
Enabling Human Exploration of the Red Planet

Bill Jones Ashley Korzun Eric Nielsen Aaron Walden

NASA Langley Research Center

Chris Henze Pat Moran Tim Sandstrom

NASA Ames Research Center

https://fun3d.larc.nasa.gov

Justin Luitjens

NVIDIA Corporation

Mohammad Zubair

Old Dominion University

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Some Exascale Drivers

Aeroacoustics:

Gulfstream

G550

Separated

Flows

NASA/Boeing

Truss-Braced Wing

Launch Abort

System

Adjoints for

Chaotic

Systems

(NASA/MIT)

Rotorcraft

2

Current Summit Effort

• Allocations for CY2019 through Summit Early Science and INCITE programs

• Total award of 305,000 Summit node-hours; FUN3D equivalent of ~305,000,000 Xeon Skylake core-hours

• Team members include NASA Langley, NASA Ames, NVIDIA, and Old Dominion University

• LaRC: Science and computational expertise

• ARC: Large-scale visualization

• NVIDIA, ODU: Kernel optimizations

Goals

• Science: Better understanding of retropropulsion

flow physics during Mars entry of human-scale lander

• Computational: Demonstrate production readiness and

efficiency advantages of GPU implementation at scale

“Enabling Human Exploration of the Red Planet”

3

Human-scale Mars landers require new approaches to all phases of Entry, Descent, and Landing

• Cannot use heritage, low-L/D rigid capsules  deployable hypersonic decelerators or mid-L/D rigid aeroshells

• Cannot use parachutes  retropropulsion, from supersonic conditions to touchdown

• No alternative to an extended, retropropulsive phase of flight

Retropropulsion for Human Mars Exploration

Viking MPF MER PHX MSL Human-Scale

Lander

(Projected)

Diameter (m) 3.505 2.65 2.65 2.65 4.5 16 - 19

Entry Mass (t) 0.930 0.585 0.840 0.602 3.151 47 - 62

Landed Mass (t) 0.603 0.360 0.539 0.364 1.541 36 - 47

Landing Altitude

(km MOLA)
-3.5 -1.5 -1.3 -3.5 -4.4 +/- 2.0

Peak Heat Rate

(W/cm2)
24 106 48 56 ~120 ~120 - 350

Steady progression of “in family” EDL

Vehicles to

Scale

4

• Aerodynamic effects can be significant during powered descent

• Retropropulsion environment can significantly impact vehicle performance

• Large variations in aero forces/moments challenge the ability to maintain

control of the vehicle and accurately reach the landing target

• Sensitive to engine operating conditions, start-up transients, atmospheric

conditions, engine configuration and vehicle integration

• Highly unsteady flow field behavior, broad range of length scales, very

large computational domains requiring fine resolution, strong shocks

and massively separated flows all must be addressed to accurately simulate

retropropulsion in an atmosphere

Powered Flight in an Atmosphere

Vehicle-level design decisions are directly impacted by the ability to

characterize and bound aerodynamic-propulsive interference effects

Examples of unsteady RANS solutions

with insufficient spatial resolution, while

stressing available conventional

computational resources

5

• Simulating interactions between atmosphere and retropropulsion plumes at sufficient spatial resolution to

resolve governing phenomena with a high level of confidence not feasible with conventional computational

capabilities

• Single solution requires 200,000+ CPU hours with severe limitations on spatial resolution

• Thousands of solutions eventually required to model flight performance

Enabling Capabilities Provided by Summit

• Application of Detached Eddy Simulation methods with resolution of relevant length scales

• Meaningful statistics and characterization of unsteady flowfield behaviors

• Domain dimensions in kilometers with the ability to resolve flow features on the order of centimeters

• Complete redefinition of the state-of-the-art for powered descent aerodynamics characterization for both

requisite accuracy and computational environment/implementation

Why Summit?

