S9385 AI-Based Anomaly Detections and Threat Forecasting for Unified Communications Networks

Kevin Riley – CTO, Ribbon
Tim Thornton - Director Software Engineering, Ribbon
About Ribbon

Ribbon is a global leader in secure real-time communications providing software, cloud, core, and edge network infrastructure solutions to service providers and enterprises.
About Ribbon

Four Decades of Combined Leadership Experience in Real Time Communications
~ 2,300 Employees and Doing Business in 100+ countries
1,000+ Service Provider and Enterprise Customers Globally
#1 in VoIP Switching, #1 E-SBC, #2 CSP SBC, #1 in Media Gateways
800+ Patents Worldwide
Publicly Traded Company on NASDAQ

Leadership Ranking Source: IHS Research and ExactVentures 3Q-2018 Market share data (Ribbon includes GENBAND, Sonus, and Edgewater)
Where You Will Find Us

The World's Leading Tier One Service Providers

The Largest Banks, Airlines, Retailers and Manufacturers across the Globe

More than 350 U.S. Department of Defense Locations
Ribbon Protect
Big-data Analytics to Secure Communications Networks

Use Cases

Analytics

Big Data

Sensors / Enforcers

Accelerate Investigations
Added context to investigations, visualization, multi sourced data collection, automation, drill down

Improve Operations
Consolidate RTC tools, NW Policy enforcement, active monitoring, troubleshooting, SOC/SIEM integration

Communications Network

AS
GSX9000
SBC
C3
WRTC
C20
PSX
3rd Party SBC
Firewall
IP-PBX
G9
Goals: *Use Deep Learning to model calls*

- Anomaly detection
- Forecast utilization
- Behavioral user / network
- Call signatures
- Self-Healing
- Big Data
- Automation
- Analysis & Policy
- Prediction

Real-time Communications Networks
Modeling calls in a real-time Communication Network

Challenges

Network Complexity
- Network behavior varies greatly between operators.
- Machine learning models must be built and trained with operators data to capture the unique characteristics of their network.
- Feature significance vary from operator to operator and may change over time.

Data Dimensionality
- Input sources contain high dimensional, text based data that results in large features sets.
- Metrics(KPI's) used for behaviors models can number from 10’s to 1000's which presents significant resource challenges.

Analytics Scale
- Call rates per sec (in 10’s of thousands) pose challenges for real-time based modeling and detection.
- Billions of records per day for analytical processing.
- Security incidents and operational events can take significant time to detect.
The Approach

Parameterize
Apply machine learning techniques to create features for call flows, user behavior and endpoint information

Model
Leverage deep learning to model typical or normative behavior such that anomalies can be readily identified and acted on

Operational
Forecasting and thresholding network KPI’s
Identifying anomalous behaviors on network resources

Security
Behavioral modeling of subscribers usage and network calling patterns
Identifying security anomalies of subscribers actions
SIP Call Signature
Hypothesis

Use Call signaling information to create a “signature”

Applications

• Service Assurance (Operational)
 – Understand types of devices on network
 – Onboarding new devices
 – Determining distribution of devices

• Network Security
 – Identity Management
 • User activity monitoring (think bank and credit card)
 • Changes in user features as compared to corpus
 • Changes in user and device relationships
 – Behavioral
 • Changes in users calling patterns
 • Changes in network usage
Unified Communications Data Sources

CDR – Call Detail Records
- Created at the beginning and end of calls (ATTEMPT, START, STOP)
- CSV format with 300+ columns
- Contains summary information about the calls (duration, quality, packets).
- Typically used for operator billing

Logs/pCap (SIP Messages)
- Unstructured text
- Much higher data volume than CDR
- Requires protocol parsing to parameterize
- Minimum of 4 messages per call

Challenge in building machine learning solution

Lack of labelled data
- Getting access to enough training data
- Diversity of device types

Scope of data attributes
- Device types, call types, device configurations/options, network modifications
Session Initiated Protocol (SIP) Overview

INVITE sip:+17325551234@10.2.0.1:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.1:0;branch=z9hG4bK-14243-27817-0
From: +13155559999 <sip:+13155559999@192.168.1.1:0>;tag=14243SIPpTag0027817
To: +17325551234 <sip:+17325551234@10.2.0.1:5060>
Call-ID: 387A9EFB@192.168.1.1
CSeq: 1 INVITE
Contact: sip:+13155559999@192.168.1.1:0
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 137

v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.1
s=-
c=IN IP4 192.168.1.1
t=0 0
m=audio 6001 RTP/AVP 0
a=rtpmap:0 PCMU/8000

