
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

The Steady State:

Cyrus M Vahid
Principal Evangelist – AWS Deep Engine

cyrusmv@amazon.de

S 9 3 7 0

Reduce Spikiness from GPU Utilization with Apache MXNetNet (incubating)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Put machine learning in the
hands of every developer

Our mission at AWS

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What you’ll learn about today

• Using timple tricks to maximize GPU utilization

• Environment

• I/O optimization

• Imerative→ Symbolic

• Batch Size

• Mixed Precision

• Optimization for large batch size

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Environment

• GPU – Cuda optimized (mxnet-cuxx)

• CPU – Intel optimized (mxnet-mkl)

• CPU&GPU: Cuda and Intel optimized (mxnet-cuxxmkl)

• GPU: TensorRT optimzied (mxnet-tensorrt-cuxx)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Intel CPU - Speed

Category Model Latency batchsize=1 (ms, small is better) Throughput batchsize=128 (fps, big is better)

w/o MKL-DNN w/ MKL-DNN speedup w/o MKL-DNN w/ MKL-DNN speedup

CNN/classification ResNet-50 v1 97.19 13.04 7.45 10.29 163.52 15.90

ResNet-50 v2 98.69 13.02 7.58 9.94 154.17 15.51

Inception v3 175.17 16.77 10.44 5.74 135.33 23.57

Inception v4 330.93 31.40 10.54 3.04 69.60 22.87

DenseNet 111.66 18.90 5.91 8.52 149.88 17.60

MobileNet 38.56 4.42 8.73 24.87 512.25 20.60

VGG16 406.50 20.07 20.25 2.91 70.84 24.31

AlexNet 64.60 3.80 17.00 26.58 965.20 36.32

inception-resnet v2 181.10 49.40 3.67 5.48 82.97 15.14

CNN/object detection Faster R-CNN 1175.74 118.62 9.91 0.85 8.57 10.08

SSD-VGG16 721.03 47.62 15.14 1.43（batchsize=224) 28.90(batchsize=224) 19.13

SSD-MobileNet 239.40 28.33 8.45 4.07(batchsize=256) 69.97(batchsize=256) 14.18

RNN GNMT 683.43 94.00 7.27 1.46(batchsize=64) 10.63(batchsize=64) 6.83

GAN DCGAN 8.94 0.24 37.85 109.13 4249.36 38.94

• Performance on Intel CPU with Intel MKL-DNN backend in release 1.3
• The c5.18xlarge instance offers a 2-socket Intel Xeon Platinum processor with 72 vCPUs.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Intel CPU - Accuracy
• The c5.18xlarge instance offers a 2-socket Intel Xeon Platinum processor with 72 vCPUs.
• The model is from gluon model zoo by pre-trained parameters. The top1 and top5 accuracy are verified by MKL-DNN backend.

Inference Accuracy Comparison

Alias Network CPU (without MKL-DNN) CPU (with MKL-DNN) Backend Delta

top1 top5 top1 top5 top1 top5

alexnet AlexNet 0.56312500 0.78992188 0.56312500 0.78992188 0.00000000 0.00000000

densenet121 DenseNet-121 0.74203125 0.91929688 0.74203125 0.91929688 0.00000000 0.00000000

densenet161 DenseNet-161 0.77195313 0.93390625 0.77195313 0.93390625 0.00000000 0.00000000

densenet169 DenseNet-169 0.75710938 0.92828125 0.75710938 0.92828125 0.00000000 0.00000000

densenet201 DenseNet-201 0.76906250 0.93093750 0.76906250 0.93093750 0.00000000 0.00000000

inceptionv3 Inception V3 299x299 0.77609375 0.93664063 0.77609375 0.93664063 0.00000000 0.00000000

mobilenet0.25 MobileNet 0.25 0.51039063 0.75687500 0.51039063 0.75687500 0.00000000 0.00000000

mobilenet0.5 MobileNet 0.5 0.61851563 0.83789063 0.61851563 0.83789063 0.00000000 0.00000000

mobilenet0.75 MobileNet 0.75 0.66546875 0.87070313 0.66546875 0.87070313 0.00000000 0.00000000