6

Summit Campaign

• Campaign aligns closely with 2020 wind tunnel entry

• Rather than pursue small number of “hero” simulations, exploring large ensemble of

asymmetric throttle conditions across freestream Mach numbers from 0.8 to 2.4

• Spatial mesh sizes ranging from ~1-10 billion elements

• Long temporal duration (~1.6 sec real time) to capture diverse transients and statistics

• Individual runs can reach 200 TB of output; entire project will exceed 1 PB

Time-averaged contours of Ttot

7

Game-Changing Performance
Typical Job of 6.5B Elements, 200K Time Steps

Conventional system with capacity policy

• 5,000 Xeon Skylake cores (125 nodes)

• 3.5 months compute time

• 22 5-day queue submissions + waits

Summit

• 552 Tesla V100s (92 nodes)

• 5 days compute time

• 10 12-hour queue submissions

• Usually no queue wait, 1-2 hours at most

Conventional system with capability policy

• 106,500 Xeon Skylake cores (2,663 nodes)

• 5 days compute time

• 5-10 queue submissions

We are running 4-5 such jobs simultaneously:

Leadership class HPC is reducing our

learning cycle from years to days

8

FUN3D Overview

• Established as a research code in late 1980s; now supports numerous internal
and external efforts across the speed range

• Solves 2D/3D steady and unsteady Euler and RANS equations on node-based
mixed element grids for compressible and incompressible flows

• General dynamic mesh capability: any combination of rigid / overset / morphing
grids, including 6-DOF effects

• Aeroelastic modeling using mode shapes, full FEM, CC, etc.

• Constrained / multipoint adjoint-based design, mesh adaptation

• Distributed development team using agile/extreme software practices including
24/7 regression, performance testing

• Capabilities fully integrated, online documentation, training videos, tutorials

US Army

Georgia Tech

US Army

9

Early GPU-Based Simulations
Titan and Summit

AIAA High-Lift

Workshop

Tractor-Trailer

Courtesy of SmartTruck

TRAM Rotor in Hover

10

FUN3D Primary Motifs

• FUN3D solves the Navier-Stokes equations

of fluid dynamics using implicit time integration

on general unstructured grids

• This approach gives rise to a large block-sparse

system of linear equations that must be solved at

each time step

• Two kernels are generally the largest contributors to run time:

• Kernel 1: Construction and storage of the compressible viscous flux Jacobians

• Kernel 2: Multicolor point-implicit linear solver used to solve Ax=b

for i = 1 to n_time_steps do

Form Right Hand Side

Form Left Hand Side

Solve Ax = b

Update Solution

end for

11

History of GPU Efforts

Nov 2010 Initial discussions with Stan Posey/NVIDIA at SC10

ca. 2011 GTX 470
Also GTX 480,

Tesla M2050

CUDA C Early work with Austen Duffy (FSU)* -- ~1.5x on point solver (linear algebra)

*and EM Photonics via NAVAIR

Nov 2013 K20 OpenACC Began OpenACC with Dave Norton (PGI) at SC13 – 2x on point solver

ca. 2014 K40 OpenACC Worked with Justin Luitjens to put OpenACC throughout FUN3D – many issues,

compiler bugs, poor performance

ca. 2014 K40 OpenACC Extended FUN3D MPI layer to accommodate device data – MPT bugs

ca. 2014 K40 OpenACC /

CUDA Fortran
Worked with Justin/Dominik Ernst to extend point solver using OpenACC and

CUDA Fortran – 4x speedup

May 2016 K40 OpenACC /

CUDA Fortran
ORNL/UDel hackathon: Continued to struggle with OpenACC approach, Zubair

has good success with CUDA Fortran for point solver (~7x over cuBLAS)

Nov 2016 K40 /

P100

CUDA C Zubair et al. publish CUDA C point solver at SC16, eventually incorporated into

cuSPARSE

Aug 2017 V100 CUDA C ORNL/LaRC hackathon: Large speedups (~6x) on early access V100 for linear

algebra and LHS, convinced to go fully CUDA and abandon OpenACC

July 2018 V100 Kokkos Implemented point solver in Kokkos, decent speed, though cumbersome 12

