
Exascale Deep Learning for Climate Analytics

Thorsten Kurth*, Josh Romero*, Sean Treichler, Mayur Mudigonda, 
Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe,  
Massimiliano Fatica, Prabhat, Michael Houston

GTC Silicon Valley
03/17/2019, San Jose, CA

The Team

 2

Thorsten Kurth Sean Treichler Josh Romero Mayur Mudigonda Nathan Luehr Everett Phillips

Ankur Mahesh Michael Matheson Jack Deslippe Massimiliano Fatica Prabhat Michael Houston

Socio-Economic Impact of
Extreme Weather Events

• tropical cyclones and
atmospheric rivers have major
impact on modern economy and
society

• CA: 50% of rainfall through
atmospheric rivers

• FL: flooding, influence on
insurance premiums and home
prices

• $200B worth of damage in 2017

• costs of ~$10B/event for large
events

 3Harvey 2017

Katrina 2005 Berkeley 2019

Santa Rosa 2018

pixabay

pixabay Chris Samuel

pixabay

Understanding Extreme
Weather Phenomena

• will there be more hurricanes?

• will they be more intense?

• will they make landfall more often?

• will atmospheric rivers carry more
water?

• can they help mitigate droughts and
decrease risk of forest fires?

• will they cause flooding and heavy
precipitation?

 4

pixabay

pixabay

pixabay

Typical Climate Analytics

 5

Typical Climate Analytics

 5

Typical Climate Analytics

 5

mean/std  
Temperature

Typical Climate Analytics

 5

mean/std  
Temperature

14M variables/3h O(1) variables/y

Impact Quantification of Extreme Weather Events

• detect hurricanes and atmospheric
rivers in climate model projections

• enable geospatial analysis of EW
events and statistical impact
studies for regions around the
world

• flexible and scalable detection
algorithm

• gear up for future simulations with
∼1 km2 spatial resolution

 6

M.F. Wehner, doi:10.1002/2013MS000276

Unique Challenges for Climate Analytics

• interpret as segmentation problem

• 3 classes - background (BG), tropical cyclones (TC), atmospheric rivers (AR)

• deep learning has proven successful for these tasks

• climate data is complex

• high imbalance - more than 95% of  
pixels are background

• high variance - shape of events change

• many input channels w/  
different properties

• high resolution required

• no static background, highly variable  
in space and time

 7

NASA

Unique Challenges for Deep Learning

• need labeled data for supervised approach

• can be leveraged from existing heuristic-based approaches

• define neural network architecture

• balance between compute performance and model accuracy

• employ high productivity/flexibility frameworks for rapid prototyping

• performance optimization requires holistic approach

• hyper parameter tuning (HPO)

• necessary for convergence and accuracy

 8

Unique Challenges for Deep Learning at Extreme Scale

 9

• data management

• shuffling/loading/processing/feeding 20 TB dataset to keep GPUs busy

• efficient use of remote filesystem

• multi-node coordination and synchronization

• synchronous reduction of O(50)MB across 27360 GPUs after each iteration

• hyper parameter tuning (HPO)

• convergence and accuracy challenging due to larger global batch sizes

Label Creation: Atmospheric Rivers

 10

1. The climate model predicts  
water vapor, wind speeds  
and humidity

2. These observables are used to  
compute the  
Integrated Water Vapor Transport

Label Creation: Atmospheric Rivers

 11

3. Binarization by thresholding at  
95th percentile

4. Flood fill algorithm generates 
AR candidates by masking out  
regions in mid-latitudes

Label Creation: Tropical Cyclones

 12

1. Extract cyclone center and radius using  
thresholds for pressure, temperature, and vorticity

2. Binarize patch around cyclone center  
using thresholds for water vapor,  

wind, and precipitation

Software: TensorFlow

• high-productivity deep learning framework in Python
with C++-backend, developed by Google

• leverages optimized cuDNN library for performance
sensitive kernels (e.g. convolutions) on NVIDIA GPUs

