 - balance between compute performance and model accuracy
 - employ high productivity/flexibility frameworks for rapid prototyping
 - performance optimization requires holistic approach
- hyper parameter tuning (HPO)
 - necessary for convergence and accuracy

Unique Challenges for Deep Learning at Extreme Scale

- data management
 - shuffling/loading/processing/feeding 20 TB dataset to keep GPUs busy
 - efficient use of remote filesystem
- multi-node coordination and synchronization
 - synchronous reduction of O(50)MB across 27360 GPUs after each iteration
- hyper parameter tuning (HPO)
 - convergence and accuracy challenging due to larger global batch sizes

Label Creation: Atmospheric Rivers

NVIDIA

Label Creation: Atmospheric Rivers

4. Flood fill algorithm generates AR candidates by masking out regions in mid-latitudes

3. Binarization by thresholding at 95th percentile

Label Creation: Tropical Cyclones

1. Extract cyclone center and radius using thresholds for pressure, temperature, and vorticity

2. Binarize patch around cyclone center using thresholds for water vapor, wind, and precipitation

Software: TensorFlow

- high-productivity deep learning framework in Python with C++-backend, developed by Google
- leverages optimized cuDNN library for performance sensitive kernels (e.g. convolutions) on NVIDIA GPUs
- dataflow-style programming and asynchronous graph execution
- provides features for building I/O input pipeline
- can be combined with external Python modules to provide good flexibility

Software: Horovod

- library developed by Uber for distributed training
- provides straightforward wrappers to convert existing single process TensorFlow programs to multi-process data-parallel programs
- uses MPI for worker coordination/control
 - MPI is ubiquitous in HPC and available broadly on systems targeting HPC applications
- can leverage MPI or NCCL for collective communication on NVIDIA GPUs (e.g. allreduce)

Systems Piz Daint

- Cray XC50 HPC system at CSCS, 5th on top500
- 5320 nodes with Intel Xeon E5-2695v3 and 1 NVIDIA P100 GPU
- Cray Aries interconnect in diameter 5 dragonfly topology
- ~54.4 PetaFlop/s peak performance (FP32)

Summit

- leadership class HPC system at OLCF, 1st on top500
- 4609 nodes with 2 IBM P9 CPU and 6 NVIDIA V100 GPU
- 300 GB/s NVLink connection btw. 3 GPUs in a group
- 800 GB available NVMe storage/node
- dual-rail EDR Infiniband in fat-tree topology
- ~3.45 ExaFlop/s theoretical peak performance (FP16)

Single GPU

Single GPU

Single GPU

- Things to consider:
 - Is my TensorFlow model efficiently using GPU resources?
 - Is my data input pipeline keeping up?
 - Is my TensorFlow model providing reasonable results?

- Things to consider:
 - Is my data input pipeline still keeping up?
 - Is my data-parallel TensorFlow model providing reasonable results?
 - How is my performance scaling over PCIe/NVLink using Horovod?

Multi Node

T HT Т нж 📌 нж

२२ २२ २२	국당 작 국당 7 국당 주 국당 7 국당 주 국당 7	रस थ रस थ रस थ रस थ रस थ रस थ रस थ रस थ
CL	HOR	OVOD
국내 ² 국내 ² 국내 ² 국내 ²	रस २ रस २ रस २ रस २	국내 우 국내 우 국내 우 국내 우
रस २ २स २ २स २ २स २	रस थे रस थे रस थे रस थे रस थे	रस २ २स २ २स २ २स २ २स २
रस २ इस २ इस २ इस २	रस २ उस २ उस २ इस २	रस भे रस भे रस भे रस भे

रस 🕈 रस 🍞

🌾 म्ह

🌾 म्ह

रस 🕈 रस 🕈

🎓 मह

🎓 म्ह

🌾 म्ह

🎷 मि

🕈 म्ह

ि मिर्ट

🕈 भ्र	👔 🏠 🖓
🌾 нж	🎓 нуг
🚏 भ्रह	🕆 нж

Т ня

MPI

रस 💎 🛛 रस 🕈

 Image: state state

🌮 । रह

र भूर	कि म्ह	ि भज्र	🍞 । उन्न
रि भ्रह	कि म्ह	THE HERE	न्द्रभ 💎
रि भ्र	रि भ्र	ि भ्यम	न्द्रभ 🚏
-			
रस न	रस 🐨	रि मज्	कि म्ह
रस रस	र भन्न सम्बद्ध	रू भूत रू भूत	रस 🕈 रस 🍞
रभ २ नरभ २ नरभ २	रम 🗣 रम 🗣 रम 🍞	रस 🗣 रस 🗣 रस 🗣	रस 🗣 रस 🗣 रस 🌱
रम 7 न्दम 7 न्दम 7	रस 🗣 रस 🗣 रस २	न्द्रभ 🗳 न्द्रभ 🍄 न्द्रभ 🍄	रस 🗳 रस 🇳 रस 🇳

