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Structural Sparsity
Speeding up training and inference of neural networks by linear algorithms

= the brain cannot be fully connected

- 10" nerve cells, but only up to 10* connections each

» image source Pixabay
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https://pixabay.com/illustrations/brain-mrt-magnetic-resonance-imaging-1728449/

Artificial Neural Networks in a Nutshell
Learning high dimensional function approximation

= input layer ag, L— 1 fully connected hidden layers, and output layer a;
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Artificial Neural Networks in a Nutshell
Learning high dimensional function approximation

= input layer ag, L — 1 fully connected hidden layers, and output layer a;
SSTLNRTLEERTL
SEELSRALSKS

PV
& 3K R

- n rectified linear units (ReLU) a,; = max{0, - w;;;-a,_1;} in layer |

- backpropagating the error 6, {; = Xa// 001wy, update weights w,/,j,, =wji—A-8-a-1;ifa;>0
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Artificial Neural Networks in a Nutshell

number of neural units
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Artificial Neural Networks in a Nutshell

number of neural units

]
gl

ny where n; is the number of neurons in layer /

T
L

number of weights
L

ny=YYcn=c-n
=1

- select constant number ¢ of weights per neuron

- time and space linear in n

4 NVIDIA.



Artificial Neural Networks in a Nutshell
Convolutional neural networks

= feature map defined by convolution kernel

- weight sharing across all neural units of one feature
. C3: f. maps 16@10x10
INPUT SCézfg’aéusre maps S4:f. maps 16 @5x5

32x32 S2:f. maps
6@14x1

|
Fullconrlection | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

map

» Gradient based learning applied to document recognition

= maximum pooling layer: maximum of tile of neurons in feature map to reduce resolution
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http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
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Relations to Mathematical Objects
Maximum pooling layers

= rectified linear unit ReLU(x) := max{0, x} as a basic non-linearity
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Relations to Mathematical Objects

rectified linear unit ReLU(x) := max{0, x} as a basic non-linearity
for example, leaky ReLU is

ReLU(x) — a - ReLU(—x)
which for & = —1 yields the absolute value

x| = ReLU(x) + ReLU(—x)
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Relations to Mathematical Objects

rectified linear unit ReLU(x) := max{0, x} as a basic non-linearity

for example, leaky ReLU is
ReLU(x) — a - ReLU(—x)

which for & = —1 yields the absolute value
|x| = ReLU(x) 4+ ReLU(—x)

hence the maximum of two values is

X+y

- 1
max{x,y} = 5 T a4

5| =5 (x+y+ReLU(x~y)+ReLU(y - x))

which allows one to represent maximum pooling by ReLU functions and introduces skip links

7 NVIDIA.



Relations to Mathematical Objects

relation of a residual layer and a differential equation by introduction a step size h

a=a_q1+h VV/(Z) max{O, M//(1)~a/,1}
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https://www.birs.ca/events/2018/5-day-workshops/18w5172/videos/watch/201804231331-Haber.html
https://www.technologyreview.com/s/612561/a-radical-new-neural-network-design-could-overcome-big-challenges-in-ai/

Relations to Mathematical Objects

relation of a residual layer and a differential equation by introduction a step size h

a=a_q1+h W,(Z) max{O, W,“) -aj_1 } resembles Euler method

a—a-1
h

8 NVIDIA.


https://www.birs.ca/events/2018/5-day-workshops/18w5172/videos/watch/201804231331-Haber.html
https://www.technologyreview.com/s/612561/a-radical-new-neural-network-design-could-overcome-big-challenges-in-ai/

Relations to Mathematical Objects

relation of a residual layer and a differential equation by introduction a step size h
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Relations to Mathematical Objects

relation of a residual layer and a differential equation by introduction a step size h

a=a_q1+h W,(Z) max{O, W,“) -aj_1 } resembles Euler method

o AR — W,(Q) max{O, W,“) -aj_1 } which for h — 0 becomes 3,

- select your favorite ordinary differential equation to determine W,“) and W,(Z)

Neural networks motivated by partial differential Equations

- use your favorite ordinary differential equation solver for both inference and training

A radical new neural network design could overcome big challenges in Al
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https://www.birs.ca/events/2018/5-day-workshops/18w5172/videos/watch/201804231331-Haber.html
https://www.technologyreview.com/s/612561/a-radical-new-neural-network-design-could-overcome-big-challenges-in-ai/

Relations to Mathematical Objects
Learning integral operator kernels

= neural unit with ReLU

n_1—1
4y j := max 0, Z Wi idl-1,i
=

1
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Relations to Mathematical Objects
Learning integral operator kernels

= neural unit with ReLU

n_1—1
4y j := max 0, Z Wi idl-1,i
=

1

n_1—1

ajj= Z w,_,/-_,,-max{O,aH,,-}
i=0
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Relations to Mathematical Objects

neural unit with ReLU

n,,1—1 n,,171
a,‘j = max{O, Z w,‘,-‘,-a”’,} —r a,vj = Z W,_j_,-max{O,a,,L,-}
i=0 i=0

written in continuous form relates to high-dimensional integro-approximation

1
ay) == /0 wi(x,y) max{0, a_1 (x) }dx
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Relations to Mathematical Objects

neural unit with ReLU

n_y—1 n_q—1
a,‘j = max{O, Z w,‘,-‘,-a”’,} — a,vj = Z W,_j_,-max{O,a,,L,-}
i=0 i=0

written in continuous form relates to high-dimensional integro-approximation

1
ay) == /0 wi(x,y) max{0, a_1 (x) }dx

recurrent neural network layer in continuous form alludes to integral equation

1
a(y):= [ wix.y)max{0.a.1(x)}ox
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Relations to Mathematical Objects

neural unit with ReLU

n,,1—1 n,,171
a,‘j = max{O, Z w,‘,-‘,-a”’,} —r a,vj = Z W,_j_,-max{O,a,,L,-}
i=0 i=0

written in continuous form relates to high-dimensional integro-approximation

1
ay) == /0 wi(x,y) max{0, a_1 (x) }dx

recurrent neural network layer in continuous form alludes to integral equation
/ 1 1 h
a(y) = | witxy)max(0,ar1(0)}ax+ [ wf(x.y)max{0,a,(x)}dx
- weights w" establish recurrence, e.g. for processing sequences of data

9 CANVIDIA



Relations to Mathematical Objects
Monte Carlo methods and computer graphics

= structural equivalence of integral equations and reinforcement learning

= learning integro-approximation from noisy/sampled data

10 <A NVIDIA.


https://arxiv.org/abs/1701.07403
https://arxiv.org/abs/1712.06115
https://arxiv.org/abs/1803.04189

Relations to Mathematical Objects

structural equivalence of integral equations and reinforcement learning

learning integro-approximation from noisy/sampled data

examples of random sampling

pseudo-random initialization

training by stochastic gradient descent
regularization by drop-out and drop-connect
random binarization

sampling by generative adversarial networks

fixed pseudo-random matrices for direct feedback alignment

Learning light transport the reinforced way
Machine learning and integral equations

Noise2Noise: Learning image restoration without clean data

10 @&
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https://arxiv.org/abs/1701.07403
https://arxiv.org/abs/1712.06115
https://arxiv.org/abs/1803.04189
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Representing Artificial Neural Networks by Paths
Speeding up training and inference of neural networks by linear algorithms

= connections based on expander graphs

Fully Connected Sparse Expander-like
Network Approximation  Approximation
[PRPRER VR LI 10, I RFRFRVRF

0P QRIDD QQY
, QIOQ R
N\ Vs 70 QW
| v AN
Q ) QOO0

S &5

0

040,05 0, 05

LI 131, 1 Il 11, 0

— Not Connected

— Connected

» Deep Expander Networks: Efficient Deep Networks from Graph Theory
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http://openaccess.thecvf.com/content_ECCV_2018/papers/Ameya_Prabhu_Deep_Expander_Networks_ECCV_2018_paper.pdf

Representing Artificial Neural Networks by Paths
Speeding up training and inference of neural networks by linear algorithms

= guaranteed connectivity
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Representing Artificial Neural Networks by Paths
Speeding up training and inference of neural networks by linear algorithms

= guaranteed connectivity

a0, ny—1

a1 n,—1 as n,—1
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Representing Artificial Neural Networks by Paths
Speeding up training and inference of neural networks by linear algorithms

= guaranteed connectivity and coverage

a0, ny—1

- complexity linear number of paths and depth

13 <A NVIDIA.



