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Socio-Economic Impact of 
Extreme Weather Events

• tropical cyclones and 
atmospheric rivers have major 
impact on modern economy and 
society 

• CA: 50% of rainfall through 
atmospheric rivers 

• FL: flooding, influence on 
insurance premiums and home 
prices 

• $200B worth of damage in 2017 

• costs of ~$10B/event for large 
events
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Understanding Extreme 
Weather Phenomena

• will there be more hurricanes? 

• will they be more intense?  

• will they make landfall more often? 

• will atmospheric rivers carry more 
water? 

• can they help mitigate droughts and 
decrease risk of forest fires? 

• will they cause flooding and heavy 
precipitation?
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Typical Climate Analytics
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Impact Quantification of Extreme Weather Events

• detect hurricanes and atmospheric 
rivers in climate model projections 

• enable geospatial analysis of EW 
events and statistical impact 
studies for regions around the 
world 

• flexible and scalable detection 
algorithm 

• gear up for future simulations with 
∼1 km2 spatial resolution
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Unique Challenges for Climate Analytics

• interpret as segmentation problem 

• 3 classes - background (BG), tropical cyclones (TC), atmospheric rivers (AR) 

• deep learning has proven successful for these tasks 

• climate data is complex 

• high imbalance - more than 95% of  
pixels are background 

• high variance - shape of events change 

• many input channels w/  
different properties 

• high resolution required 

• no static background, highly variable  
in space and time
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Unique Challenges for Deep Learning

• need labeled data for supervised approach  

• can be leveraged from existing heuristic-based approaches 

• define neural network architecture 

• balance between compute performance and model accuracy 

• employ high productivity/flexibility frameworks for rapid prototyping 

• performance optimization requires holistic approach 

• hyper parameter tuning (HPO) 

• necessary for convergence and accuracy
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Unique Challenges for Deep Learning at Extreme Scale
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• data management 

• shuffling/loading/processing/feeding 20 TB dataset to keep GPUs busy 

• efficient use of remote filesystem  

• multi-node coordination and synchronization 

• synchronous reduction of O(50)MB across 27360 GPUs after each iteration 

• hyper parameter tuning (HPO) 

• convergence and accuracy challenging due to larger global batch sizes



Label Creation: Atmospheric Rivers
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1. The climate model predicts  
water vapor, wind speeds  
and humidity

2. These observables are used to  
compute the  
Integrated Water Vapor Transport



Label Creation: Atmospheric Rivers
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3. Binarization by thresholding at  
95th percentile

4. Flood fill algorithm generates 
AR candidates by masking out  
regions in mid-latitudes



Label Creation: Tropical Cyclones
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1. Extract cyclone center and radius using  
thresholds for pressure, temperature, and vorticity

2. Binarize patch around cyclone center  
using thresholds for water vapor,  

wind, and precipitation



Software: TensorFlow

• high-productivity deep learning framework in Python 
with C++-backend, developed by Google 

• leverages optimized cuDNN library for performance 
sensitive kernels (e.g. convolutions) on NVIDIA GPUs 

• dataflow-style programming and asynchronous graph 
execution 

• provides features for building I/O input pipeline 

• can be combined with external Python modules to 
provide good flexibility
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Software: Horovod

• library developed by Uber for distributed training 

• provides straightforward wrappers to convert existing 
single process TensorFlow programs to multi-process 
data-parallel programs  

• uses MPI for worker coordination/control 

• MPI is ubiquitous in HPC and available broadly on 
systems targeting HPC applications 

• can leverage MPI or NCCL for collective communication 
on NVIDIA GPUs (e.g. allreduce)
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Systems
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• Cray XC50 HPC system at CSCS, 5th on top500 

• 5320 nodes with Intel Xeon E5-2695v3  
and 1 NVIDIA P100 GPU 

• Cray Aries interconnect in  
diameter 5 dragonfly topology 

• ~54.4 PetaFlop/s peak performance (FP32)

Piz Daint Summit

• leadership class HPC system at OLCF, 1st on top500 

• 4609 nodes with 2 IBM P9 CPU and 6 NVIDIA V100 GPU 

• 300 GB/s NVLink connection btw. 3 GPUs in a group 

• 800 GB available NVMe storage/node 

• dual-rail EDR Infiniband in fat-tree topology 

• ~3.45 ExaFlop/s theoretical peak performance (FP16)

Carlos Jones (ORNL)CSCS







Single GPU
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cuDNN

Single GPU

• Things to consider: 

• Is my TensorFlow model 
efficiently using GPU 
resources? 

• Is my data input pipeline 
keeping up? 

• Is my TensorFlow model 
providing reasonable 
results?
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NCCL

MPI
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NCCL

MPI
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Single Node

• Things to consider: 

• Is my data input pipeline 
still keeping up? 

• Is my data-parallel 
TensorFlow model 
providing reasonable 
results? 

• How is my performance 
scaling over PCIe/NVLink 
using Horovod?
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Multi Node

• Things to consider: 

• Is my data-parallel 
TensorFlow model still 
providing reasonable 
results? 