• dataflow-style programming and asynchronous graph
execution

• provides features for building I/O input pipeline

• can be combined with external Python modules to
provide good flexibility

 13

Software: Horovod

• library developed by Uber for distributed training

• provides straightforward wrappers to convert existing
single process TensorFlow programs to multi-process
data-parallel programs

• uses MPI for worker coordination/control

• MPI is ubiquitous in HPC and available broadly on
systems targeting HPC applications

• can leverage MPI or NCCL for collective communication
on NVIDIA GPUs (e.g. allreduce)

 14

Systems

 15

• Cray XC50 HPC system at CSCS, 5th on top500

• 5320 nodes with Intel Xeon E5-2695v3  
and 1 NVIDIA P100 GPU

• Cray Aries interconnect in  
diameter 5 dragonfly topology

• ~54.4 PetaFlop/s peak performance (FP32)

Piz Daint Summit

• leadership class HPC system at OLCF, 1st on top500

• 4609 nodes with 2 IBM P9 CPU and 6 NVIDIA V100 GPU

• 300 GB/s NVLink connection btw. 3 GPUs in a group

• 800 GB available NVMe storage/node

• dual-rail EDR Infiniband in fat-tree topology

• ~3.45 ExaFlop/s theoretical peak performance (FP16)

Carlos Jones (ORNL)CSCS

Single GPU

cuDNN

Single GPU

cuDNN

Single GPU

• Things to consider:

• Is my TensorFlow model
efficiently using GPU
resources?

• Is my data input pipeline
keeping up?

• Is my TensorFlow model
providing reasonable
results?

cuDNN
Single Node

cuDNN

cuDNN

cuDNN

cuDNN

cuDNN

cuDNN

Single Node

NCCL

MPI

cuDNN

cuDNN

cuDNN

cuDNN

cuDNN

cuDNN

Single Node

NCCL

MPI

cuDNN

cuDNN

cuDNN

cuDNN

cuDNN

cuDNN

Single Node

• Things to consider:

• Is my data input pipeline
still keeping up?

• Is my data-parallel
TensorFlow model
providing reasonable
results?

• How is my performance
scaling over PCIe/NVLink
using Horovod?

Multi Node

NCCL MPI

Multi Node

• Things to consider:

• Is my data-parallel
TensorFlow model still
providing reasonable
results?

• How is my performance
scaling over NVLink +
InfiniBand using Horovod?

• How do I distribute my
data across so many nodes?

