Resolving Spontaneous Nonlinear Multi-Physics FLOW LOCALISATION IN 3-D: TACKLING HARDWARF LIMIT

Unil

UNIL | Université de Lausanne Swiss Geocomputing Centre

Ludovic Räss^{1,2}, Samuel Omlin^{2*}, Yury Podladchikov²

¹ Stanford University, Department of Geophysics, Stanford CA, USA ² Swiss Geocomputing Centre, University of Lausanne, Lausanne, Switzerland *now at CSCS - Swiss National Supercomputing Centre, Lugano, Switzerland

S9368 | 20 March 2019 | Nvidia GTC | Silicon Valley

Schweizerischer Nationalfonds Swiss National Science Foundation

Multi-physics flow localisation

Subsurface reservoirs

Extraction and storage

Subsurface reservoirs

Extraction and storage

Why do we care

Fast flowing ice streams > Impact sea-level rise

- Macro-scale "reservoirs" | Micro-scale processes
- Multi-physics flow localisation trigger meso-scale instabilities
- Resolve the key physical processes to make accurate predictions

High-permeability chimneys > Compromise safe CO₂ storage

The challenge

Resolve meso-scale dynamics

- Develop predictive models to resolve nonlinear multi-physics processes
- Capture spontaneous localisation in space + time
- Large domains but highly localised action
- Computationally challenging:

The challenge

Resolve meso-scale dynamics

- Develop predictive models to resolve nonlinear multi-physics processes
- Capture spontaneous localisation in space + time
- Large domains but highly localised action
- Computationally challenging:

Extremely high-resolution 3-D forward models are mandatory

Requires a supercomputing approach

Räss et al., 2018. Nature Scientific Reports

Räss et al., 2018. Nature Scientific Reports

Supercomputing in Earth Sciences

Resolution:

- space: 1000 x 1000 x 2000 grid points in 3-D
- time: 20'000 implicit time steps
- Finite-Difference method + staggered grid
- CUDA C + MPI
- 128 Titan Xm GPUs [home built supercomputer] •
- ~600 GB memory footprint | 20 TB / 100 disk saves •

Räss et al., 2018. Nature Scientific Reports

SCIENTIFIC REPORTS **OPEN** Spontaneous formation of fluid escape pipes from subsurface reservoirs

Received: 29 March 2018

Ludovic Räss^{1,2}, Nina S. C. Simon³ & Yury Y. Podladchikov^{1,2}

- CUDA C + MPI
- 128 Titan Xm GPUs [home built supercomputer] •
- ~600 GB memory footprint | 20 TB / 100 disk saves

Runs close to hardware limit !

Räss et al., 2018. Nature Scientific Reports

1/ Pseudo-Transient solver

Scaling of our iterative GPU solver with numerical grid resolution N

1/ Pseudo-Transient solver

Scaling of our iterative GPU solver with numerical grid resolution N

Weak scaling on Cray XC50 "Piz Daint" @ CSCS | 5120 Nvidia P100 GPUs

2/ Hide MPI communication

Weak scaling on Cray XC50 "Piz Daint" @ CSCS | 5120 Nvidia P100 GPUs

2/ Hide MPI communication

Agenda

- 1/ Pseudo-Transient be close to physics
- 2/ Parallel efficiency hide MPI communication
- Summary & Outlook
- Q&A

The road to a [fast] solution

Solve 3-D solid / fluid mechanics

Solve 3-D nonlinear hydro-mechanics PDEs | 15 mandatory fields to update

$$0 = \nabla_{j}(\bar{\tau}_{ij} - \bar{p}\delta_{ij}) - \bar{\rho}g_{i}$$

$$0 = \nabla_{k}v_{k} + \frac{\bar{p} - p^{f}}{\eta_{\phi}(1 - \phi)}$$

$$0 = \nabla_{k}q_{k}^{D} - \frac{\bar{p} - p^{f}}{\eta_{\phi}(1 - \phi)}$$

$$\frac{\partial \phi}{\partial t} = (1 - \phi)\nabla_{k}v_{k}$$

$$\frac{\partial \phi}{\partial t} = (1 - \phi)\nabla_{k}v_{k}$$

$$\frac{\partial \phi}{\partial t} = f(\phi, \bar{p}, p^{f}, \dot{\epsilon}_{II})$$