What is SIP
• Text based protocol
• Similar to HTTP
• “Soft” standard
 - Syntax
 - Parameters
 - Extensibility
• Lends to vendor specific implementations which we can leverage
SIP Message – Device features

Identify “what” is making a call

INVITE sip:+17325551234@10.2.0.1:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.1:0;branch=z9hG4bK-14243-27817-0
From: +13155559999 <sip:+ 13155559999 @192.168.1.1:0>;tag=14243SIPpTag002781
To: +17325551234 <sip:+17325551234@10.2.0.1:5060>
Call-ID: 387A9EFB@192.168.1.1
CSeq: 1 INVITE
Contact: sip:+13155559999 @192.168.1.1:0
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 137

v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.1
s=-
c=IN IP4 192.168.1.1
t=0 0
m=audio 6001 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Header inclusion/exclusion
Format, parameters
Header Order
Syntax
INVITE sip:+17325551234@10.2.0.1:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.1:0;branch=z9hG4bK-14243-27817-0
From: +13155559999 <sip:+13155559999@192.168.1.1:0>;tag=14243SIPpTag0027817
To: +17325551234 <sip:+17325551234@10.2.0.1:5060>
Call-ID: 387A9EFB@192.168.1.1
CSeq: 1 INVITE
Contact: sip:+13155559999@192.168.1.1:0
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 137

v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.1
s=-
c=IN IP4 192.168.1.1
t=0 0
m=audio 6001 RTP/AVP 0
a=rtpmap:0 PCMU/8000
SIP Message – Destination features

Identify “where” the call is going

INVITE sip:+17325551234@10.2.0.1:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.1:0;branch=z9hG4bK-14243-27817-0
From: +13155559999 <sip:+ 13155559999 @192.168.1.1:0>;tag=14243SIPpTag0027817
To: +17325551234 <sip:+17325551234@10.2.0.1:5060>
Call-ID: 387A9EFB@192.168.1.1
CSeq: 1 INVITE
Contact: sip:+ 13155559999 @192.168.1.1:0
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 137

v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.1
s=-
c=IN IP4 192.168.1.1
t=0 0
m=audio 6001 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Destination information
Type of call
Media information
SIP Message – Call features

Identify details of this call

INVITE sip:+17325551234@10.2.0.1:5060 SIP/2.0
Via: SIP/2.0/UDP 192.168.1.1:0;branch=z9hG4bK-14243-27817-0
From: +13155559999 <sip:+13155559999@192.168.1.1:0>;tag=14243SIPpTag002781
To: +17325551234 <sip:+17325551234@10.2.0.1:5060>
Call-ID: 687A9EFB@192.168.1.1
CSeq: 1 INVITE
Contact: sip:+13155559999 @192.168.1.1:0
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: 137

v=0
o=user1 53655765 2353687637 IN IP4 192.168.1.1
s=-
c=IN IP4 192.168.1.1
t=0 0
m=audio 6001 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Identify of specific call
Calling, Called
Call idenfication attributes
callId, Tags, Routing
Type of call
Statistics (duration, etc)
Creating Machine Learning Features
 Data Preparation

Example of a few techniques used to create features from SIP messages:

- **Header Presence** – for each header in message identify number of occurrences
- **Header Sequence** – identifies the sequence or order of a header in the message
- **Header Syntax** – the original message syntax for the header name (upper/lower)
- **Masks** – creates a format mask for implementing specific SIP parameters.
 - Typically helpful to identify a device specific implementation

Where:
- N – numeric
- U – upper case
- L – lower case
- S – space
- X – special character
- Z – other

Example: Encoding tag value contained in from header
- From: …;tag=14243SIPpTag0027817 -> NNNNUUUULLNNNNNNN
Choosing a Machine Learning Model

What can we do with the data we have?

- Limited to an Unsupervised Learning model
 - Looked at various clustering models
 - Neural networks generative models promising
 - Autoencoder seems to fit our problem
 - Tested with several autoencoder configurations
 - Variational autoencoder provided best results

Autoencoders are a specific type of feedforward neural networks where the input is the same as the output. They compress the input into a lower-dimensional code and then reconstruct the output from this representation. The code is a compact “summary” or “compression” of the input, also called the latent-space representation.