THE I	🕈 म्ह
THE IST	伦 म्ह
* H7F	💎 म्ह

Multi Node

- Things to consider:
 - Is my data-parallel TensorFlow model *still* providing reasonable results?
 - How is my performance scaling over NVLink + InfiniBand using Horovod?
 - How do I distribute my data across so many nodes?

न्द्रभ 😚 न्द्रभ 😚

THE FEE FEE FEE THE THE THE THE THE THE THE THE THE T		
रस २ २स २ २स २ २स २ २स २	रस भे रस भे रस भे रस भे	
F F F F F F F F	ГР НУГ ГР НУГ ГР НУГ ГР НУГ ГР НУГ ГР НУГ	
रस २ २स २ २स २ रस २	국내 우 국내 우 국내 우 국내 우	Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т Т

न्द्रभ 🗣

🎓 म्ह

💎 म्ह

रस 🕈 रस 🕈

🎓 म्ह

Т

🎓 म्ह

🎓 म्ह

🕈 भ्र	👔 🏠 🖓
🌾 нж	🎓 нуг
🚏 भ्रह	🕆 нж

MPI

रस थें रस थे रस थे

र भूर	कि म्ह	ि भज्र	🍞 । उन्न
रि भ्रह	कि म्ह	THE HERE	न्द्रभ 💎
रि भन्न	रि भ्र	ि भ्यम	न्द्रभ 🚏
-			
रस न	रस 🐨	रि मज्	कि म्ह
रस रस	र भन्न सम्बद्ध	रू भूत रू भूत	रस 🕈 रस 🍞
रभ २ नरभ २ नरभ २	रम 🗣 रम 🗣 रम 🍞	रस 🗣 रस 🗣 रस 🗣	रस 🗣 रस 🗣 रस 🍞
रम 7 न्दम 7 न्दम 7	रस 🗣 रस 🗣 रस २	न्द्रभ 🗳 न्द्रभ 🍄 न्द्रभ 🍄	रस 🗳 रस 🇳 रस 🇳

THE I	🕈 म्ह
THE IST	伦 म्ह
* H7F	💎 म्ह

Deep Learning Models for Extreme Weather Segmentation

Tiramisu, 35 layers, 7.8M parameters, 4.2 TF/sample

DeepLabv3+, 66 layers, 43.7M parameters, 14.4 TF/sample

Data Staging

Dataset Size	Required BW (27K GPUs)	GPFS/LUSTRE	BurstBuffer	NVM/e or DRAM
20 TB (~63K samples)	3.8 TB/s	~400 GB/s	~2 TB/s	~26 TB/s

- 250 training samples/GPU (15 GB), sample w/ replacement
- each file will be read at most once from FS
- files shared between nodes via MPI (mpi4py)
- preprocess and feed data to GPU asynchronously using tf.data and python multiprocess

On-Node I/O Pipeline

- files are in HDF5 with single sample + label/file
- list of filenames passed to TensorFlow Dataset API (tf.data)
- extract and batch using tf.data input pipeline

shuffle

CPU

data-2107-12-26-02-4.h5 data-2107-12-26-03-1.h5 data-2107-12-26-03-4.h5 data-2107-12-26-04-1.h5 data-2107-12-26-04-4.h5 data-2107-12-26-05-1.h5 data-2107-12-26-05-4.h5 data-2107-12-26-06-1.h5 data-2107-12-26-06-4.h5 data-2107-12-26-07-1.h5

. . .

data-2107-03-03-06-1.h5 data-2107-05-24-00-4.h5 data-2107-08-30-03-4.h5 data-2107-10-29-01-4.h5 data-2107-12-11-07-1.h5 data-2107-08-14-03-4.h5 data-2107-01-08-01-4.h5 data-2107-09-08-04-1.h5 data-2107-09-22-00-1.h5 data-2107-07-16-03-4.h5