Representing Artificial Neural Networks by Paths

LayerOffset[0] = NeuronsPerLayer[0];
for (int 1 = 1; 1 < Layers; ++1)
{
for (int i = 0; i < Paths; ++i)
Weight[1] [i] = InitialWeight; // deterministic instead of random
LayerOffset[1] = LayerOffset[l - 1] + NeuronsPerLayer[1];

a = new float[LayerOffset[Layers - 1]];
error = new float[LayerOffset[Layers - 111;

14 NVIDIA.



Representing Artificial Neural Networks by Paths

int Offset 0;

for (int 1 = 0; 1 < Layers; ++1)
{
for (int i = 0; i < Paths; ++i)

Path[1][i] = Offset + (int) (drand48() * NeuronsPerLayer[1]);

Offset += NeuronsPerLayer[1];

15 NVIDIA.



Representing Artificial Neural Networks by Paths
Inference: Sparse network, sequentially streamed weights

for (int i = 0; i < LayerOffset[0]; ++i)

alil = input[il;

for (int i = LayerOffset[0]; i < LayerOffset([Layers - 1]; ++i)

al[i] = 0.0f; // alternatively copy bias[i] values to a[i]

for (int 1 = 1; 1 < Layers; ++1)
for (int i = 0; i < Paths; ++i)
if (a[Path[1l - 1]1[i]] > 0.0f) // implicit ReLU
a[Path[1][i]] += Weight[1][i] * a[Path[l - 1][il];

16 <A NVIDIA.



Representing Artificial Neural Networks by Paths
Results: 4 layer feedforward network (784/300/300/10) trained sparse from scratch

Test Accuracy
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|
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| | |
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Parallel Computer Architecture
A blast from the past

= gystolic arrays

’ a == . I .

| 213 . az2 - a3y

X = I—> X . ¥ 2 .
| s 2 . . . B "‘ 1 [l - I‘, 5

b+asx <t 4—1 |4— b copcer EEEEEEESEEE
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Parallel Computer Architecture
A blast from the past

= gystolic arrays
’ a = S :
. 213 . az2 - a3y
X — —bj—b X : oo

brasx €= ﬂ_r— b R = r=u i p=u i r=a i p=a i

= perfect shuffle networks

- matrix transposition, fast Fourier transform, evaluating polynomials, sorting, optical neural networks
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Parallel Computer Architecture
A blast from the past

= systolic arrays in Google’s tensor processing units (TPU)
; a = . I .
a13 . az2 - a3y
X — ——Pj—b X : oo

bearx €= <—*_I<— b et = i = v Al p=aiilp=akin

= perfect shuffle networks

- matrix transposition, fast Fourier transform, evaluating polynomials, sorting, optical neural networks
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Parallel Computer Architecture
Permutations instead of perfect shuffle

= interleaver design

Layer i — 1 Junction 7 Layer i
——,————— - »| FF Unit %
i Ill | Il
a;—1 queue : a; queue
— SRNEY e
b
B | =
a;—1 queue | : a; queue
) ]
1
]

=]

I Ij‘_ I
di—1 pair === > UP Unit |4 4; pair

» Pre-Defined Sparse Neural Networks with Hardware Acceleration
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https://arxiv.org/abs/1812.01164

Parallel Computer Architecture
Permutations instead of perfect shuffle

= interleaver design

= % >’>’
cycle ——e
o< S— o

Some . & X
other . .
cycle e
gé ——e

permuted order
accesses

Fig. 2. Reading z = 6 weights corresponding to 2 right neurons in each
cycle. When traced back through 7y, this requires reading 6 left activation
memories in permuted order.
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Parallel Computer Architecture

Permutations instead of perfect shuffle

= interleaver design

Sweep 0

Cycle 3 ===
Cycle 4 ===
Cycle 5 ===

Sweep 0

Sweep 1

Must have
at least
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Parallel Computer Architecture
Permutations instead of perfect shuffle

= interleaver design

Basic SV MD SS+MD

Fig. 4. Various 7y patterns using parameters p = 64, fo =4 and z = 16.
Interleaver size = p x fo = 256.

Basic SV MD SS+MD

Fig. 5. Corresponding 74 patterns for Fig. |4, Interleaver size = p = 64.
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Deterministic Permutations
Sobol’ low discrepancy sequence

= each component is a (0,1)-sequence in base 2

- contiguous blocks of length of powers of 2 are permutations

1 1 ao (/)
I .
X;):(é...?m).c,. L e
am-1(/)
— ——————N—

multiplication in F

- generator matrix C; determined by /-th primitive polynomial
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Deterministic Permutations

each component is a (0, 1)-sequence in base 2

- contiguous blocks of length of powers of 2 are permutations

uint x = 0;

for (uint k = 0; i; i »= 1, ++k)
if (i & 1)
x "= C[k]l; // SIMD addition of column k of C;

- bit swizzling similar to mapping addresses to caches
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Deterministic Permutations
Sobol’ low discrepancy sequence

= each component is a (0,1)-sequence in base 2

- contiguous blocks of length of powers of 2 are permutations

int Offset = 03
for (int 1 = 0; 1 < Layers; ++1)
{

for (int i = 0; i < Paths; ++i)

Path[1][i] = Offset + (int) (Sobol(i, 1) * NeuronsPerLayer[1]);

O0ffset += NeuronsPerLayer[1];

- Sobol(i, 1) as hardware address generator

21 <4 NVIDIA



Examples of Sparse-from-Scratch Artificial Neural Networks
Deterministic connections by the Sobol’ sequence

= sparse classifier

22 GANVIDIA.



Examples of Sparse-from-Scratch Artificial Neural Networks
Deterministic connections by the Sobol’ sequence

= sparse autoencoder

23 <4 NVIDIA



Examples of Sparse-from-Scratch Artificial Neural Networks
Deterministic connections by the Sobol’ sequence

= sparse layers
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Examples of Sparse-from-Scratch Artificial Neural Networks
Deterministic connections by the Sobol’ sequence

= gparse layers
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Examples of Sparse-from-Scratch Artificial Neural Networks
Deterministic connections by the Sobol’ sequence

= gparse layers
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Structural Sparsity
Paths generated by the Sobol’ sequence

= deterministic sparse connections by collision-free and progressive low discrepancy permutations
- even as alternative to dropout and dropconnect

- also works with weight sharing for convolutional layers
= deterministic initialization

= streaming weights

25 <4 NVIDIA.