Implementation Overview

Goals:

• Perform entirety of FUN3D’s PDE solve on device using CUDA

• Minimal data movement between host and device

• Use FUN3D’s existing Fortran MPI-based front end

• Change as little of FUN3D as possible (esp. data structures)

13

Implementation Overview

Strategy:

• Translate ~110 computational kernels using miniapp

• Use iso_c_binding to create device mirrors of Fortran variables

• Push necessary data to device before time-stepping loop

• Call interfaces which bind C wrappers around CUDA kernels

• Use CUDA-aware MPI with device pointers

• Data extraction/visualization: field data pulled from device to

asynchronous Fortran buffer on host; disk I/O completely hidden

14

Working infrastructure imported into FUN3D

FUN3D

Fortran

Interfaces

K
e
rn

e
ls

S
ta

te

Miniapp

Data

Module

Driver

Fortran

Kernels

C Wrappers

cudaMalloc()

cudaMemcpy()

cudaFree()

CUDA

Kernels
Verification

Call

Data/code

C

Kernels

Fortran → C Translation

C → CUDA Translation

15

C/Fortran Interoperability Concerns

A very brief summary of our findings:

• Use iso_c_binding

• storage_size seems to be portable

• Pointer arithmetic with transfer

• Be careful with logicals

• OpenMPI using Intel compiler does not like c_ptr

• Create interoperable mirror types to use in CUDA

16

Original Derived Type Interoperable Mirror Derived Type Interoperable C Struct

type, public :: elem_type

integer :: a

integer, dimension(:,:),&

allocatable :: b

integer, dimension(:,:,:),&

allocatable :: c

end type elem_type

type, bind(c) :: elem_type_p

integer(c_int) :: a

type(c_ptr) :: b

type(c_ptr) :: c

end type elem_type_p

typedef struct elem_type_p {

int a;

int* b;

int* c;

} elem_type_p;

Data Module: Derived Type Example

17

O
R

D
E

R
 M

A
T

T
E

R
S

Data Module: Derived Types

18

type F_derived_type ! original

f_type :: var

f_type, allocatable :: alloc_var

end type F_derived_type

type, bind(c) :: C_bound_type

type(c_type) :: var

type(c_ptr) :: alloc_var_d

end type C_bound_type

typedef struct C_bound_type {

c_type var;

c_type* alloc_var;

} C_bound_type;

alloc_var[SIZE] // device array

Mirror original derived type with C-bound derived type

Copy to device

Interpret as struct mirroring derived type

We can use this method to access arrays of derived types with allocatables on the device

CPU Memory

GPU Memory

CUDA Optimization Strategies

Our heuristics:

• Maximize concurrency while maintaining memory coalescing

‒ Node-based loop: one thread per variable if possible

‒ Edge-based loop: 2× threads per node, use atomics

‒ Cell-based loop: 1 warp per cell, atomics

‒ Favor more blocks over more threads/block

‒ Favor edge and cell-based loops

• Minimize temporary variables, seems to alleviate register pressure

• Atomics greatly outperform other race-avoidance strategies (for our code)

• Hard-code or template every scalar possible, but test performance

19

0.4

1.0
1.2

1.4

3.2

6.3

0

1

2

3

4

5

6

7

KNL BDW P9 SKL P100 V100

S
p

e
e
d

u
p

KNL: Intel Xeon Phi 7230 Knights Landing
BDW: 2 14-core Intel Xeon E5-2680v4 Broadwell
P9: IBM 22-core POWER9
SKL: 2 20-core Intel Xeon Gold 6148 Skylake
P100: NVIDIA Tesla P100 GPU Pascal
V100: NVIDIA Tesla V100 GPU Volta

Device-Level Performance Relative to BDW

Higher

is better

BDW BDW

20

Strong Scaling

21

• Several small test cases from last year (2018)

