
S9391
GstCUDA: Easy GStreamer

and CUDA Integration

Eng. Daniel Garbanzo
MSc. Michael Grüner
GTC March 2019

Agenda

About RidgeRun

GStreamer Overview

CUDA Overview

GstCUDA Introduction

Application Examples

Performance Statistics

GstCUDA Demo on TX2

Q&A

2

● US Company - R&D Lab in Costa Rica

● 15 years of experience

● Embedded Linux and GStreamer experts

● Custom multimedia solutions

● Digital signal/image processing

● AI and Machine Learning solutions

● System optimization: CUDA, GStreamer, OpenCL, OpenGL, OpenVX, Vulkan

● Support for embedded and resource constrained systems

● Professional services, dedicated teams and specialized tools

About Us

3

● Complex multimedia applications require a lot of processing resources
● GStreamer offers a flexible way for creating multimedia applications

● CUDA offers high performance accelerated processing capabilities

Medical Industry Automotive Industry Smart Devices Computer Vision

4

● Open source framework for audio and video applications

● Based on a pipeline architecture

● Extensible design based on plugins (more than 1000 freely available)

● Automatic format and synchronization handling

● Tools for easy prototyping

Modularity FlexibilityPortability

5

● Each plugin represents a different processing module

● The plugins are linked and arranged in a pipeline

● Freedom to build arbitrary pipelines for different applications
6

Basic MP4 player GStreamer Pipeline

Modular design lets you change your application easily!

7

Easily change your
application end use

Easily change from SW to
HW accelerated processing

Code equivalent :
gst-launch v4l2src ! videoconverter ! omxh265enc ! mpegtsmux ! udpsink

Code equivalent :
gst-launch v4l2src ! videoconverter ! x265enc ! mpegtsmux ! filesink

Modular design lets you change your application easily!

8

9

GstCUDA

10

GstCUDA

11

What Does GstCUDA Solve?

12

●
●
●

Integration Complexities

13

Development Time

Without
GstCUDA

With
GstCUDA

3 Months 10 days 5
days

Create GStreamer plugin with CUDA support

Generate CUDA algorithm

Integrate CUDA algorithm

10 days 0.1
day

Generate CUDA algorithm

Integrate CUDA algorithm

Total = 3.5 months

Total = 10.1 days

● Reduce development time

● Focus on the CUDA logic

● Minimize time to market

14

●
●
●

Memcpy Memcpy

Performance Bottleneck

15

Performance Bottleneck
Without GstCUDA With GstCUDA

● Efficient memory handling
improves performance

● Up to 2x 4K@60fps

● Data transfers bottleneck
cause poor performance

● Limited framerate at high
resolutions 16

Supported Platforms
● Focused for NVIDIA Embedded Platforms

Jetson TX1, TX2, TX2i and
Nano Jetson AGX Xavier

17

GstCUDA Key Features

18

GstCUDA Key Features

19

Framework Overview

20

Quick Prototyping Elements

21

location =
median_filter.so

Cudafilter Element

22

location =
thermal_overlay.so

Cudamux Element

IR

23

CUDA Algorithm Interface
● Make your CUDA algorithm compatible by implementing these interfaces

Cudafilter Interface

bool open();

bool close();

bool process (const GstCudaData &inbuf,

 GstCudaData &outbuf);

bool process_ip (const GstCudaData

 &inbuf, GstCudaData &outbuf);

bool open();

bool close();

bool process (vector<GstCudaData>

 &inbufs, GstCudaData &outbuf);

bool process_ip (vector<GstCudaData>

 &inbufs, GstCudaData &outbuf);

Cudamux Interface

24

Buffer Processing Methods

process_ip
(In place)

process
(Not in place)

25

Create Your Custom Element

• •

● Some applications may require specialized elements
● GstCUDA provides bases classes to simplify development

26

GstCUDA Framework Usage
Example

●

27

GstCUDA Framework Summary

● Utils to handle
memory interfaces

● GStreamer Unified
Memory allocators

● Parent classes for
different topologies

● The framework includes:

● Generic elements to
evaluate custom
algorithms

● Runtime loading of
CUDA algorithms

● Complete GstCUDA
element boilerplate

● CUDA algorithms for
the prototyping
elements

GstCUDA API Quick prototyping
elements Set of examples

28

GstCUDA Application Areas Examples Video

29

Industrial Applications: Border Enhancement

30

Automation Applications: Hough Transform

31

Security Applications: Motion Detection/Estimation

32

Performance Statistics

33

Varying Algorithm / Fixed Image Size

● Image convolution algorithm

● Stressing compute capabilities

● Variable convolution kernel size

● 1080p@240fps / 1080p@60fps
stream input

● Cudafilter element

● Unified Memory allocator

● Jetson TX2 platform

● Not In-place

 Test Conditions

location =
convolution.so

34

Varying Algorithm / Fixed Image Size

Framerate Stats

35

Varying Algorithm / Fixed Image Size

Processing Time Stats

36

Varying Algorithm / Fixed Image Size

CPU Load Stats GPU Load Stats

37

*baseline = simple capture pipeline (without GstCUDA)

Fixed Algorithm / Varying Image Size

● Memory copy algorithm

● Stressing data transfer

● Variable input resolution

● Cudafilter element

● Unified Memory allocator

● Jetson TX2 platform

● In-place vrs not In-place

 Test Conditions

location = memcpy.so

38

Fixed Algorithm / Varying Image Size

Framerate Stats

39

Note: Maximum
Framerate
limited to 245
fps by the video
source

Fixed Algorithm / Varying Image Size

Processing Time Stats

40

Fixed Algorithm / Varying Image Size

CPU Load Stats GPU Load Stats

41
*baseline = simple capture pipeline (without GstCUDA)

Fixed Algorithm / Varying Image Size

● Simple image mixing algorithm

● Stressing data transfer

● Variable input resolution

● Cudamux element

● Unified Memory allocator

● In-place=True

● Jetson TX2 platform

 Test Conditions

location =
mixer.so

42

Fixed Algorithm / Varying Image Size

Framerate Stats

43

Note: Maximum
Framerate
limited to
240fps by the
video source

Fixed Algorithm / Varying Image Size

CPU Load Stats GPU Load Stats

44
*baseline = simple capture pipeline (without GstCUDA)

GstCUDA Live Demo on Jetson TX2
Sobel Filter 1080p60fps

45

gst-launch-1.0 nvcamerasrc sensor-id=2 fpsRange=60,60 !
"video/x-raw(memory:NVMM),width=1920,height=1080,framerate=6
0/1,format=I420" ! nvvidconv ! "video/x-raw" ! queue !
cudafilter in-place=false location=/borders.so ! queue !
nvoverlaysink

Code equivalent :

● GstCUDA wiki page:

○ gstcuda.ridgerun.com

● RidgeRun Website:

○ ridgerun.com

● RidgeRun Contact:

○ ridgerun.com/contact

Resources

46

https://developer.ridgerun.com/wiki/index.php?title=GstCUDA
https://www.ridgerun.com/
https://www.ridgerun.com/contact