Structural Sparsity

deterministic sparse connections by collision-free and progressive low discrepancy permutations
- even as alternative to dropout and dropconnect

- also works with weight sharing for convolutional layers
deterministic initialization

streaming weights

linear complexity in both inference and backpropagation
- lends itself to hardware architecture

25 NVIDIA.



Instant Quantization and Online Sparsity



Instant Quantization and Online Sparsity
Ternarization by simulating discrete probability densities

= without loss of generality, assume ZZ;E) |wi| = |lw|4 =1

= define partition of unit interval by Pp := Y7 ; |w|
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Ternarization by simulating discrete probability densities
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= define partition of unit interval by Pp := Y7 ; |w|

|wy [wa| [Wn_1]

0=P P Py Pp_o Pp_q=
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Instant Quantization and Online Sparsity
Ternarization by simulating discrete probability densities
= without loss of generality, assume ZZ;E) |wi| = |lw|4 =1

= define partition of unit interval by Pp := Y7 ; |w|

[wy | [wa| [Wn_1]

0=P P Py Pp_o Pp_q =1

= then, given N uniformly distributed samples x; € [0, 1)

n—1 N-1
Y wea ~ N Y sign(w;)-a;,
k=0 j=0 N=—~—

i=0
e{-1,0,1}

where the index jj € {0,...,n—1} is uniquely determined by P;_4 < x; < P;

27 <4 NVIDIA



Instant Quantization and Online Sparsity

given a positive factor f ¢ R* and

1 n
”’ 1 Z o Wl‘k,ial—tk —by;
max Z W/k,a/ 1. k_bll = f-max f

k=0
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Instant Quantization and Online Sparsity

given a positive factor f ¢ R* and

1 n
"’ 1 Z o Wl‘k,ial—tk —by;
max Z W/ k. jaj—1. k= b/, = f-max f

k=0

neural units may be normalized by selecting the linear factor

n_1—1

Y Wikl

k=0

f=|w,;
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Instant Quantization and Online Sparsity

given a positive factor f ¢ R* and

_1 n
"’ ! Z o Wl‘k,ial—tk —by;
max Z W/ K, jaj—1. k= b/, = f-max f

k=0

neural units may be normalized by selecting the linear factor

n_1—1

Y Wikl

k=0

f=|w,;

networks may be normalized
- feed forward these factors layer by layer
- store the resulting scaling factor for each output

- possible, whenever positive linear factor property is available

28 @
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Instant Quantization and Online Sparsity
Sampling paths backwards from the outputs by importance sampling the weights

Test Accuracy
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Top-1 Accuracy AlexNet on ILSVRC12
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Percent of FC layers sampled
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Instant Quantization and Online Sparsity

quantizing the convolutional and dense weights without retraining

Error on CIFAR-10
model full res. A TTQ (2-bit) full res. A ours weights
ResNet-20 8.23% 0.64% 6.25% 0.67% (5.0 bits) 67.51%
ResNet-32 7.67% -0.04% 5.80% 0.54% (4.85 bits) | 68.24%
ResNet-44 7.18% -0.16% 5.56% 0.52% (4.93 bits) | 68.69%
ResNet-56 6.80% -0.36% 5.57% 0.57% (4.78 bits) | 68.92%
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Instant Quantization and Online Sparsity
Sampling paths backwards from the outputs by importance sampling the weights

= average number of bits depending on number of samples

ResNet-20 on CIFAR-10
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Instant Quantization and Online Sparsity
Sampling paths backwards from the outputs by importance sampling the weights

= average number of bits depending on number of samples

AlexNet on ImageNet
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Instant Quantization and Online Sparsity
Sparse Inference on feature layers

= sampling according to activations during inference
- resembles a spiking network
- resembles maximum pooling without loss of resolution
Ag-1
3 g

©
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Instant Quantization and Online Sparsity
Sparse Inference on feature layers

= sampling according to activations during inference
- resembles a spiking network

- resembles maximum pooling without loss of resolution

Jg
AP
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Instant Quantization and Online Sparsity

VGG16 with 2 dense layers on CIFAR-10 achieved 93.59% test accuracy

subsampled with 20% activations in convolutional layers, and 5% activations in dense layers

sparse from avg. used a; / layer avg. a;; # 0/ layer accuracy
1st Conv 46.18% 15.73% 28.93%
2nd Conv 48.02% 15.45% 90.53%
#F =128 48.31% 15.41% 91.62%
#F = 256 47.06% 15.37% 92.55%
#F =512 41.55% 15.89% 92.83%
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Structural Sparsity
Speeding up training and inference of neural networks by linear algorithms

= representing neural networks by paths generated by low discrepancy sequences
- alludes to hardware implementation

= instant quantization of trained networks

- without retraining

= online sparsity

- to subsample with convolutional layer
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Structural Sparsity
Linear Algorithms for Recurrent Neural Networks (RNNs)

1. Lessons from Convolutional Neural Networks
2. Recurrent Neural Networks (RNNSs)
3. Structurally Sparse RNNs

4. Experiments

2 GANVIDIA



Lessons from Convolutional Neural Networks (CNNs)

maps to hardware much better than unstructured sparsity
strong regularization by sparsity and weight sharing

constraining the network structure can enhance learning

3 NVIDIA.


https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1704.04861

Lessons from Convolutional Neural Networks (CNNs)

maps to hardware much better than unstructured sparsity
strong regularization by sparsity and weight sharing

constraining the network structure can enhance learning

AlexNet architectural innovations: » VGG » Inception » ResNet
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Lessons from Convolutional Neural Networks (CNNs)

maps to hardware much better than unstructured sparsity
strong regularization by sparsity and weight sharing

constraining the network structure can enhance learning

AlexNet architectural innovations: » VGG » Inception » ResNet
- incremental updates, preserve ’state’ through layers (» DenseNet)

- feature compression with 1x1 convolutions (‘bottleneck’, » SqueezeNet)
- grouped convolutions (> ShuffleNet)

- depthwise separable convolutions (> MobileNet)

3 NVIDIA.


https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1602.07360
https://arxiv.org/abs/1707.01083
https://arxiv.org/abs/1704.04861

Lessons from Convolutional Neural Networks (CNNs)
Structural sparsity

= convolutional layers are sparsely connected feedforward layers

,

Kernel

012345678 0m1

Fully connected
(@) layer structure

Inputimage
Oty Y [ {
TRE !
Output “ “‘
feature map ‘se 00
R M
e o 4 |
338048

Convolutional
(d)3 x 1 horizontal

» loannau 2017, "Structural priors in DNNs’
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https://www.repository.cam.ac.uk/handle/1810/278976

Lessons from Convolutional Neural Networks (CNNs)
Structural sparsity: Grouped convolutions

= split neurons in G independent groups

J— < r‘?
*

H - C, Rell o

w ’ h H ?