• GPUs on NVIDIA PSG cluster, 4×V100 per node, CPUs on NASA

Pleiades/Electra, Intel Xeon Broadwell/Skylake dual-socket nodes

• FUN3D strong scaling most dependent on multicolor point-implicit solver

performance, O(200) MPI transfers overlapped by interior computation

• MPI cost fixed, GPU solver 4-6× faster, less work to overlap comm.,

which poses a challenge for strong scalability

• Absolute speedup: compare node to node (dual-socket vs 4×V100)

• Relative speedup: speedup divided by number of devices

Strong Scaling
14.6 Million Grid Points

22

1.0

2.0

4.0

8.0

16.0

32.0

64.0

1 2 4 8 16 32 64 128

S
p
e
e
d

u
p

Number of Nodes

BDW
SKL
P100
V100

23.9×

At the peak of

scaling, 1 V100

is worth 11 SKL

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.06250.1250.250.5124816

S
ca

li
n

g
 E

ff
ic

ie
n

cy

Work

SKL

V100

Strong Scaling
14.6 Million Grid Points

Summit Node

512 GB RAM

Dual Socket, 22-Core

IBM Power9

4 Threads/Core

Dual Socket, 20-Core

Xeon Skylake

2 Threads/Core, AVX-512

192 GB RAM

Typical x86 Node
~1 Teraflop

1
6
 G

B

H
B

M

1
6
 G

B

H
B

M

1
6
 G

B

H
B

M

1
6
 G

B

H
B

M

1
6

 G
B

H
B

M

1
6
 G

B

H
B

M

NVIDIA V100
5,120 CUDA Cores

640 Tensor Cores

NVIDIA V100
5,120 CUDA Cores

640 Tensor Cores

NVIDIA V100
5,120 CUDA Cores

640 Tensor Cores

NVIDIA V100
5,120 CUDA Cores

640 Tensor Cores

NVIDIA V100
5,120 CUDA Cores

640 Tensor Cores

NVIDIA V100
5,120 CUDA Cores

640 Tensor Cores

N
V

L
in

k

ORNL Summit Node
~40 Teraflops

1600 GB NVRAM

24

Summit Performance

25

• Generally very good, with several caveats

• Occasional file system issues

• CUDA-aware MPI/GPUDirect performs 2× slower for our code as of

December 2018, not the case earlier that year

• Pinning host MPI buffers worsens MPI performance after several

timesteps to ~2× slower for the majority of a job

• Lack of pinning costs us >10% performance

Early Performance on Summit

• Data taken during early access 4/2018

• Plot captures weak scaling:

• Each node solves ~12.8M grid points

• 5 nodes: 60M points (267M elems)

• 1,024 nodes: 13.2B points (58B elems)

• CPU curve is MPI+OpenMP with 3 ranks/socket

(total of 6 per node) with 168 total OpenMP

threads per node (smt4 on Power9)

• GPU curve is MPI+CUDA: 3 ranks/socket

shepherding 1 GPU each (total of 6 per node);

all MPI via GPUDirect

• Nearly linear performance for both

• GPU node-level performance is 23x-37x faster

at scale, correlates well with node-level studies

~
2

5
%

 o
f

S
u

m
m

it

13.2B Points

58B Elems

60M Points

267M Elems

6,144 GPUs

≈ 1,000,000 SKL Cores

26

Current Summit Performance

27

MPI in green

MPI buffer pulls and

pushes to device in

orange

3-6× slower than

pinned transfers

Meanflow

linear solve

Turbulence

linear solve

Non-overlapped

MPI transfer of

gradients

Meanflow

RHS formation

Meanflow

LHS formation

Turbulence

RHS LHS

Non-overlapped

MPI transfer of

gradients

Case: 577 million grid points on 46 nodes

2.1M per device, apx 0.4s per subiteration

Current Summit Performance
1.14 Billion Grid Points

28

Current Summit Performance
1.14 Billion Grid Points

29

Thank you for having us!

Always seeking new collaborations

https://fun3d.larc.nasa.gov