mobilenet1.0 MobileNet 1.0 0.70093750 0.89109375 0.70093750 0.89109375 0.00000000 0.00000000

mobilenetv2_1.0 MobileNetV2 1.0 0.69976563 0.89281250 0.69976563 0.89281250 0.00000000 0.00000000

mobilenetv2_0.75 MobileNetV2 0.75 0.68210938 0.88007813 0.68210938 0.88007813 0.00000000 0.00000000

mobilenetv2_0.5 MobileNetV2 0.5 0.64453125 0.84929688 0.64453125 0.84929688 0.00000000 0.00000000

mobilenetv2_0.25 MobileNetV2 0.25 0.50890625 0.74546875 0.50890625 0.74546875 0.00000000 0.00000000

resnet18_v1 ResNet-18 V1 0.70812500 0.89453125 0.70812500 0.89453125 0.00000000 0.00000000

resnet34_v1 ResNet-34 V1 0.73960938 0.91609375 0.73960938 0.91609375 0.00000000 0.00000000

resnet50_v1 ResNet-50 V1 0.76062500 0.93046875 0.76062500 0.93046875 0.00000000 0.00000000

http://mxnet.incubator.apache.org/api/python/gluon/model_zoo.html
https://arxiv.org/abs/1404.5997
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
https://arxiv.org/pdf/1608.06993.pdf
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

TensorRT
• NVIDIA TensorRT™ is a platform for high-performance deep learning inference.
• It includes a deep learning inference optimizer and runtime that delivers low latency and high-throughput for deep

learning inference applications.
• TensorRT-based applications perform up to 40x faster than CPU-only platforms during inference.

Model Name Relative TensorRT Speedup Hardware

Alexnet 1.4x Titan V

cifar_resnet20_v2 1.21x Titan V

cifar_resnext29_16x64d 1.26x Titan V

Resnet 18 1.8x Titan V

Resnet 18 1.54x Jetson TX1

Resnet 50 1.76x Titan V

Resnet 101 1.99x Titan V

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

GPU Utilization

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Naive

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Data Loading

• It is almost always the case that I/O lags behind computer while using GPUS.

• There are several techniques to address improve IO.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multi-Worker DataLoader

• CPU is used to load minibatches.

• Then the minibatches are passed to the GPU to process.

• After processing a minibatch, GPU will have to wait for the next minibatch load

to be completed.

• By default Gluon dataloader uses 3 cores. We can change this value to reduce

spikiness.

• The recommended value is cpu_count() - 3

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Multiple Workers

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Code

Import multiprocessing as mp

import multiprocessing as mp

NUM_WORKERS = mp.cpu_count() - 3

train_data_iter = gluon.data.DataLoader(dataset_train,

shuffle=True,

batch_size=batch_size,

num_workers=NUM_WORKERS)

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Off-line Pre-Processing

• For large data files, preprocessing can be done before training.

• It is also possible to incldue pre-processing in custom Dataset.

• For large data files, such as images, it is crucial to use a binary format such as

RecordIO.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Efficient DataLoaders - Challenge

• Tiny datasets can be loaded entirely GPU memory.

• For large datasets we can only hold examples of data in memory.

• Data loading can become a major bottleneck.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Efficient DataLoaders - Solution
• Small file size.

• Parallel (distributed) packing of data.

• Fast data loading and online augmentation.

• Quick reads from arbitrary parts of the dataset in the distributed setting.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Symbolic vs. Imperative

• Imperative-style programs perform computation as you run them.

• In Symbolic programming, we define an abstract function in terms of

placeholder values; then we compile the function after lazy data binding.

• Imperative programming is easy and debuggable, while symbolic is efficient.

• Symbolic computational graphs are most effetive for small networks and small

batch size.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Imperative vs. Symbolic

Imperative Symbolic

Execution Flow is the same as flow of the code: Abstract functions are defined and compiled first, data
binding happens next.

Flexible but inefficient: Efficient

• Memory: 4 * 10 * 8 = 320 bytes
• Interim values are available
• No Operation Folding.
• Familiar coding paradigm.