1
w;

(a) Convolution

< mm < Sy

G
w hi ilg H

=

w

(b) Convolution with filter groups

» loannau 2017, "Structural priors in DNNs’
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https://www.repository.cam.ac.uk/handle/1810/278976

Lessons from Convolutional Neural Networks (CNNs)
Structural sparsity: (Depthwise) separable convolutions

= separate transformations over spatial and channel dimensions

» Bendersky
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https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

Recurrent Neural Networks (RNNs)
Principle

= process a sequence x; of inputs, keeping a ‘'memory’ or 'state’ s;

st = alfay (Xt) + frec(St—1)]

® @ o @
&f @ @ @
e

- the feedforward transformations f;, can be sparsified as in CNN/FNN

- the recurrent transformation fsc requires more care

7 CANVIDIA.



Recurrent Neural Networks (RNNs)

unrolling (Minsky et al., 1969)

backpropagation through time (Rumelhart et al., 1985)

Time Delay NNs (Waibel,1989)

FIR/IIR neurons (Tsoi and Back, 1994) (see ConvSeq2Seq networks » WaveNet, 2016)
Simple RNNs (Elman, 1990)

controlling hidden state using gates: LSTM , (Hochreiter et al., 1997)
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http://www.ra.cs.uni-tuebingen.de/SNNS/UserManual/node389.html#Minsky69
https://apps.dtic.mil/docs/citations/ADA164453
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1989.1.1.39
https://ieeexplore.ieee.org/document/279187
https://arxiv.org/abs/1609.03499
https://www.sciencedirect.com/science/article/abs/pii/036402139090002E
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735

Recurrent Neural Networks (RNNs)

History: Gated RNNs

= simplifications
» GRU (Cho et al. 2014)

» QRNN (Bradbury et al. 2017) and » SRU, (Lei et al., 2017)
» li-GRU (Ravanelli et al., 2018)

Wi

IN

RNN cell

out

GRU cell (Cho 2014)

— IN

> OouUT

LSTM cell (Hochreiter 1997)
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https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1611.01576
https://arxiv.org/abs/1709.02755
https://link.springer.com/article/10.1007/s11633-016-1006-2

Recurrent Neural Networks (RNNs)
Difficult to train: Overfitting and stability

= gradient clipping, gating, initialization, regularization
» dropout for RNNs (Zaremba et al., 2014)
> identity initialization for self-connections (Le et al., 2015)
» Unitary RNNs (Arjovsky et al., 2015)

> variety of regularization techniques (Merity et al.,2017)
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https://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1504.00941
https://arxiv.org/abs/1511.06464
https://arxiv.org/abs/1708.02182

Structurally Sparse RNNs

sparsity = lower cost, same capacity

large sparse > small dense networks. » Kalchbrenner, 2018, » Narang, 2017, » Gray, 2017

pruning
Han et al., 2015 (CNNs), » ISS LSTM (Wen et al., 2017), » Narang et al., 2017
- complicate training, may require tuning

- often orthogonal to architecture improvements » SqueezeNet

structured sparsity is much better suited for hardware acceleration
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https://arxiv.org/abs/1802.08435
https://arxiv.org/abs/1711.02782
https://blog.openai.com/block-sparse-gpu-kernels/
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1709.05027
https://arxiv.org/abs/1711.02782
https://arxiv.org/abs/1602.07360

Structurally Sparse RNNs
Example

= focus on sparsifying recurrent weights: s; = a[fg, (X¢) + frec(St—1)]
- fr(Xt) is timestep-independent = parallellization possible

- frec(St—1) is sequentiall
= Example: Language Modeling

= DiagRNN: > 10x speedup compared to full RNN

PyTorch, RNN
PyTorch diagRNN

PyTorch, cuDNN RNN
PyTorch, CUDA diagRNN
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Structurally Sparse RNNs

analogy
- full CNN — grouped CNN — separable CNN
- full RNN — grouped RNN — diagonal RNN

examples
Diagonal LSTM (Subakan et al., 2017)
Block-sparse LSTMs (Gray et al., 2017)
Grouped LSTMs: » Kuchaiev et al. 2017, » Beletti et al. 2018, » Demeester et al. 2018
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https://ieeexplore.ieee.org/abstract/document/8170054/
https://blog.openai.com/block-sparse-gpu-kernels/
https://arxiv.org/abs/1703.10722
http://proceedings.mlr.press/v84/belletti18a.html
https://arxiv.org/abs/1808.08720

Structurally Sparse RNNs

diagonal RNN is just fully connected ANN with 1 additional weight per neuron

- this weight is essential, as it enables comparison with past states, i.e. memory

14 NVIDIA.


https://www.sciencedirect.com/science/article/abs/pii/036402139090002E
https://ieeexplore.ieee.org/abstract/document/4792125/
www.cse.cuhk.edu.hk/~lwchan/papers/wcnn93-rrn.ps
https://ieeexplore.ieee.org/abstract/document/737503

Structurally Sparse RNNs

diagonal RNN is just fully connected ANN with 1 additional weight per neuron

- this weight is essential, as it enables comparison with past states, i.e. memory

simple RNNs (Elman, 1990)
diagonal RNN (Ku et al., 1992)

ring-structured RNNs (Young et al., 1993)

3-net S-net

block-diagonal RNN (Sivakumar et al., 1999) Figure 2: The Connection in the Hidden Layer of

a 3-net and a 5-net with Six Hidden Units
Young et al., 1993
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https://www.sciencedirect.com/science/article/abs/pii/036402139090002E
https://ieeexplore.ieee.org/abstract/document/4792125/
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https://ieeexplore.ieee.org/abstract/document/737503

Structurally Sparse RNNs
Hidden-to-Hidden Weight Matrix Wy, for N}, hidden neurons

= recurrent connections across two timesteps

O O
AN
O 00

/

|
=Y N

O
Y,

5 Time

Figure: Full RNN Figure: Diagonal RNN

» source
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https://stats.stackexchange.com/questions/210111/recurrent-neural-network-rnn-topology-why-always-fully-connected

Structurally Sparse RNNs
Hidden-to-Hidden Weight Matrix Wy, for N, hidden neurons

= unstructured sparse RNN: challenging to accelerate
= Np-Np- (1 - p) recurrent weights

= grouped RNN: G independent neuron groups
NpNp

recurrent weights
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Structurally Sparse RNNs
Hidden-to-Hidden Weight Matrix Wy, for N, hidden neurons

= unstructured sparse RNN: challenging to accelerate
= Np-Np- (1 - p) recurrent weights

= grouped RNN: G independent neuron groups

- % recurrent weights

= band diagonal RNN: connect only to C — 1 neighboring neurons

- Nj - C recurrent weights

diagonal RNN: every neuron independent

- Ny, recurrent weights
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Structurally Sparse RNNs
Hidden-to-Hidden Weight Matrix W, for N}, hidden neurons

o sparse pe0:1 Grouped lock iagona G4
| 1] =
T
agm o . :
-,
P am® . H
b - b
H = H
ML | o8 IRLL H
fop e Tty
g™ e
ke .. "
NE = m .
% G % % ]
: oz rare oo

full RNN, N,=32 sparse RNN, p=0.1 grouped RNN, G=4
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Structurally Sparse RNNs

Hidden-to-Hidden Weight Matrix W, for N}, hidden neurons

Full

o 15 20
Neuron outgoing

full RNN, N,=32

Band Di

band RNN, C =17

Neuron incoming

sparse pe0:1
o T o Fas =
ST -
N L
B oamw L
. [ T
S e ML ""
et r
1T -

sparse RNN, p=0.1

Band Diagonal, C=7

5 5 Do 15 0 5 30
Neuron outgoing

band RNN, C=7

Grouped (Block Diagonal), G=4.