- Use SIP featured to train multiple autoencoders
 - Device, User, Destination, Call models
 - Use latent-space(compressed) as a digital signature for each feature

![Diagram of autoencoder](image)
Implementing an Autoencoder

Creating a “signature”

Training phase
- Autoencoder minimizes loss between input features and output features of the training data
- Latent-space layer compresses the learned information from the input features

Operational phase
- Trained model uses only Encoder portion of network
- Latent-space vector becomes the ‘signature’
Service Assurance

Using AI to enhance network operations

- **Provide visibility into operators network**
 - With *Device* features:
 - Mapping devices in network
 - Metadata provides visibility into device attributes
 - Determine density of device types
 - Notification of new device types in network
 - With *User* and *Destination* features:
 - Identify call flow patterns
- **Operational actions**
 - Onboarding new device types
 - Identify network interoperability requirements
 - Network Resource Management
 - Capacity planning and forecasting
Device Autoencoder

Signature visualization
Service Assurance

Application Examples

Onboarding Application

Extract Features
Encoder
Signature DB
GPU

Messages

Metadata
- Adapter
- Protocol converter
- Interop

Enrichment Application

Extract Features
Encoder
Signature DB
GPU

Messages

Metadata
- Device Info
- Vendor
- Software

Big Data (Analytics)
Identity Management

Using AI to protect network and users

- **Provide insight to endpoints and users**
 - With *Device* features:
 - Identify malicious or misbehaving devices
 - Reporting new or unknown types of device
 - With *Device with User* features:
 - Verification of user and device signatures
 - *Location (geo)*
 - *Device type with this user*
 - Detecting concurrent user instances
- **Security actions**
 - Block malicious devices and users
 - Identify security vulnerabilities in network devices
 - Feed anomalies into fraud applications
 - Generate incidents to SIEM
User Autoencoder
Signature visualization
Detecting Anomalies

Combining signatures for more advanced analysis

- SIP Message
- Device Signatures
- User Signatures
- Distance from Norm
- User History
- Anomaly
- Notification
Detecting Anomalies - example
Combining device and user signatures

Known Good
- User signature
- Device Signature

Incoming Message
- User signature
- Device signature

Incoming message signature distances are near known good signatures

Normal
Minimum distance [0.2661066981234524, 0.08135181163868711]

Anomaly
Minimum distance [3.211263703324535, 0.9243276898181685]
Identity Management
Application Examples

UC

Messages

Security Incidents

Extract Features
Encoder
GPU
Device/User
Behavioral
Security Applications

UC

Messages

Security Incidents

Incident Management
Policy Manager
Mitigation Action
Labelled Incident
Feedback loop – labelling data

The Virtuous Cycle of AI
Better Product
More Data
More Users
Hypothesis to Deployment

Performance demands require GPU’s

- Scaling to production volume is a significant challenge
 - 10’s of thousand calls/sec, 10’s of MB of data/sec
 - Ingestion, extraction and predicting/encoding are all bottlenecks
 - AI model complexity increase processing demands
Maximizing System Resources
Choosing the right tool for the job

- How we split AI pipeline
 - Ingestion optimization and enrichment through distributed CPU nodes
 - Data Preparation and filtering as a common CPU service
 - Model Predictions/Encoding through GPU
 - Results processed by CPU based applications

- Nothing comes for free
 - Data movement becomes new bottleneck
 - Using GPU, CPU memory consumption increases
Actual performance impact using a GPU
Increasing the volume - “Turn it up to 11”

Hardware
- **I7-8700K 3.7G 6 Core**
- **32 GB Memory**
- **1T SSD HD**
- **Nvidia GTX-1080**

Software
- **Python 3.6.6**
- **Tensorflow 1.11.0**
- **Keras**

AI pipeline performance
- **Model with 2.7M network parameters**
- **Varied encode batch size from 1-8000**

Results
- **Optimal batch size – 1000**
- **GPU 15,366 encodes/sec**
- **CPU 9,433 encodes/sec**
Summary

• **Ribbon is using AI to create new applications for Service Providers**
 • Initial focus on Service Assurance and Identify Management
 • Signatures for call flows
 • AI is enabling innovative solutions and advanced analytic capabilities
 • Anomaly detection
 • Forecasting
 • Building knowledge through system deployment
 • Labeling data

• **Ribbon & NVIDIA**
 • NVIDIA GPU’s enhance Ribbon Protect to meet the scaling requirements of our customers and applications
 • NVIDIA resources (tools and libraries) address many or our development hurdles
 • Lets Ribbon focus on value added applications
 • NVIDIA Kubernetes distribution & NVIDIA Container runtime – easy integration into Ribbon Protect
 • RAPIDS – researching how RAPIDS can to improve our AI pipeline processing
 • NVIDIA has been a great partner in teaching, listening, and supporting Ribbon in it’s path down AI
Thank You