• Memory: 2 * 10 * 8 = 160 bytes
• Interim values are not available

• Operation Folding: Folding
multiple operations into one. We
run one op. instead of many on
GPU. This is possible because we
have access to whole comp. graph

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Imperative vs. Symbolic

Symbolic is “define, compile, run” Imperative is “define-by-run”

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Imperative vs. Symbolic

Symbolic is “define, compile, run” Imperative is “define-by-run”

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Imperative vs. Symbolic

Symbolic is “define, compile, run” Imperative is “define-by-run”

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Code

hnet = gluon.nn.HybridSequential()

with hnet.name_scope():

hnet.add(gluon.nn.Dense(units=64, activation='relu'))

hnet.add(gluon.nn.Dense(units=148, activation='relu'))

hnet.add(gluon.nn.Dense(units=10))

hnet.hybridize()

snet = gluon.nn.Sequential()

with snet.name_scope():

snet.add(gluon.nn.Dense(units=64, activation='relu'))

snet.add(gluon.nn.Dense(units=148, activation='relu'))

snet.add(gluon.nn.Dense(units=10))

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Symbolic

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mixed Precision Training

• Instead of float32, we can use float16 for training a network. This reduces data

size significantly and results in faster training time.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Code

optimizer = mx.optimizer.SGD(momentum=0.9, learning_rate=.001, multi_precision=True)
…

net.initialize(mx.init.Xavier(magnitude=2.3), ctx=ctx, force_reinit=True)

net.cast('float16’)

…

for e in range(epoch):

for i, (data, label) in enumerate(dataloader_train):

data = data.as_in_context(ctx).astype('float16’)

label = label.as_in_context(ctx).astype('float16’)

…

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Mixed Precision

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Large Batch Size

• Larger batch size improves training efficiency but can adversly affect accuracy.

• It recommended multiply batch size by the number of gpus you are training your

model on.

• For large batch sized (in ranges of hundreds and thousands), using learning rate

scheduler becmoes important.

• For batch sized in ranges of thousdands optimization algorithms such as LBSGD

can be used to stablize training.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Large Batch Size
Batch Size/GPU

64 INFO:root:[Epoch 0] train=0.433659 val=0.518400 loss=1.532322 time: 28.524742
INFO:root:[Epoch 1] train=0.647567 val=0.656700 loss=0.997764 time: 27.795407
INFO:root:[Epoch 2] train=0.720331 val=0.713100 loss=0.800816 time: 27.461927

128 INFO:root:[Epoch 0] train=0.478706 val=0.562100 loss=1.439123 time: 14.813820
INFO:root:[Epoch 1] train=0.658754 val=0.697500 loss=0.959008 time: 14.829524
INFO:root:[Epoch 2] train=0.730148 val=0.713900 loss=0.770881 time: 14.250317

256 INFO:root:[Epoch 0] train=0.455829 val=0.566400 loss=1.487115 time: 8.577288
INFO:root:[Epoch 1] train=0.637139 val=0.606700 loss=1.012649 time: 8.638407
INFO:root:[Epoch 2] train=0.712139 val=0.688200 loss=0.809953 time: 7.719393

512 INFO:root:[Epoch 0] train=0.406955 val=0.461200 loss=1.600047 time: 6.671616
INFO:root:[Epoch 1] train=0.609476 val=0.599100 loss=1.087454 time: 7.109749
INFO:root:[Epoch 2] train=0.695031 val=0.658800 loss=0.859839 time: 5.541541

1280 INFO:root:[Epoch 0] train=0.338381 val=0.356700 loss=1.797568 time: 6.654431
INFO:root:[Epoch 1] train=0.518189 val=0.482300 loss=1.313464 time: 5.898391
INFO:root:[Epoch 2] train=0.611759 val=0.608200 loss=1.077867 time: 6.807596

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Batch Size

• NUM_WORKERS=1 ➔ Samples/Sec: 1500 &
Epoch Time: 60+

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Number of Devices

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizer

• Optimizers affect time to accuracy. Some major optimizers are:

Function Description

SGD Stochastic Gradient Descent with momentum and weight decay

NAG Nesterov Accelerated Gradient

DCASGD [3] Delay Compensated Asynchronous Stochastic Gradient Descent Useful for very large and very deep models

Signum[4] Compressed Optimisation for Non-Convex Problems

SGD vs. Signum vs. adam

FTML[5] Follow the Moving Leader
provides improved stability over RMSProp and better
performance over adam, especially in changing
environments