T 15 2
Neuron outgoing

grouped RNN, G=4

Diagonal
10
H
H
Z1s
220
2
30
¢ 5 o 15 20 25 30
Neuron outgoing

diag RNN, C =1
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Structurally Sparse RNNs

Hidden-to-Hidden Weight Matrix W}, for N, hidden neurons

= full RNN: connections to all other neurons including self-connection

connectivity

Full

Neuron incoming
N N - =
bl S & )

w
°

0

5 10 15 20 25 30
Neuron outgoing

Whn
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Structurally Sparse RNNs

Hidden-to-Hidden Weight Matrix Wy, for N}, hidden neurons

= band RNN: connections to next 2 neurons on left and right plus self-connection = C =5

Neuron incoming

connectivity

N}

IS

o

Band Diagonal, C=5

2

4 6
Neuron outgoing

Whn
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Structurally Sparse RNNs
Hidden-to-Hidden Weight Matrix W}, for N}, hidden

neurons

= band RNN: connections next neuron on left and right plus self-connection = C =3

Neuron incoming

connectivity

Band Diagonal, C=3

N}

IS

o

2

4 6
Neuron outgoing

Whn
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Structurally Sparse RNNs
Hidden-to-Hidden Weight Matrix Wy, for N}, hidden neurons

= diagonal RNN: only self-connections = C =1

G G
G G

G G

Cs G :
0 2 4 6 8
Neuron outgoing

connectivity Whh

N}

Neuron incoming
IN

o

18 <ANVIDIA.



Structurally Sparse RNNs

in diagonal RNNSs, each neuron is independent = we can parallelize!
Quasi-RNN (Bradbury et al., 2017)
Simple Recurrent Unit (Lei et al., 2017)
Independently RNN (Wang et al., 2018)
Parallelizing Linear RNNs with parallel scan algorithm (Martin and Cundy., 2018)

up to 10x speedup and weight reduction as compared to full LSTM, at minimal cost

19
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https://arxiv.org/abs/1611.01576
https://arxiv.org/abs/1709.02755
http://openaccess.thecvf.com/content_cvpr_2018/papers/Li_Independently_Recurrent_Neural_CVPR_2018_paper.pdf
https://arxiv.org/abs/1709.04057

Results
PTB language modeling

= Language Modeling = estimate word probability based on seen words

" P(Wflwf—lﬁ sy Wl‘—1)

The next word | \5) v

G from on it 4
1 2 3 4 5 6 7 .8 9 0
~ Ar ~ " + wr N H ~ -~

» source
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https://ofir.io/Neural-Language-Modeling-From-Scratch/

Results
PTB language modeling

= input: word embedding (400 features)

LSTM 1.28x10° | 6.40x10°
Group LSTM, G=4 85.73 6.42x10% | 1.60x1083

Diag LSTM, C=1 85.53 6.42x10% | 1.60x103

Band LSTM, C=9 85.75 6.54x10° | 1.43x10%

= structurally sparse networks match or improve full LSTM, at lower cost

21 GANVIDIA.



Results
PTB language modeling

= larger, 3-layer networks

LSTM

Group LSTM, G=4
Diag LSTM, C=1
Band LSTM, C=23

2.02x107

1.12x107

63.81 1.17x107 | 2.80x108
65.02 8.98x108 | 1.08x104
63.70 9.21x108 | 2.43x10°

= structurally sparse networks match or improve full LSTM, at lower cost
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Results
PTB language modeling

= increasing the width of the band

LSTM
Group LSTM, G=4
Diag LSTM, C=1

Band LSTM, C=23

Band LSTM, C=105
Band LSTM, C=460

2.02x107

1.12x107

63.81 1.17x107 | 2.80x108
65.02 8.98x108 | 1.08x10*
63.70 9.21x108 | 2.43x10°
63.85 1.01x107 | 1.11x108
64.06 1.30x107 | 4.05x10°
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Results
Phoneme classification/Speech Recognition

= task: classify audio frames

“0a kwik brawn faks

- dzampt ovar 69 lezi

d:)gn

“The quick brown

- fox jumped over the

lazy dog”
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Results
Phoneme classification on TIMIT

= input: audio data sequence (39 MFCC features/ 20ms)

Full LSTM, 1x512
Diag LSTM, 1x512

Band LSTM, 1x512, C=103

1.13x10%

1.05x10%

77.6

8.19x 104

2.05x10°3

78.8

2.81x10°

2.11x10°

= DiagLSTM is 0.7% worse than full LSTM, with 500x less recurrent weights

= BandLSTM is 0.5% better than full LSTM, with 5x less recurrent weights
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Results
Speech recognition on VCTK

= task: audio to text

= Deep Speech 2 architecture (> Amodei 2015, 'Deep Speech 2') cre
Comected

- input: audio spectrogram [time, frequency] T
- 2 convolutional layers

- Ny recurrent layers (with batch normalization)

Recurrent
or
- CTC loss function GRU
(Bidirectional)
= no beam search/language model etc.
X
00000000
1Dor2D

00000000 Invariant
Convolution
1000000009,

Spectrogram
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https://arxiv.org/abs/1512.02595

Results
Speech recognition on VCTK

Full GRU 5x768

3.82x107

1.77x107

Diag GRU 5x768, C=1 9.69

Band GRU 5x768, C=103 9.87

Diag GRU 5x1100, C=1 8.21

Band GRU 5x1000, C=201 8.08

2.06x107 | 4.61x10*
2.39x107 | 3.41x108
3.81x107 | 6.60x10%
3.80x107 | 5.76x108

= DiagGRU is 1.12% worse than full GRU, but has ~ 400x less recurrent weights

= larger sparse networks perform better and can be accelerated easily
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Summary and Takeaway

structured sparsity works in RNNs as well as CNNs

structured sparsity is powerful
- better performance/cost trade-off
- straightforward mapping to hardware

- accelerate training and inference

diagonal RNNs well suited for acceleration
- # recurrent weights is linear in # neurons
- sequential part: only elementwise multiplications

- parallelize over neurons
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PreRNN and.BandRNN for Video Understanding ‘
Xiaodong Yang

with Pavlo Molchanov, Matthijs Van Keirsbilck, Alex Keller, Jan Kautz
»



Sequential Learning Problems

@{f% 5&HQ7Q

handwriting modeling

«[[|Ihello

speech recognition
polyphonic music modeling intelligent video analytics

ll 'eant merely to say what I sa

language modeling



RNNs in Sequential Learning

Vanilla RNN (VRNN)

v
® »
E
Ee
9|
&

Long Short-Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Image courtesy of Christopher Olah.



