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● US Company - R&D Lab in Costa Rica

● 15 years of experience

● Embedded Linux and GStreamer experts 

● Custom multimedia solutions

● Digital signal/image processing

● AI and Machine Learning solutions

● System optimization: CUDA, GStreamer, OpenCL, OpenGL, OpenVX, Vulkan

● Support for embedded and resource constrained systems 

● Professional services, dedicated teams and specialized tools

About Us
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● Complex multimedia applications require a lot of processing resources
● GStreamer offers a flexible way for creating multimedia applications

● CUDA offers high performance accelerated processing capabilities

Medical Industry Automotive Industry Smart Devices Computer Vision 
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● Open source framework for audio and video applications

● Based on a pipeline architecture 

● Extensible design based on plugins (more than 1000 freely available)

● Automatic format and synchronization handling

● Tools for easy prototyping

Modularity FlexibilityPortability
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● Each plugin represents a different processing module

● The plugins are linked and arranged in a pipeline

● Freedom to build arbitrary pipelines for different applications
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Basic MP4 player GStreamer Pipeline



Modular design lets you change your application easily!
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Easily change your 
application end use

Easily change from SW to 
HW accelerated processing



Code equivalent :
gst-launch v4l2src ! videoconverter ! omxh265enc ! mpegtsmux ! udpsink   

Code equivalent :
gst-launch v4l2src ! videoconverter ! x265enc ! mpegtsmux ! filesink   

Modular design lets you change your application easily!
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GstCUDA
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GstCUDA
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What Does GstCUDA Solve?
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●
●
●

Integration Complexities
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Development Time

Without 
GstCUDA

With
GstCUDA

3 Months 10 days 5 
days

Create GStreamer plugin with CUDA support

Generate CUDA algorithm

Integrate CUDA algorithm

10 days 0.1 
day

Generate CUDA algorithm

Integrate CUDA algorithm

Total = 3.5 months

Total = 10.1 days

● Reduce development time

● Focus on the CUDA logic 

● Minimize time to market 
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●
●
●

Memcpy Memcpy

Performance Bottleneck
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Performance Bottleneck
Without GstCUDA With GstCUDA

● Efficient memory handling 
improves performance

● Up to 2x 4K@60fps 

● Data transfers bottleneck 
cause poor performance 

● Limited framerate at high 
resolutions 16



Supported Platforms
● Focused for NVIDIA Embedded Platforms

Jetson TX1, TX2, TX2i and 
Nano Jetson AGX Xavier
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GstCUDA Key Features
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GstCUDA Key Features
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Framework Overview
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Quick Prototyping Elements
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location = 
median_filter.so

Cudafilter Element
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location = 
thermal_overlay.so

Cudamux Element

IR
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CUDA Algorithm Interface
● Make your CUDA algorithm compatible by implementing these interfaces 

Cudafilter Interface

bool open();

bool close();

bool process (const GstCudaData &inbuf,

  GstCudaData &outbuf);

bool process_ip (const GstCudaData

  &inbuf, GstCudaData &outbuf);

bool open();

bool close();

bool process (vector<GstCudaData>

  &inbufs, GstCudaData &outbuf);

bool process_ip (vector<GstCudaData>

  &inbufs, GstCudaData &outbuf);

Cudamux Interface
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Buffer Processing Methods

process_ip
(In place)

process
(Not in place)
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Create Your Custom Element

• •

● Some applications may require specialized elements
● GstCUDA provides bases classes to simplify development
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GstCUDA Framework Usage 
Example

●
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GstCUDA Framework Summary

● Utils to handle 
memory interfaces

● GStreamer Unified 
Memory allocators

● Parent classes for 
different topologies

● The framework includes:

● Generic elements to 
evaluate custom 
algorithms

● Runtime loading of 
CUDA algorithms

● Complete GstCUDA 
element boilerplate 

● CUDA algorithms for 
the prototyping 
elements 

GstCUDA API Quick prototyping 
elements Set of examples
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GstCUDA Application Areas Examples Video
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Industrial Applications: Border Enhancement
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Automation Applications: Hough Transform
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Security Applications: Motion Detection/Estimation
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Performance Statistics
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Varying Algorithm / Fixed Image Size

● Image convolution algorithm

  

● Stressing compute capabilities

● Variable convolution kernel size

● 1080p@240fps / 1080p@60fps 
stream input

● Cudafilter element

● Unified Memory allocator

● Jetson TX2 platform

● Not In-place

 Test Conditions

location = 
convolution.so
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Varying Algorithm / Fixed Image Size

Framerate Stats

35



Varying Algorithm / Fixed Image Size

Processing Time Stats
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Varying Algorithm / Fixed Image Size

CPU Load Stats  GPU Load Stats

37

*baseline = simple capture pipeline (without GstCUDA)



Fixed Algorithm / Varying Image Size

● Memory copy algorithm

  

● Stressing data transfer

● Variable input resolution

● Cudafilter element

● Unified Memory allocator

● Jetson TX2 platform

● In-place vrs not In-place 

 Test Conditions

location = memcpy.so
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Fixed Algorithm / Varying Image Size

Framerate Stats
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Note: Maximum 
Framerate 
limited to 245 
fps by the video 
source



Fixed Algorithm / Varying Image Size

Processing Time Stats
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Fixed Algorithm / Varying Image Size

CPU Load Stats  GPU Load Stats
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*baseline = simple capture pipeline (without GstCUDA)



Fixed Algorithm / Varying Image Size

● Simple image mixing algorithm

● Stressing data transfer

● Variable input resolution

● Cudamux element

● Unified Memory allocator

● In-place=True

● Jetson TX2 platform

 Test Conditions

location = 
mixer.so
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Fixed Algorithm / Varying Image Size

Framerate Stats
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Note: Maximum 
Framerate 
limited to 
240fps by the 
video source



Fixed Algorithm / Varying Image Size

CPU Load Stats  GPU Load Stats
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*baseline = simple capture pipeline (without GstCUDA)



GstCUDA Live Demo on Jetson TX2
Sobel Filter 1080p60fps
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gst-launch-1.0 nvcamerasrc sensor-id=2 fpsRange=60,60 ! 
"video/x-raw(memory:NVMM),width=1920,height=1080,framerate=6
0/1,format=I420" ! nvvidconv ! "video/x-raw" ! queue ! 
cudafilter in-place=false location=/borders.so ! queue ! 
nvoverlaysink

Code equivalent :



● GstCUDA wiki page:

○ gstcuda.ridgerun.com

● RidgeRun Website:

○ ridgerun.com

● RidgeRun Contact:

○ ridgerun.com/contact

Resources
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https://developer.ridgerun.com/wiki/index.php?title=GstCUDA
https://www.ridgerun.com/
https://www.ridgerun.com/contact