NCCL MPI

Deep Learning Models for Extreme Weather Segmentation

 20

decoderencoder

1152×768, 16

5×5 conv, 64

1152×768, 3

input output

5×5 conv, +322×

1×1 conv, 128, /2

5×5 conv, +32

1×1 conv, 384, /2

5×5 conv, +32

4×

5×

1x1 deconv, 160, /2

5×5 conv, +324×

1x1 deconv, 128, /2

5×5 conv, +322×
1x1 deconv, 64, /2

5×5 conv, +32

1x1 deconv, 64, /2

5×5 conv, +32

1×1 conv, 3

2×

2×

5×5 conv, +322×

1×1 conv, 192, /2

5×5 conv, +322×

1×1 conv, 256, /2

1152×768, 128

72×48, 160

144×96, 384
144×96, 544

576×384, 192

144×96, 384

288×192, 256

288×192, 384288×192, 256

576×384, 192 576×384, 256

1152×768, 128
1152×768, 192

1152×768, 256

Tiramisu, 35 layers,  
7.8M parameters, 4.2 TF/sample

 20

DeepLabv3+, 66 layers,  
43.7M parameters, 14.4 TF/sample

decoder

ASPP

encoder 7×7 conv, 64, /2

1152×768, 16

1×1 conv, 64

3×3 conv, 64

1×1 conv, 256

288×192, 64

3×

1×1 conv, 128

3×3 conv, 128

1×1 conv, 512

144×96, 256

4×

1×1 conv, 256
3×3 conv, 256, d 2

1×1 conv, 1024

144×96, 512

6×

1×1 conv, 512

3×3 conv, 512, d 4

1×1 conv, 2048

144×96, 1024

3×
1×1 conv, 256

3×3 conv, 256, d 12

3×3 conv, 256, d 24
3×3 conv, 256, d 36

1×1 conv, 256
144×96, 1024

144×96, 2048

3×3 deconv, 256, /2

1×1 conv, 48

3×3 conv, 64

3×3 conv, 128

3×3 conv, 256

3×3 conv, 256

3×3 deconv, 256, /2

3×3 deconv, 256, /2

1×1 conv, 3

3×3 conv, 256

3×3 conv, 256

1152×768, 3

288×192, 256

1152×768, 256
1152×768, 128

288×192, 256

3×3 maxpool, /2

input output

Data Staging

 21

• 250 training samples/GPU  
(15 GB), sample w/ replacement

• each file will be read at most once from FS

• files shared between nodes via MPI
(mpi4py)

• preprocess and feed data to GPU
asynchronously using tf.data and python
multiprocess

Dataset Size Required BW
(27K GPUs)

GPFS/LUSTRE BurstBuffer NVM/e or DRAM

20 TB (~63K samples) 3.8 TB/s ~400 GB/s ~2 TB/s ~26 TB/s

N
V
M
e

N
V
M
e

N
V
M
e

...

1.5K sam
ples

1.5K sam
ples 1.

5K
 sa

mple
s

shuffle

On-Node I/O Pipeline

• files are in HDF5 with single sample + label/file

• list of filenames passed to TensorFlow Dataset API (tf.data)

• HDF5 serialization bottleneck addressed with multiprocessing + h5py

• extract and batch using tf.data input pipeline

 22

...
data-2107-12-26-02-4.h5
data-2107-12-26-03-1.h5
data-2107-12-26-03-4.h5
data-2107-12-26-04-1.h5
data-2107-12-26-04-4.h5
data-2107-12-26-05-1.h5
data-2107-12-26-05-4.h5
data-2107-12-26-06-1.h5
data-2107-12-26-06-4.h5
data-2107-12-26-07-1.h5

...

...
data-2107-03-03-06-1.h5
data-2107-05-24-00-4.h5
data-2107-08-30-03-4.h5
data-2107-10-29-01-4.h5
data-2107-12-11-07-1.h5
data-2107-08-14-03-4.h5
data-2107-01-08-01-4.h5
data-2107-09-08-04-1.h5
data-2107-09-22-00-1.h5
data-2107-07-16-03-4.h5

...

shuffle

4-way parallel  
read + preprocess

batch

asimovinstitute.org/neural-network-zoo

CPU

GPU

Single Node Performance

• GPU execution profiled with CUDA profiler, kernels grouped by category

• convolution kernels: use latest cuDNN, favor higher computational intensity

• pay attention to memory layout to reduce transposes and copies

• tuning input pipeline on CPU to keep off critical path

 23

DeepLabv3+ FP16 Training

Category
#

Kern

Time

(ms)

Math

(TF)

Mem

(GB)

%

Time

%

Math

%

Mem

Forward
n Convolutions 158 147.9 9.61 27.6 18.1 52.0 20.7

Point-wise 829 52.3 < 0.1 24.3 6.4 51.6

Backward
n Convolutions 195 300.2 19.21 50.5 36.7 51.2 18.7

Point-wise 157 25.6 < 0.1 6.3 3.1 27.3
Optimizer 1219 3.9 < 0.1 1.1 0.5 31.3
Copies / Transposes 708 213.2 - 92.6 26.1 48.3
Allreduce (NCCL) 30 58.7 < 0.1 0.6 7.2 1.1
Type Conversions 201 1.3 - 0.6 0.2 51.3
GPU Idle 14.2 1.7
Total 3497 817.3 28.82 203.6 28.2 27.7

Improvements to Horovod: Original Control Plane

 24

w4

w3

w1

..
.