RNNs in Video Understanding

Examples
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comlayer  comlayer  convlayer conv layer Iq I’
: =2 = -3 St 41
[ comtorer _convioyer_ conviaver << comlae
. o o 3 3 [ softmax_| | softmax |

T
convlayer convlayer  convlayer convlayer h P
1 hesr

30CNN 3DCNN 3DCNN 3NN

global temporal
modeling

NN NN pryam Y
he-1 he hesr
~| | Multimodal b _— —
Y A5 i 4 | | Boosting = =
~— - fi ’f.‘.
20-CNN-SF T T 3D-CNN-SF I
- 1 1
z
S

z
i e
a

local spatio-temporal
modeling

e z = o __ 1t s __ 1
{ comlayer  convlayer conviayer @
T L t +
convlayer  convlayer  convlayer convlayer
o .ONN woNn Do 000 30.cn 0.CNN 0.cm lip| |
2D-CNN-OF i video—>

3D-CNN-OF

Ng et al. CVPR 2015 Yang et al. ACMMM 2016 Molchanov et al. CVPR 2016

"y
<
N

RGB Image x

+ Identity Code Cig PR N "
: - =-7-c-m
HER | g
1 Motion w
- ;) N —_ network /l 128 64
Lo Bl s |
Optical flow

Response, Maps M

Peng et al. ECCV 2016 Zhou et al. CVPR 2017 Tokmakov et al. ICCV 2017



RNNs in Video Understanding

Processing unit in a more structured format such as image or snippet

CNNs serve as backbone networks

Pre-trained on large-scale image or video datasets

How to construct RNNs to better leverage the pre-trained CNNs

Large redundancy and diverse temporal dependencies on different applications
Such as facial alighnment, hand gesture recognition, activity recognition

Poorly understood which recurrent structure or which gating mechanism best suits



PreRNN+BandRNN for Video Understanding

PreRNN: make pre-trained CNNs recurrent by transforming pre-trained convolutional or
fully connected layers into recurrent layers

PreRNN-SIH: simplify input-to-hidden states and reduce recurrent parameters

BandRNN: sparsify hidden-to-hidden weights and further reduce recurrent parameters



PreRNN for Video Understanding

output
'fWh..
Whh
—>» RNN [—> output
¢W4h *Whn W
hh
fc —>{ PreRNN |—>
AW, AW,
conv conv
4 4
conv conv
A A
mput mput

(a) Traditional (b) PreRNN

A schematic overview of the traditional RNN and the proposed PreRNN.



PreRNN for Video Understanding

Overview
output
output AW .. W
*Whu W — RNN\ —>
—>| RNN. >  output :ﬁwmll
'1(Wu.) 'T‘W'm W ave poo
fc- | —>{PreRNN |5 conv
*W.ry «ny) ¢W-"!I
conv conv conv
A A A
conv conv conv
A A A
mmput mmput mmput
(a) Traditional (b) PreRNN (¢) Traditional (d) PreRNN

A schematic overview of the traditional RNN and the proposed PreRNN.



Traditional RNNs

VRNN
hi =HWiny, + Whrrhi—1)

LSTM
i = sigm(Wiy, + Wiihe—1)  f, = sigm(Wipy, + Wiyrhe1)
o, = sigm(W .y, + Wyoh_1) ¢, = tanh(Wcy, + Wi che_1)

cc=f,0c-1+10c¢ h; = o; ® tanh(c;)
GRU
ry = Sigm(Wiryt + Whrht—l) Zt = Sigm(Wizyt + thht—1)

i:Lt = tanh(Wihyt + Whh('rt ® ht—l)) ht = (1 — Zt) ® ht—l +2z:© i:Lt

‘H activation function



Traditional RNNs

Input-to-Hidden State

= VRNN
hi =HW iy, + Whrrhi—1)

= LSTM
i = sigm(Wiy, + Wiihi—1)  f, = sigm(Wipy, + Wiphe 1)
o, = sigm(W,y, + Wiohi_1) ¢; = tanh(W, .y, + Wiychy—1)

cc=f,0c_1+4OC h; = o; ® tanh(c;)
= GRU
ry = sigm(Wi,y, + Wi, hi_1) zy = sigm(W.y, + Wi hi_1)

h, = tanh(Wipy, + Whn(re ©hi—1)) hi=(1-2)0hi—1+ 2,0 h,;

‘H activation function



Traditional RNNs

Hidden-to-Hidden State

= VRNN
hi =HWiny, + Winhi—1)

= LSTM
i = sigm(Wiy, + Wiihe—n)  f, = sigm(Wipy, + W phi 1)
o, = sigm(W,,y, + Wiohi 1) ¢ = tanh(W .y, + Wiehy—1)

Ct = ft ©O) Ct_1 + it O) ét h’t = O ® tanh(ct)
= GRU
ry = Sigm(Wiryt + Whrht—l) 2t = Sigm(Wizyt + thht—l)

h, = tanh(Wiy, + Wip(re ©hi 1)) hi=(1-2)0hi—1+2,0 h,;

‘H activation function



PreRNN

Transformation for VRNN

= A feedforward layer in CNNs
y=HW,,ox)

= PreVRNN

_ H(W:cywt + Whhyt_1) a fc layer
Y= H(P(B(WLU * wt) + ’)’t) + Whhyt_l) aconv layer

output
output Y w,
e
5 output Wi output
,rw, ave pool AW
cony Pre 5
conv conv conv
4 A
conv conv [ conv | conv
H activation function . .
input input mput nput
B batch normalization (a) Traditional ~ (b) PreRNN (c) Traditional (d) PreRNN

P pooling A schematic overview of the traditional RNN and the proposed PreRNN.



= A feedforward layer in CNNs

y=HW,,ox)

PreRNN

Transformation for LSTM

= Gate-dependent input-to-hidden state

wl9) = PBW? ¥ x,) +7,)

= PrelLSTM
iy = sigm(w (i) + Wpihi—1)
o, = sigm(us(0) + Wiohi_1)

‘H activation function

B batch normalization

P pooling

a fc layer
a conv layer

fi = sigm(u;(f) + Wiyrhi_1)
ét = tanh(’u,t(c) + thht—l)

output
ave pool AW
conv PreRN] 3
conv
4 A
[ conv [ conv
. . A .
nput nput mput nput
(a) Traditional (b) PreRNN (¢) Traditional (d) PreRNN

A schematic overview of the traditional RNN and the proposed PreRNN.



PreRNN

Transformation for GRU

= A feedforward layer in CNNs

y=HW,,ox)

= Gate-dependent input-to-hidden state

wl9) = PBW? ¥ x,) +7,)

g

= PreGRU
ry = sigm(u(r) + Wi, hy_q)

a fc layer
a conv layer

2 = sigm(us(2) + Wohi_1)

h; = tanh(u(h) + Wiy (r: © hy_1))

‘H activation function

B batch normalization

P pooling

output
ave pool AW
conv PreRN] 3
conv
4 A
[ conv [ conv
. . A .
nput nput mput nput
(a) Traditional (b) PreRNN (¢) Traditional (d) PreRNN

A schematic overview of the traditional RNN and the proposed PreRNN.



PreRNN

Comparison to Traditional RNN

= VRNN => PreVRNN
hi =HWiry, + Whrhi_1)
= LSTM => PreLSTM

i = sigm(Wiy, + Wiihie—1)  f, = sigm(Wipy, + Wiyhe 1)
o, = sigm(W oy, + Wyohi—1) & = tanh(W,.y, + Wichi—1)

= GRU => PreGRU
ry = sigm(Wi,y, + Wy hi_1)  z¢ =sigm(Wiy, + Wi hi_1)
h; = tanh(W,y, + Win(r, @ hy_1))

‘H activation function

B batch normalization

P pooling

_ H(W;I:ysct +Winy,_1) a fc layer
Ye = H(P(B(W .y xxt) +v¢) + Whry,_,) aconv layer

i = sigm(wui (i) + Wyihe—1)  f = sigm(u(f) + Wiyrhe_q)
o, = sigm(uy(0) + Wiohy_1) & = tanh(u.(c) + Wychy_q)

ry = sigm(uy(r) + Wpoheoq)  z¢ = sigm(ug(2) + Wpohy1)
ilt = tanh(ut(h) -+ Whh(rt @ ht—l))



PreRNN-SIH

Transformation for LSTM

= A feedforward layer in CNNs

y=HW,,ox)

Single input-to-hidden (SIH) state

v = W{l:ywt afc layer
b P(B<W:1:y xx) +7,) aconv layer

PreLSTM-SIH
i, = sigm(vy + Wpihi_1) fi=sigm(vy + Wyrhe 1)
oy = sigm(vy + Wyoh_1) ¢; = tanh(vy + Wichy_q)

‘H activation function

B batch normalization

P pooling

output
ave pool AW,

conv PreRN]
conv
4 A
[ conv [ conv
. . A .
nput nput mput nput
(a) Traditional (b) PreRNN (¢) Traditional (d) PreRNN

A schematic overview of the traditional RNN and the proposed PreRNN.