• • •

HDF5 serialization bottleneck addressed with multiprocessing + h5py

4-way parallel read + preprocess

Single Node Performance

- GPU execution profiled with CUDA profiler, kernels grouped by category
- convolution kernels: use latest cuDNN, favor higher computational intensity
- pay attention to memory layout to reduce transposes and copies
- tuning input pipeline on CPU to keep off critical path

		DeepLabv3+ FP16 Training						
Category		#	Time	Math	Mem	%	%	%
		Kern	(ms)	(TF)	(GB)	Time	Math	Mem
Forward	∫ Convolutions	158	147.9	9.61	27.6	(18.1	52.0	20.7
rorwaru	Oint-wise	829	52.3	< 0.1	24.3	6.4		51.6
Rockword	∫ Convolutions	195	300.2	19.21	50.5	36.7	51.2	18.7
Dackwalu	Orivie Orivie Orivie Orivie	157	25.6	< 0.1	6.3	3.1		27.3
Optimizer		1219	3.9	< 0.1	1.1	0.5		31.3
Copies / Transposes		708	213.2	-	92.6	26.1		48.3
Allreduce (NCCL)		30	58.7	< 0.1	0.6	7.2		1.1
Type Conversions		201	1.3	-	0.6	0.2		51.3
GPU Idle			14.2			1.7		
Total		3497	817.3	28.82	203.6		28.2	27.7

Improvements to Horovod: Original Control Plane

Improvements to Horovod: Hybrid All-Reduce

4x intra-node broadcast (NCCL)

- NCCL uses NVLink for high throughput, but ring-based algorithms are latency-limited at scale
- hybrid NCCL/MPI strategy uses strengths of both
- one inter-node all reduce per virtual NIC
- MPI work overlaps well with GPU computation

Gradient Pipelining (Lag)

lag-0 (fully synchronous)

lag-1

Importance of Node-Local Memory

~10% performance penalty for reading from global file system

Scaling Tiramisu

- FP16-model sensitive to communication
- FP16-model BW-bound (only 2.5x faster than **FP32**)
- almost ideal scaling for both precisions on Summit when gradient lag is used

Scaling DeepLabv3+

- FP16-model sensitive to communication
- FP16-model BW-bound (only 2.5x faster than **FP32**)
- excellent scaling for both precisions on Summit when gradient lag is used

999 PetaFlop/s (FP16) sustained

DeepLabv3+, 4560 nodes (27360 GPU)

1.13 ExaFlop/s (FP16) peak

DeepLabv3+, 4560 nodes (27360 GPU)

"Exascale Deep Learning for Climate Analytics"

ACM GORDON BELL PRIZE - WINNER SCALABILITY AND TIME TO SOLUTION

Research led by Thorsten Kurth Lawrence Berkeley National Laboratory and NVIDIA

Concurrency/Precision and Convergence

Concurrency/Precision and Convergence

- Tiramisu (FP16, 384 GPUs)
- Tiramisu (FP32, 384 GPUs)
- Tiramisu (FP16, 1536 GPUs)
- Tiramisu (FP32, 1536 GPUs)

14000 10000 8000 12000

Model/Lag and Convergence

Segmentation Animation

- best result for intersection-over-union (IoU) obtained: ~73%
- result at large scale (batch-size > 1500): IoU ~55%

Segmentation Animation

- best result for intersection-over-union (IoU) obtained: ~73%
- result at large scale (batch-size > 1500): IoU ~55%

What has happened since Gordon Bell?

- Horovod:
 - Hierarchical (hybrid) allreduce available in upstream code (NVIDIA/Amazon) • Control plane bypass via caching available soon (NVIDIA)
- NCCL:
 - Version 2.4.x introduced tree-based reduction algorithms for improved performance at scale
- NERSC:
 - ClimateNet: human annotated labels from domain experts
 - project serves as science problem for the ISC-HPC19 student cluster AI challenge
 - Gained insights for design and evaluation of upcoming NERSC Perlmutter system •

Conclusions

- deep learning and HPC converge, achieving *exascale* performance
- compute capabilities of contemporary HPC systems can be utilized to tackle challenging scientific deep learning problems
- HPO and convergence at scale still an open problem but now we can do it
- software enhancements benefit deep learning community at large
- deep learning-powered techniques usher in a new era of precision analytics for various science areas

Thank You