LBSGD [6][7] Large Batch SGD with momentum and weight decay

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Learning Rate Scheduler
• Schedules define how the learning rate changes over time and are typically specified for each

epoch or iteration (i.e. batch) of training. Schedules differ from adaptive methods (such as
AdaDelta and Adam) because they:

• change the global learning rate for the optimizer, rather than parameter-wise learning rates

• don’t take feedback from the training process and are specified beforehand

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Fixed Factor

schedule = mx.lr_scheduler.MultiFactorScheduler(step=[250, 750, 900],
factor=0.5) schedule.base_lr = 1
plot_schedule(schedule)

schedule = mx.lr_scheduler.FactorScheduler(step=250, factor=0.5)
schedule.base_lr = 1
plot_schedule(schedule)

https://mxnet.incubator.apache.org/tutorials/gluon/learning_rate_schedules.html

https://mxnet.incubator.apache.org/tutorials/gluon/learning_rate_schedules.html

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Recap

• I/O is your main bottleneck. Using multiple workers can easily double your
speed and reduce jittery GPU utilization

• Binary input format can improve performance by orders of magnitude.

• Hybridizing your network can significantly reduce training time. It is most
effective for shallow networks with small batch-size (inference).

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Recap

• Mixed precision training can halve the training time. Using
multi_precision option for your optimizer helps increase accuracy.

• Large batch sizes can reduce training time in orders of magnitude but can
reduce accuracy. Using correct optimizer and learning rate scheduling helps
with regaining accuracy.

• Mode GPU is not always a good idea. Choose the right number of GPUs based
on your data and your networks.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gradient Descent

• After training over data we sill have
an error surface.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gradient Descent

• After training over data we sill have
an error surface.

• The goal of optimization is to reach
the minima of the surface, and thus
reducing error

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Loss Function

• Loss Function, 𝐽, is a measure of
how well an algorithm models a
dataset.

• There are several loss functions and
one can combine them. Some of
the more popular loss functions are
RMST, Hinge, L1, L2, …

• For more information please check:
https://tinyurl.com/y7c6ub5k

https://tinyurl.com/y7c6ub5k

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Gradient Descent

• Loss Function, 𝐽, is a measure of
how well an algorithm models a
dataset.

• Weights are adjusted in opposite
direction of calculated gradients.

Learning rate

Gradient

𝛼
𝜕𝐽 𝜃

𝜕𝜃𝑗

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Non-Convex Error Surface

• 𝑓:ℝ𝑛 → ℝ 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥𝑡 𝑖𝑓 𝑎𝑛𝑑 𝑖𝑓
∀ 𝑥1, 𝑥2𝜖ℝ

𝑛 𝑎𝑛𝑑 ∀𝜆𝜖 0,1 :
• 𝑓 𝜆𝑥1 + 1 − 𝜆 𝑥2 ≤ 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓(𝑥2)

• With a convex objective and a convex feasible region,
there can be only one optimal solution. (globally optimal)

• Non-Convex optimization problem may have
multiple feasible regions and multiple locally
optimal points within each region.
• It can take time exponential to determine there is no

solution, an optimal solution exists or objective function
is unbounded.

Global Optimum
Global Optimum

Local Optimum

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Non-Convex Error Surface

• In deep learning we almost
exclusively need to solve a complex
non-convex optimization problem
in an n-dimensional vector space.