• How is my performance 
scaling over NVLink + 
InfiniBand using Horovod? 

• How do I distribute my 
data across so many nodes?

NCCL MPI



Deep Learning Models for Extreme Weather Segmentation
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DeepLabv3+, 66 layers,  
43.7M parameters, 14.4 TF/sample
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Data Staging
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• 250 training samples/GPU  
(15 GB), sample w/ replacement 

• each file will be read at most once from FS 

• files shared between nodes via MPI 
(mpi4py) 

• preprocess and feed data to GPU 
asynchronously using tf.data and python 
multiprocess

Dataset Size Required BW 
(27K GPUs)

GPFS/LUSTRE BurstBuffer NVM/e or DRAM

20 TB (~63K samples) 3.8 TB/s ~400 GB/s ~2 TB/s ~26 TB/s
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On-Node I/O Pipeline

• files are in HDF5 with single sample + label/file 

• list of filenames passed to TensorFlow Dataset API (tf.data) 

• HDF5 serialization bottleneck addressed with multiprocessing + h5py 

• extract and batch using tf.data input pipeline
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Single Node Performance

• GPU execution profiled with CUDA profiler, kernels grouped by category 

• convolution kernels: use latest cuDNN, favor higher computational intensity 

• pay attention to memory layout to reduce transposes and copies 

• tuning input pipeline on CPU to keep off critical path
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DeepLabv3+ FP16 Training

Category
#

Kern

Time

(ms)

Math

(TF)

Mem

(GB)

%

Time

%

Math

%

Mem

Forward
n Convolutions 158 147.9 9.61 27.6 18.1 52.0 20.7

Point-wise 829 52.3 < 0.1 24.3 6.4 51.6

Backward
n Convolutions 195 300.2 19.21 50.5 36.7 51.2 18.7

Point-wise 157 25.6 < 0.1 6.3 3.1 27.3
Optimizer 1219 3.9 < 0.1 1.1 0.5 31.3
Copies / Transposes 708 213.2 - 92.6 26.1 48.3
Allreduce (NCCL) 30 58.7 < 0.1 0.6 7.2 1.1
Type Conversions 201 1.3 - 0.6 0.2 51.3
GPU Idle 14.2 1.7
Total 3497 817.3 28.82 203.6 28.2 27.7



Improvements to Horovod: Original Control Plane
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Improvements to Horovod: Tree-based Control Plane
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Improvements to Horovod: Hybrid All-Reduce

• NCCL uses NVLink for 
high throughput, but 
ring-based algorithms 
are latency-limited at 
scale 

• hybrid NCCL/MPI 
strategy uses strengths 
of both 

• one inter-node all 
reduce per virtual NIC 

• MPI work overlaps well 
with GPU computation
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intra-node  
allreduce (NCCL)

4x inter-node 
allreduce (MPI)

4x intra-node 
broadcast (NCCL)



Gradient Pipelining (Lag)
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Importance of Node-Local Memory
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}  
~10% performance 
penalty for reading 
from global file system 



Scaling Tiramisu

• FP16-model sensitive 
to communication 

• FP16-model BW-bound 
(only 2.5x faster than 
FP32) 

• almost ideal scaling for 
both precisions on 
Summit when gradient 
lag is used
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Scaling DeepLabv3+
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• FP16-model sensitive 
to communication 

• FP16-model BW-bound 
(only 2.5x faster than 
FP32) 

• excellent scaling for 
both precisions on 
Summit when gradient 
lag is used
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999 PetaFlop/s 
(FP16) sustained

DeepLabv3+, 4560 nodes (27360 GPU)



1.13 ExaFlop/s 
(FP16) peak
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DeepLabv3+, 4560 nodes (27360 GPU)





Concurrency/Precision and Convergence
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Concurrency/Precision and Convergence
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~2.1x improvement in time to solution



Model/Lag and Convergence
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Segmentation Animation
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• best result for intersection-over-union (IoU) obtained: ∼73% 

• result at large scale (batch-size > 1500): IoU ∼55%



Segmentation Animation
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• best result for intersection-over-union (IoU) obtained: ∼73% 

• result at large scale (batch-size > 1500): IoU ∼55%



What has happened since Gordon Bell?

• Horovod: 

• Hierarchical (hybrid) allreduce available in upstream code (NVIDIA/Amazon) 

• Control plane bypass via caching available soon (NVIDIA) 

• NCCL: 

• Version 2.4.x introduced tree-based reduction algorithms for improved 
performance at scale 

• NERSC: 

• ClimateNet: human annotated labels from domain experts 

• project serves as science problem for the ISC-HPC19 student cluster AI challenge 

• Gained insights for design and evaluation of upcoming NERSC Perlmutter system
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Conclusions

• deep learning and HPC converge, achieving exascale performance 

• compute capabilities of contemporary HPC systems can be utilized to tackle 
challenging scientific deep learning problems 

• HPO and convergence at scale still an open problem — but now we can do it 

• software enhancements benefit deep learning community at large 

• deep learning-powered techniques usher in a new era of precision analytics for 
various science areas
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