= A feedforward layer in CNNs

y=HW,,ox)

= Single input-to-hidden (SIH) state

v = W{l:ywt afc layer
b P(B<W:1:y xx) +7,) aconv layer

= PreGRU-SIH
ry = sigm(vy + Wi, hy_q)

ilt = tanh('vt + Whh('r't ® ht—l))

‘H activation function

B batch normalization

P pooling

PreRNN-SIH

Transformation for GRU

Zt = Sigm('vt + thht—l)

output
ave pool AW
conv PreRN] 3
conv
4 A
[ conv [ conv
. . A .
nput nput mput nput
(a) Traditional (b) PreRNN (¢) Traditional (d) PreRNN

A schematic overview of the traditional RNN and the proposed PreRNN.



PreRNN-SIH

Comparison to PreRNN

= (Gate-dependent => Single) input-to-hidden state
W{-’qwt |
w0 = { pisw, L)+

ig

a fc layer
a conv layer

= PreLSTM => PreLSTM-SIH

fo = sigm(uy(f) + Wighi 1)
Et = tanh(’u,t(c) + thh’t—l)

iy = sigm(w (i) + Whihy—1)
o = sigm(u¢(0) + Whohy—1)

= PreGRU => PreGRU-SIH
ry = sigm(wy(r) + Wphy_1)
ilt = tanh(ut(h) + Whh('r't ® ht—l))

zy = sigm(uy(z) + Wiohi 1)

‘H activation function

B batch normalization

P pooling

a fc layer
a conv layer

v :{ W;z:ywt
: PB(W vy @) +7)

fi =sigm(ve + Wyrhi_1)
Et = tanh(’vt + thht—l)

iy = sigm(vy + Wiyihe_1)
O = Sigm(vt + Whoht—l)

ry = sigm(vy + Wi, hy—1) 2z = sigm(vy + Wiy heq)

ilt = tanh("vt + Whh(’r't ® ht—l))



Applications

Diversity
Applications Sequences CNNs Datasets Objectives
Sequential Face Alignment Color VGG16 [38] 300VW [7] lo
Hand Gesture Recognition  Color & Depth  C3D [43] NVGesture [28] CTC [15]
Action Recognition Color & Flow  ResNet50 [20] UCFI101 [39] NLL

Summary of the diverse experiments in terms of applications, video types,
pre-trained backbone CNNs, benchmark datasets, and objective functions.



Applications

Face Alignment

Applications Sequences CNNs Datasets Objectives
Sequential Face Alignment Color VGGI16 [38] 300VW [7] Uy
Summary of the diverse experiments in terms of applications, video types,
pre-trained backbone CNNs, benchmark datasets, and objective functions.




Applications

Face Alignment

Examples of detected facial landmarks on the 300VW dataset by traditional GRU (left) and PreGRU (right).

Blue dots: ground truth
Red dots: detected landmarks
Green bar: PreGRU with larger error
: traditional GRU with larger error
Bar length: error scale



Applications

Face Alignment

Traditional PreRNN PreRNN-SIH
1 layer 2 layers fc6  fc7 fc6/7 fc6  fc7 fc6/7
VRNN  0.704 0.716 0.757 0.742  0.763 - - -
LSTM  0.718 0.671 0.769 0.754 0.746 0.743 0.746  0.719
GRU 0.722 0.698 0.772 0.755 0.761 0.768 0.748  0.762

AUC of traditional RNNs and our proposed PreRNN(-SIH) on 300VW. Dynamic Facial [19]

(/Y. | SRR N : HyperFace [33]

Images Proportion

fc7 fc6/7 fc7 fc6e/7

Nk E Post RNN [19]
020 ) Baseline w/o RNN
| ' Particle Filter [7]
: ¥ Kalman Filter [7]
%966 —"0.01 0.02 0.03 0.04 0.05 0.06
Normalized Point-to-Point Error

Comparison of our approach with the state-of-the-art methods.

PreLSTM-SIH vs. LSTM PreGRU-SIH vs. GRU

Ratios of reduced recurrent parameters by PreRNN-SIH.



Applications

Hand Gesture Recognition

Applications Sequences CNNs Datasets Objectives
Hand Gesture Recognition  Color & Depth  C3D [43] NVGesture [28] CTC [15]

Summary of the diverse experiments in terms of applications, video types,
pre-trained backbone CNNs, benchmark datasets, and objective functions.




Applications

Hand Gesture Recognition

Play
click with index finger

N
DA

PreVRNN based hand gesture recognition system for in-car media player control.




Applications

Hand Gesture Recognition

Traditional PreRNN PreRNN-SIH
1 layer 2 layers fcb6 fc7  fc6/7 fcé6 fc7  fc6/7

VRNN 833%  80.8% 81.9% 82.9% 84.4% - - - Method Modality Accuracy
LSTM 813% 81.3% 81.7% 81.9% 82.7% 80.0% 81.7% 84.2% C3D [43] Color 69.3%
R3DCNN [28] Color 74.1%
GRU 81.9%  82.5% 82.1% 81.0% 83.1% 84.4% 79.8% 83.8% Ours Color 76.5%
o o SNV [49] Depth 70.7%
Classification accuracy of traditional RNNs and our proposed PreRNN(-SIH) on NVGesture. C3D [43] Depth 78.8%
R3DCNN [28] Depth 80.3%
fc7 £c6/7 £07 £c6/7 Ours Depth 84.4%
Two-Stream [37] Color + Flow 65.6%
iDT [45] Color + Flow 73.4%
R3DCNN [28] Five Modalities 83.8%
Baseline (w/o RNN) Color + Depth 81.0%
Ours Color + Depth 85.0%

Comparison of our approach with the state-of-the-art methods.
PreLSTM-SIH vs. LSTM PreGRU-SIH vs. GRU

Ratios of reduced recurrent parameters by PreRNN-SIH.



Applications

Action Recognition

Applications Sequences CNNs Datasets Objectives

Action Recognition Color & Flow  ResNet50 [20] UCF101 [39] NLL

Summary of the diverse experiments in terms of applications, video types,
pre-trained backbone CNNs, benchmark datasets, and objective functions.



Applications

Action Recognition

PreGRU => balance beam PreGRU => skijet ®

Traditional GRU => floor gymnastics Traditional GRU => kayaking

Examples of misclassified videos by traditional GRU, but corrected by PreGRU.



