
GPU Accelerated Data Processing

Speed of Thought Analytics at Scale

S9373 - TPC-H Benchmark on DGX-2
A New Paradigm for OLAP and Decision Support

Key pain points

The reason data insights is so challenging is analytics solutions
today simply do not have the speed, flexibility, and ease of use

to answer the data questions people are asking.

Flexibility

43%
Of analysts say their analytics is

not flexible enough to meet their
needs

Performance

32%
Of analysts say they have to
deal with slow query speeds

3 days per month is spent mining data for
patterns or refining algorithms

37%
of insight takes more
than a week

64% of time is spent cleaning and
organizing data

SQL
is the most common technology used
ahead of Hadoop, Python and R

Where are analysts
spending time?

The fastest, most advanced GPU database on the market

Our mission is to empower organisations through Speed of Thought Analytics.

• The world’s fastest database according to independent benchmarking.

• Four years in research and development.

• Only vendor to have patent pending IP for JOINs.

• Fourth generation GpuManagner bridges the gap between SQL and AI.

The true value of Brytlyt lies in how this extreme performance is package for the end user.

1.1 Billion Taxi Rides Benchmark

Brytlyt is a PostgreSQL fork

User
Client

Foreign
Data

Wrapper
3rd Party Data Sources

Disk Storage

DB EnginePlannerParser
Brytlyt

GPU
Manager

NVIDIA
GPU

Hardware

PostgreSQL

Brytlyt technology

To
o

ls GPU

SpotLyt
Analytics

Workbench

BrytlytDB
PostgreSQL

on GPU

BrytMind
Artificial

Intelligence
on GPU

Canis
Task

Orchestration

E
n

g
in

e
s

Data Acquisition

{API}

GPU

CPU

GPU Acceleration

User Interaction

Scale Out

SpotLyt
+

Geospatial

Foreign
Data

Wrapper

TPC-H Benchmark

Why
• Measure of state of maturity of GPU database space.
• Performance comparisons of hardware and software.

What
• Examine large volumes of data, by executing queries with high degree of complexity, to

give answers on real-world business decisions.

How
• Star schema, two large fact tables (88% of total row count) and six dimension tables
• Twenty two queries run as single user and concurrently.
• Based on typical retail use case.
• A data generator that goes up to and beyond 100TB

NVIDIA DGX-2

Why
• Step change in GPU footprint of a single server.
• Cluster of servers with network bottleneck less necessary.

What
• Sixteen NVIDIA V100 GPUs with 32GB VRAM.
• Total of 512 GB VRAM and 2 petaFLOPs.

How
• NVSwitch provides 2.4 TB/s of GPU data transfer between GPUs.

NVIDIA DGX-2

TPC-H Summary

Aggregations
• Occur in all TPC-H queries and group-by performance is important.

Complex expressions
• Raw expressions in aggregations, complex expressions in joins and also string matching.

Nested queries and sub-queries
• Used to handle intermediate results in the real world.

JOINs
• All but two of the queries contain joins.

Correlated queries
• Special case of nested query where the subquery uses values from the outer query.

TPC-H – Set up and comparisons

Scale factor 1,000 GB (6 billion rows in the lineitem table)

Brytlyt Year: 2019, DGX-2, Version 3.1 Alpha

Exasol Year: 2014, twenty machines, TCO $719k

Microsoft Year: 2017, one machine, TCO $472k

*No results of full benchmark by other GPU vendors in public domain.

Notes to benchmarking exercise

All queries run sub-second.

Redistributing lineitem table can be done sub-second (largest fact
table, 70% of total data row count, 6 billion rows).

TPC-H Runtimes

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

R
u

n
 t

im
e

 in
 s

e
co

n
d

s

Brytlyt Exasol Microsoft

Aggregations – Q1 scans 97% of lineitem table

SELECT l_returnflag,

l_linestatus,

sum(l_quantity) as sum_qty,

sum(l_extendedprice) as sum_base_price,

sum(l_extendedprice*(1-l_discount)) as sum_disc_price,

sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,

avg(l_quantity) as avg_qty,

avg(l_extendedprice) as avg_price,

avg(l_discount) as avg_disc,

count(*) as count_order

FROM lineitem

WHERE l_shipdate <= date '1998-12-01' - interval '90 day'

GROUP BY l_returnflag, l_linestatus

ORDER BY l_returnflag, l_linestatus;

Runtime comparison – Q1

0

0.5

1

1.5

2

2.5

3

brytlyt Exasol Microsoft

R
u

n
 t

im
e

 in
 s

e
co

n
d

s

Nested queries and string expressions – Q13

SELECT c_count,

count(*) AS custdist

FROM (SELECT c_custkey,

count(o_orderkey)

