


Building the interface of retail



1. e-commerce level convenience for

shoppers

2. e-commerce level automation and insight for 

retailers





Amazon Go and other shelf-based 

approaches provide a great proof of 

concept, but have large drawbacks.







Shelf-based approaches require 

thousands of sensors and a bottom-up 

restructuring of a store

Gated entry changes the customer flow



Our proof of concept store on Market st



27 total sensors



Our partners have consistently requested a 

ceiling-only solution

Standard Market is a 1,900 sq foot 

convenience store

It’s powered by 27 overhead cameras

No shelf sensors, depth sensors, RFID, 

biometric trackers, or turnstiles



Major Research Challenges in Autonomous Checkout

Tracking
Action 

Recognition
Item 

Classification



Major Research Challenges in Autonomous Checkout

Who
Who has 

what?
What



Major Research Challenges in Autonomous Checkout

Tracking
Action 

Recognition
Item 

Classification





Joint work between Karl Obermeyer, Kyle Dorman,

Warren Green, Juan Lasheras, Dave Valdman,

Jordan Fisher



Major Research Challenges in Autonomous Checkout

Tracking
Action 

Recognition
Item 

Classification



Major Research Challenges in Autonomous Checkout

Tracking

• Dense, multi-object tracking in the wild
• Multi-view consensus
• Constant partial and full occlusions
• Has to run in real time
• Can’t use facial recognition
• Off the shelf, cheap hardware
• Has to be nearly 100% accurate



Major Research Challenges in Autonomous Checkout

Tracking

• Dense, multi-object tracking in the wild
• Multi-view consensus
• Constant partial and full occlusions
• Has to run in real time
• Can’t use facial recognition
• Off the shelf, cheap hardware
• Has to be nearly 100% accurate







High level components of a tracker

Feature 
Extraction

Association



High level components of a tracker

Joint 
Association

Temporal 
Association

Spatial 
Association



High level components of a tracker

Feature 
Extraction

Association

You don’t necessarily 
want to isolate these 
systems!



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



Figure out your metric

• You don’t get to pick your metric, you need to 

determine it

• Whatever metric you pick, it will be leaky. Be prepared

• The standard metric in the literature is probably not 

what you want



Correct Metric for Cascading Models

Model 1 Model 2
Final 

Metric



Correct Metric for Cascading Models

Tracking
Basket 
System

Receipt 
Accuracy



Correct Metric for Cascading Models

Tracking
Basket 
System

Receipt 
Accuracy

Intermediate 
Metric





Correct Metric for Cascading Models

Tracking
Basket 
System

Receipt 
Accuracy

Intermediate 
Metric



Determining your intermediate metric

• Improving the metric should almost always improve 

your final metric, potentially with the need to retrain 

downstream models (We call this Firewalling)

• Should be able to be optimized

• Maximize one thing, satisfice everything else. 

Alternatively, use blended metric.

• Other metrics should be considered “debug” metrics



Things we might care about

• False negatives

• False positives

• Concentration of false negatives per person

• Image plane swaps

• True swaps

• Impossible to optimize everything simultaneously. How 

do we proceed?



Blended metrics, or utility functions



Blended metrics, or utility functions

Does this assign the right amount of utility to each 

individual metric? Probably not.

Does this firewall our final metric? Probably not



Maximize and satisfice

• For all metrics identify the minimum reasonable 

requirements

• Identify the one additional metric that improving 

beyond the minimum would yield continued 

improvement for the downstream systems



Maximize and satisfice

• Satisfice

• Swaps = 0

• Untracked people = 0

• Dropped tracks = 0

• Maximize

• Sum of image plane MOTA’s

• Debug metric

• Image plane swaps, false positives



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



Results







General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



General Approach

• Figure out your metric

• Get good data

• Invest in infrastructure

• Hedge your research bets

• Evaluate true metric

• Productionize



Problem

• Algorithm is O(n^2 * p^2)

• Runs at 0.5 FPS, needs to run at 30 FPS



Solution

• Modify the algorithm to reduce runtime complexity?



Noop.





If we can get a 100x speedup, we don’t need to modify 

the algorithm.



Why Rust?

1. Very fast

2. Fearless parallelism

3. Easier to maintain

4. Language of choice





Why not Rust?

1. Poor support for scientific computing

2. Hard to learn

3. Smells “shiny”



Case study

We’re using Rust for high performance system code, but 

not yet for complex models

Wanted a case study to demonstrate feasibility



Approach

1. Test harness

2. Restructure code to be Rustic

3. Full mypy type coverage

4. Automatic transpilation

5. Iterate with the Rust compiler

6. Hand fix the rest

7. Build needed library FFI’s
8. dbg! and print pairs to isolate output divergence



class SimpleClass:
"""
This is a simple class.

Args:
x: Some number here!

"""
def __init__(self, x) -> None:

self.x = x

def some_function(self):
return self.x



class SimpleClass:
"""
This is a simple class.

Args:
x: Some number here!

"""
def __init__(self, x: int) -> None:

self.x = x

def some_function(self) -> float:
return self.x



/// This is a simple class.
pub struct SimpleClass {

x: usize,
}

impl SimpleClass {
/// Return a new SimpleClass.
///
/// # Arguments
///
/// * `x` - Some number here!
pub fn new(x: usize) -> SimpleClass {

SimpleClass {
x: x,

}
}

pub fn some_function(&self) -> f64 {
self.x

}
}

pyout.py output

transpiling rocks!



Approach

1. Test harness

2. Restructure code to be Rustic

3. Full mypy type coverage

4. Automatic transpilation

5. Iterate with the Rust compiler

6. Hand fix the rest

7. Build needed library FFI’s
8. dbg! and print pairs to isolate output divergence



Approach

1. Test harness

2. Restructure code to be Rustic

3. Full mypy type coverage

4. Automatic transpilation

5. Iterate with the Rust compiler

6. Hand fix the rest

7. Build needed library FFI’s
8. dbg! and print pairs to isolate output divergence



Results

• 30+ FPS for 20 people and 20 cameras on a single 

core!

• No parallelism! No algorithmic changes!



What sucked

1. Library ecosystem

2. Poor opencv support, had to hand wrap FFI calls

3. Poor, unergonomic multidimensional array support



Major Research Challenges in Autonomous Checkout

Tracking
Action 

Recognition
Item 

Classification



jordan@standard.ai