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Optimizers

http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentvariants

http://ruder.io/optimizing-gradient-descent/index.html#gradientdescentvariants

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

SGD + Momentum and WD

Applies SGD to each minibatch. A good

rule of thump for setting the parameters

is learning rate of .001 with momentum

of .9. SGD has trouble navigating areas

that one one dimention is significantly

more steep than others. SGD can get

stuck in local minimas. adding a

momentum term we can address this
problem to some extent

https://github.com/cyrusmvahid/GluonBootcamp/blob/master/labs/regression.ipynb

https://github.com/cyrusmvahid/GluonBootcamp/blob/master/labs/regression.ipynb

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

SGD
INFO:root:[Epoch 0] train=0.320232 val=0.311300 loss=1.828540 time: 6.539909

INFO:root:[Epoch 1] train=0.499419 val=0.504000 loss=1.360491 time: 6.521951

INFO:root:[Epoch 2] train=0.589263 val=0.563700 loss=1.134461 time: 6.828416

INFO:root:[Epoch 3] train=0.651242 val=0.636300 loss=0.973226 time: 6.240821

INFO:root:[Epoch 4] train=0.696394 val=0.624500 loss=0.856011 time: 5.716242

INFO:root:[Epoch 5] train=0.726643 val=0.680200 loss=0.777433 time: 5.796741

INFO:root:[Epoch 6] train=0.752424 val=0.703200 loss=0.703050 time: 6.936821

INFO:root:[Epoch 7] train=0.769631 val=0.685400 loss=0.654198 time: 6.403769

INFO:root:[Epoch 8] train=0.788081 val=0.762600 loss=0.605454 time: 5.668295

INFO:root:[Epoch 9] train=0.798658 val=0.770500 loss=0.576482 time: 6.360962

INFO:root:[Epoch 10] train=0.805749 val=0.759700 loss=0.553458 time: 6.030818

INFO:root:[Epoch 11] train=0.814223 val=0.700600 loss=0.532443 time: 6.420320

INFO:root:[Epoch 12] train=0.822676 val=0.742500 loss=0.506356 time: 5.543132

INFO:root:[Epoch 13] train=0.832812 val=0.777800 loss=0.482470 time: 5.963372

INFO:root:[Epoch 14] train=0.842548 val=0.793400 loss=0.453167 time: 5.632769

INFO:root:[Epoch 15] train=0.847296 val=0.772600 loss=0.440297 time: 5.402728

INFO:root:[Epoch 16] train=0.851402 val=0.774200 loss=0.428900 time: 5.821625

INFO:root:[Epoch 17] train=0.855749 val=0.790000 loss=0.415191 time: 5.847228

INFO:root:[Epoch 18] train=0.860357 val=0.798300 loss=0.400935 time: 5.816122

INFO:root:[Epoch 19] train=0.866607 val=0.815800 loss=0.384234 time: 5.358579

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

NAG
• Momentum does continue down the slope with

speed. Knowing where the gradient is headed helps
slowing down the descent towards the local
minimas.

• NAG looks ahead to approximate the future position
of parameters and adaptively adjust the
momentum.

• NAG first makes a big jump in the direction of the previous accumulated gradient
• measures the gradient and then makes a correction , which results in the complete NAG update.
• NAG can help with RNN training performance.