{1, 2, 5, 8, 13}

{2, 3, 5, 10, 13}

{1, 3, 5, 10, 13, 14}

w2 {1, 3, 5, 7, 13}

w1

{5, 13}

w1

intersect lists

al
lr

ed
uc

e
5,

 1
3

gather broadcast

w4

w3

w1

..
.

w2

Improvements to Horovod: Tree-based Control Plane

 25

..
.

w4

w3

w1

w2

wN

al
lr

ed
uc

e
5,

 1
3

asynchronous
gather + intersect

..
.

w4

w3

w1

w2

w5

w6

w7

w5

w6

w7

..
.

..
.

tree-based
broadcast

Improvements to Horovod: Hybrid All-Reduce

• NCCL uses NVLink for
high throughput, but
ring-based algorithms
are latency-limited at
scale

• hybrid NCCL/MPI
strategy uses strengths
of both

• one inter-node all
reduce per virtual NIC

• MPI work overlaps well
with GPU computation

 26

intra-node  
allreduce (NCCL)

4x inter-node
allreduce (MPI)

4x intra-node
broadcast (NCCL)

Gradient Pipelining (Lag)

 27

wN
...

gNk al
lr

ed
uc

e

ḡk wN

w3
g3k ḡk w3

w2
g2k ḡk w2

w1
g1k ḡk w1

lag-0 (fully synchronous)

qN

q1

wN

..
.

w1

gNk-1

g1k-1

gNk

g1k

..
.

q1

qN

al
lr

ed
uc

e

ḡk-1

ḡk-1

wN

w1

..
.

..
.

lag-1

..
.

Importance of Node-Local Memory

 28

}  
~10% performance
penalty for reading
from global file system 

Scaling Tiramisu

• FP16-model sensitive
to communication

• FP16-model BW-bound 
(only 2.5x faster than
FP32)

• almost ideal scaling for
both precisions on
Summit when gradient
lag is used

 29

Scaling DeepLabv3+

 30

• FP16-model sensitive
to communication

• FP16-model BW-bound 
(only 2.5x faster than
FP32)

• excellent scaling for
both precisions on
Summit when gradient
lag is used

 31

999 PetaFlop/s
(FP16) sustained

DeepLabv3+, 4560 nodes (27360 GPU)

1.13 ExaFlop/s
(FP16) peak

 31

DeepLabv3+, 4560 nodes (27360 GPU)

Concurrency/Precision and Convergence

 33

Concurrency/Precision and Convergence

 33

~2.1x improvement in time to solution

Model/Lag and Convergence

 34

Segmentation Animation

 35

• best result for intersection-over-union (IoU) obtained: ∼73%

• result at large scale (batch-size > 1500): IoU ∼55%

Segmentation Animation

 35

• best result for intersection-over-union (IoU) obtained: ∼73%

• result at large scale (batch-size > 1500): IoU ∼55%

What has happened since Gordon Bell?

• Horovod:

• Hierarchical (hybrid) allreduce available in upstream code (NVIDIA/Amazon)

• Control plane bypass via caching available soon (NVIDIA)

• NCCL:

• Version 2.4.x introduced tree-based reduction algorithms for improved
performance at scale

• NERSC:

• ClimateNet: human annotated labels from domain experts

• project serves as science problem for the ISC-HPC19 student cluster AI challenge

• Gained insights for design and evaluation of upcoming NERSC Perlmutter system

 36

Conclusions

• deep learning and HPC converge, achieving exascale performance

• compute capabilities of contemporary HPC systems can be utilized to tackle
challenging scientific deep learning problems

• HPO and convergence at scale still an open problem — but now we can do it

• software enhancements benefit deep learning community at large

• deep learning-powered techniques usher in a new era of precision analytics for
various science areas

 37

Thank You