Applications

Action Recognition

Traditional PreRNN PreRNN-SIH
Color Flow Comb Color Flow Comb Color Flow Comb Method Accuracy
Dynamic Image Nets [3] 76.9%
VRNN 829% 83.6% 91.6% 83.8% 84.6% 92.7% - - - Long-Term Recurrent ConvNet [10]  82.9%
LSTM 834% 84.0% 92.5% 853% 84.8% 93.2% 85.0% 84.6% 93.5% gggﬁ;i]te LSTM Model [40] g‘s‘gg
GRU 83.6% 83.8% 92.2% 843% 852% 93.7% 849% 84.7% 93.3% iDT [45] 86.4%
Two-Stream ConvNet [37] 88.0%
Classification accuracy of traditional RNNs and our proposed PreRNN(-SIH) on UCF101. Multilayer Multimodal Fusion [48] 91.6%
Long-Term ConvNets [44] 91.7%
Two-Stream Fusion [14] 92.5%
Spatiotemporal ResNets [12] 93.4%
Inflated 3D ConvNets [4] 93.4%
Temporal Segment Networks [46] 94.2%
-16% -14% Spatiotemporal Multiplier Nets [13] 94.2%
Baseline (w/o RNN) 91.7%
Ours 94.3%

PreLSTM-SIH vs. LSTM PreGRU-SIH vs. GRU
Comparison of our approach with the state-of-the-art methods.
Ratios of reduced recurrent parameters by PreRNN-SIH. P PP



PreRNN+BandRNN

Overview

PreRNN:

initialize and simplify

output
¢W’m Whn

RNN [  output
Aw,, *Wh -
fc —>{ PreRNN N
AW, Nw..,)

conv conv
A A

conv conv

A A

mmput mmput

(a) Traditional (b) PreRNN

output

*Who

BandRNN:
sparsify

*Wlh

ave pool

conv

4‘W-ry

conv

A

conv

A

input

(¢) Traditional

conv.

4

conv

A

input

(d) PreRNN

A schematic overview of the traditional RNN and the proposed PreRNN+BandRNN.



BandRNN

Sparsify Hidden-to-Hidden Weight Matrix

full (2048x2048) 201 (10%) 101 (5%) 21 (1%) diag (1)



PreRNN+BandRNN

Action Recognition

PreVRNN  Sparsity (H2H) PreLSTM  PreLSTM-SIH  Sparsity (H2H) PreGRU PreGRU-SIH Sparsity (H2H)
91.9% diag 92.7% 92.6% diag 92.8% 92.5% diag
92.3% 1% 92.8% 93.0% 1% 92.8% 92.5% 1%
92.0% 5% 92.9% 92.7% 5% 92.8% 92.3% 5%
92.2% 10% 93.2% 92.9% 10% 92.9% 92.6% 10%
92.7% full 93.2% 93.5% full 93.7% 93.3% full
Traditional VRNN: 91.6% Traditional LSTM: 92.5% Traditional GRU: 92.2%

Baseline (w/o RNN): 91.2% Baseline (w/o RNN): 91.2% Baseline (w/o RNN): 91.2%

Classification accuracy of PreRNN(-SIH) with various sparsity of hidden-to-hidden weight matrices on UCF101.

101 (5%) 21 (1%) diag (1)

full (2048x2048) 201 (10%)



PreRNN+BandRNN

Action Recognition

100

PreLSTM  PreLSTM-SIH Sparsity (H2H) 90

80
92.7% 92.6% diag 70
92.8% 93.0% 1% 60
92.9% 92.7% 5% .
93.2% 92.9% 10% 30
93.2% 93.5% full 20

= e
Traditional LSTM: 92.5% 0

- diag 1% 5% 10% full
Baseline (w/o RNN): 91.2%
B PrelLSTM
Classification accuracy of PreLSTM(-SIH) with various Ratios (%) of recurrent parameters of PreLSTM(-SIH) to traditional LSTM

sparsity of hidden-to-hidden weight matrices on UCF101. with various sparsity of hidden-to-hidden weight matrices.

full (2048x2048) 201 (10%) 101 (5%) 21 (1%) diag (1)



PreRNN+BandRNN

Action Recognition

100

PreLSTM  PreLSTM-SIH  Sparsity (H2H) %

80

92.7% 92.6% diag 70

92.8%  [1930%NIIINI%N “

92.9% 92.7% 5% .
93.2% 92.99% 10% 2 Reduce 98% recurrent parameters!

93.2% 93.5% full 2 / I
 Traditional LSTM: 92.5% _ . T

. diag 1% 5% 10% full
Baseline (w/o RNN): 91.2%

M PrelSTM ™ PrelSTM-SIH

Classification accuracy of PreLSTM(-SIH) with various Ratios (%) of recurrent parameters of PreLSTM(-SIH) to traditional LSTM
sparsity of hidden-to-hidden weight matrices on UCF101. with various sparsity of hidden-to-hidden weight matrices.

AN

full (2048x2048) 201 (10%) 101 (5%) 21 (1%) diag (1)




PreRNN+BandRNN for Video Understanding

PreRNN: better leverage strong generalization of pre-trained CNNs

PreRNN-SIH: simplify input-to-hidden states and largely reduce input-to-hidden
recurrent parameters

BandRNN: sparsify hidden-to-hidden weight matrices and further significantly reduce
hidden-to-hidden recurrent parameters

PreRNN+BandRNN: simple and effective, produce better or comparable results to
traditional RNNs, while only introduce super lightweight recurrent parameters

X. Yang, P. Molchanoy, J. Kautz. Making Convolutional Networks Recurrent for Visual Sequence Learning. CVPR, 2018.
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Error Rate

Convergence

PreRNN Converges Faster

1.0

0.8

0.6

0.4 4

0.2 4

=== TraVRNN (test) === TraLSTM (test)
= PreVRNN (train) e PreLSTM (train)
—— PreVRNN (test) | O8] —— PreLSTM (test)
w— PreLSTM-SIH (train)

1.0
== TraVRNN (train) N m——= TraLSTM (train)

wee PreLSTM-SIH (test)

0.0

40 60 80 1('JO 12'0 140 0 20 40 60 80 100 120 140
Epochs Epochs

Comparison of the training processes between the traditional
RNN and our proposed PreRNN(-SIH) for VRNN (left) and LSTM (right).



Understanding RNNs

Internal Mechanism of Traditional RNN and PreRNN

TralLSTM: Layer 1

TralSTM: Layer 1 [ ]
® TralLSTM: Layer 2
°

TralLSTM: Layer 1 [}
@® TralSTM: Layer 2
[ ]
[

L]

® TralSTM: Layer 2
© PreLSTM: Layer 1
© PrelLSTM: Layer 2

Output Gate

Forget Gate Input Gate

PreLSTM: Layer 1
D PreLSTM: Layer 2

PreLSTM: Layer 1
PreLSTM: Layer 2

14
o

Left Saturated Fraction
Left Saturated Fraction

Left Saturated Fraction
o
S

0.4 0.6 X 0 o . 0.4 06
Right Saturated Fraction Right Saturated Fraction

0.2 0.4 0.6
Right Saturated Fraction

—— 0.25

B TraGRU: Reset Gate
[0 TraGRU: Update Gate

B TraGRU: Reset Gate

=) TraGRU: Update Gate Layer 1

I PreGRU: Reset Gate 0.20 I PreGRU: Reset Gate
W PreGRU: Update Gate :

Im PreGRU: Update Gate

0.10

> 2 > 3 5 ° 1 ® ) o 5 2 B ) 5 © A ® o o
o] o o of o o o o o A o o o of o o o o of A
of o¥ o¥ o o¥ o o ol o o 0o° o o o>° o 0°° o8® o® o8° [S:ad

Examples of the gate activation distribution for LSTM and GRU. Top: saturation plots of the fraction of
times that each gate unit is left or right saturated for LSTM. Bottom: activation histograms over 10 bins for GRU.
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