https://github.com/cyrusmvahid/GluonBootcamp/blob/master/labs/regression.ipynb

https://github.com/cyrusmvahid/GluonBootcamp/blob/master/labs/regression.ipynb

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

NAG
INFO:root:[Epoch 0] train=0.308433 val=0.319800 loss=1.886015 time: 6.550777

INFO:root:[Epoch 1] train=0.471334 val=0.500900 loss=1.434551 time: 5.405174

INFO:root:[Epoch 2] train=0.571675 val=0.560500 loss=1.186487 time: 5.425138

INFO:root:[Epoch 3] train=0.641867 val=0.642200 loss=1.002207 time: 5.514042

INFO:root:[Epoch 4] train=0.693770 val=0.654600 loss=0.866025 time: 5.631780

INFO:root:[Epoch 5] train=0.731831 val=0.712600 loss=0.763841 time: 6.143763

INFO:root:[Epoch 6] train=0.757812 val=0.713200 loss=0.693119 time: 5.937472

INFO:root:[Epoch 7] train=0.779327 val=0.737500 loss=0.634709 time: 6.136395

INFO:root:[Epoch 8] train=0.795513 val=0.760800 loss=0.589994 time: 5.702718

INFO:root:[Epoch 9] train=0.808313 val=0.746400 loss=0.552479 time: 5.358437

INFO:root:[Epoch 10] train=0.818129 val=0.772100 loss=0.523184 time: 5.997128

INFO:root:[Epoch 11] train=0.827544 val=0.799500 loss=0.500787 time: 5.829901

INFO:root:[Epoch 12] train=0.834896 val=0.772900 loss=0.471773 time: 5.716117

INFO:root:[Epoch 13] train=0.844692 val=0.782900 loss=0.452683 time: 6.698682

INFO:root:[Epoch 14] train=0.850160 val=0.791600 loss=0.431896 time: 6.603370

INFO:root:[Epoch 15] train=0.855409 val=0.806500 loss=0.416784 time: 6.226276

INFO:root:[Epoch 16] train=0.861098 val=0.792300 loss=0.398030 time: 5.621616

INFO:root:[Epoch 17] train=0.866847 val=0.823800 loss=0.385180 time: 5.526948

INFO:root:[Epoch 18] train=0.870994 val=0.805400 loss=0.367664 time: 5.894297

INFO:root:[Epoch 19] train=0.875441 val=0.770500 loss=0.359724 time: 5.594626

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

LBSGD with Momentum and WD

Large batches help increasing training speed, but come at teh cost of loss of stability. There are

techniques that allow us to train models on large batches (1000 scale) while performing as well

as training the same model on small batch size. The techniques hinge on the idea of adaptive
batch size and include warmupss, Linear Scaling, and Batch Normalization

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

LBSGD
INFO:root:[Epoch 0] train=0.310337 val=0.261300 loss=1.858803 time: 6.850179

INFO:root:[Epoch 1] train=0.493790 val=0.492400 loss=1.374855 time: 5.764549

INFO:root:[Epoch 2] train=0.584836 val=0.547400 loss=1.150604 time: 6.900003

INFO:root:[Epoch 3] train=0.647596 val=0.569500 loss=0.984875 time: 5.679046

INFO:root:[Epoch 4] train=0.686679 val=0.655000 loss=0.878320 time: 6.349431

INFO:root:[Epoch 5] train=0.717808 val=0.645500 loss=0.800551 time: 6.575341

INFO:root:[Epoch 6] train=0.746695 val=0.650900 loss=0.719336 time: 5.927774

INFO:root:[Epoch 7] train=0.764864 val=0.646100 loss=0.671761 time: 5.562227

INFO:root:[Epoch 8] train=0.780228 val=0.684500 loss=0.629181 time: 6.023513

INFO:root:[Epoch 9] train=0.795172 val=0.722300 loss=0.587467 time: 6.372227

INFO:root:[Epoch 10] train=0.806390 val=0.778500 loss=0.552990 time: 6.265981

INFO:root:[Epoch 11] train=0.815284 val=0.776300 loss=0.530719 time: 5.755747

INFO:root:[Epoch 12] train=0.825781 val=0.736600 loss=0.503931 time: 6.308614

INFO:root:[Epoch 13] train=0.829567 val=0.781600 loss=0.489560 time: 5.724034

INFO:root:[Epoch 14] train=0.837079 val=0.745200 loss=0.465858 time: 6.084397

INFO:root:[Epoch 15] train=0.846134 val=0.794900 loss=0.443486 time: 6.147125

INFO:root:[Epoch 16] train=0.851322 val=0.802900 loss=0.430405 time: 6.474534

INFO:root:[Epoch 17] train=0.855529 val=0.795500 loss=0.414212 time: 5.807887

INFO:root:[Epoch 18] train=0.857973 val=0.803400 loss=0.404103 time: 5.543543

INFO:root:[Epoch 19] train=0.866326 val=0.793300 loss=0.384499 time: 6.101834

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Learning Rate Scheduler
• Schedules define how the learning rate changes over time and are typically specified for each

epoch or iteration (i.e. batch) of training. Schedules differ from adaptive methods (such as
AdaDelta and Adam) because they:

• change the global learning rate for the optimizer, rather than parameter-wise learning rates

• don’t take feedback from the training process and are specified beforehand

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Fixed Factor

schedule = mx.lr_scheduler.MultiFactorScheduler(step=[250, 750, 900],
factor=0.5) schedule.base_lr = 1
plot_schedule(schedule)

schedule = mx.lr_scheduler.FactorScheduler(step=250, factor=0.5)
schedule.base_lr = 1
plot_schedule(schedule)

https://mxnet.incubator.apache.org/tutorials/gluon/learning_rate_schedules.html

https://mxnet.incubator.apache.org/tutorials/gluon/learning_rate_schedules.html

© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