FROM customer

LEFT OUTER JOIN orders ON

c_custkey = o_custkey

and o_comment NOT LIKE ‘%a%b%’

GROUP BY c_custkey

) AS c_orders (c_custkey, c_count)

GROUP BY c_count

ORDER BY custdist desc, c_count desc;

Nested queries and string expressions – Q13

SELECT c_count,

count(*) AS custdist

FROM (SELECT c_custkey,

count(o_orderkey)

FROM customer

LEFT OUTER JOIN orders ON

c_custkey = o_custkey

and o_comment NOT LIKE ‘%a%b%’

GROUP BY c_custkey

) AS c_orders (c_custkey, c_count)

GROUP BY c_count

ORDER BY custdist desc, c_count desc;

Runtime comparison – Q13

0

5

10

15

20

Brytlyt Exasol Microsoft

R
u

n
 t

im
e

 in
 s

e
co

n
d

s

JOINs – Q5 uses six tables

SELECT n_name,

sum(l_extendedprice * (1 - l_discount)) as revenue

FROM customer,

JOIN orders ON c_custkey = o_custkey

JOIN lineitem ON l_orderkey = o_orderkey

JOIN supplier ON l_suppkey = s_suppkey

JOIN nation ON s_nationkey = n_nationkey

JOIN region ON n_regionkey = r_regionkey

WHERE c_nationkey = s_nationkey

r_name = '[REGION]'

and o_orderdate >= date ‘1995-01-01'

and o_orderdate < date '1995-01-01' + interval '1' year

GROUP BY n_name

ORDE BY revenue desc;

Recursive Interaction Probability (RIP)

Why
• JOINs are the most costly and useful of SQL operations.
• Better performance and flexibility than hash- and index-based methods.

What
• Brytlyt’s patent pending intellectual property.
• Light weight pre-processing identifies tuples likely to fulfil JOIN predicate.
• Very efficient, Big O notation = O(n log n).

How
• Sorting JOIN columns.
• Recursively compare boundary elements of partitions of data.

Recursive Interaction Probability (RIP)

A

B C

• Two number lines representing sorted JOIN columns.
• Using min and max values of sub-partition A.
• Comparing to min and max values of B and C.
• Determine there is zero probability of JOIN predicate.

being fulfilled within sub-partitions A and C.

• For sub-partitions like A and B that “interact”.
• Partition into smaller sub-partitions and repeat.

• Base case operation tests for JOIN.
• Incredibly efficient for “sparse” JOINs.

Runtime comparison – Q5

0

0.5

1

1.5

2

2.5

3

3.5

4

Brytlyt Exasol Microsoft

R
u

n
 t

im
e

 in
 s

e
co

n
d

s

Correlated queries – Q11

SELECT ps_partkey, SUM(ps_supplycost * ps_availqty) as value

FROM

partsupp JOIN supplier ON ps_suppkey = s_suppkey

JOIN nation ON s_nationkey = n_nationkey

WHERE

n_name = 'ARGENTINA'

GROUP BY ps_partkey

HAVING SUM(ps_supplycost * ps_availqty) >

(SELECT

SUM(ps_supplycost * ps_availqty) * 0.015

FROM

partsupp JOIN supplier ON ps_suppkey = s_suppkey

JOIN nation ON s_nationkey = n_nationkey

WHERE

n_name = 'PERU'

)

ORDER BY value desc;

Correlated queries – Q11

SELECT ps_partkey, SUM(ps_supplycost * ps_availqty) as value

FROM

partsupp JOIN supplier ON ps_suppkey = s_suppkey

JOIN nation ON s_nationkey = n_nationkey

WHERE

n_name = 'ARGENTINA'

GROUP BY ps_partkey

HAVING SUM(ps_supplycost * ps_availqty) >

(SELECT

SUM(ps_supplycost * ps_availqty) * 0.015

FROM

partsupp JOIN supplier ON ps_suppkey = s_suppkey

JOIN nation ON s_nationkey = n_nationkey

WHERE

n_name = 'PERU'

)

ORDER BY value desc;

0

1

2

3

4

5

6

Brytlyt Exasol Microsoft

R
u

n
 t

im
e

 in
 s

e
co

n
d

s

Runtime comparison – Q11

Brytlyt DB
GPU accelerated PostgreSQL

SpotLyt
Interactive analytics workbench

for billion row datasets

BrytMind
SQL + AI + GPU

CEO Richard Heyns

Email Richard.Heyns@Brytlyt.com

URL www.brytlyt.com

Twitter @BrytlytDB

GPU Accelerated Data Processing

Speed of Thought Analytics at Scale