$$\mu = f(\phi, \dot{\epsilon}_{II})$$

$$k_{\phi} = k_{0}(\phi/\phi_{0})^{3}$$

Utilise a fully local physics-based iterative method: Pseudo-Transient

Solve 3-D solid / fluid mechanics

Solve 3-D nonlinear hydro-mechanics PDEs | 15 mandatory fields to update

$$0 = \nabla_{j}(\bar{\tau}_{ij} - \bar{p}\delta_{ij}) - \bar{\rho}g_{i}$$

$$0 = \nabla_{k}v_{k} + \frac{\bar{p} - p^{f}}{\eta_{\phi}(1 - \phi)}$$

$$0 = \nabla_{k}q_{k}^{D} - \frac{\bar{p} - p^{f}}{\eta_{\phi}(1 - \phi)}$$

$$\frac{\partial \phi}{\partial t} = (1 - \phi)\nabla_{k}v_{k}$$

$$\frac{\partial \phi}{\partial t} = (1 - \phi)\nabla_{k}v_{k}$$

$$\frac{\partial \phi}{\partial t} = f(\phi, \bar{p}, p^{f}, \dot{\epsilon}_{II})$$

$$\mu = f(\phi, \dot{\epsilon}_{II})$$

$$k_{\phi} = k_{0}(\phi/\phi_{0})^{3}$$

Utilise a fully local physics-based iterative method: Pseudo-Transient

- Avoid being "killed" by global communication & memory footprint
- Exploit the low level parallelism of GPUs + available supercomputing power

A general approach

• e.g. solution to an elliptic problem: C

$$C = \frac{\partial^2 A}{\partial x^2}$$
$$0 = \frac{\partial^2 A}{\partial x^2} - C = f_A$$

A general approach

• e.g. solution to an elliptic problem: C

$$C = \frac{\partial^2 A}{\partial x^2}$$
$$0 = \frac{\partial^2 A}{\partial x^2} - C = f_A$$

 $A^{[k+1]} = A^{[k]} + \Delta \tau_{\rm A} f_{\rm A}^{[k]}$

12

A general approach

• e.g. solution to an elliptic problem: $C = \frac{\partial^2 A}{\partial x^2}$

Naive iterations (1st order): •

A general approach

• e.g. solution to an elliptic problem: $C = \frac{\partial^2 A}{\partial x^2}$

Naive iterations (1st order): •

(pseudo) time step

A general approach

Naive iterations (1st order):

(pseudo) time step

Pseudo-Transient | naive

• 1st order scheme | 3-D hydro-mechanics

Pseudo-Transient | naive

• 1st order scheme | 3-D hydro-mechanics

Simple - but does not scale with resolution increase

Pseudo-Transient iterations

An improved approach

• Second order iterations:

Frankel, 1950

 $\frac{\partial A}{\partial \tau_{\rm A}} = f_{\rm A}$

 $A^{[k+1]} = A^{[k]} + \Delta \tau_{A} f_{A}^{[k]}$

Pseudo-Transient iterations

An improved approach

Second order iterations: •

Frankel, 1950

 $A^{[k+1]} = A^{[k]} + \Delta \tau_{A} \left(f_{A}^{[k]} + (1 - \nu/n_{i}) f_{A}^{[k-1]} \right)$

Pseudo-Transient iterations

An improved approach

Second order iterations: •

Frankel, 1950

 $A^{[k+1]} = A^{[k]} + \Delta \tau_A \left(f_A^{[k]} + (1 - \nu/n_i) f_A^{[k-1]} \right)$ damping

Pseudo-Transient iterations

An improved approach

Second order iterations:

Frankel, 1950

Pseudo-Transient iterations

An improved approach

Second order iterations:

Frankel, 1950

free parameter ν is resolution independent

An improved approach

Second order iterations: Frankel, 1950

- No global reduction: $\Delta \tau_A$ is local (diagonal preconditionner)
- Only local communication: like propagation of physical information
- Same workflow on each grid point: perfect for GPUs !

Pseudo-Transient | improved

• 1st versus 2nd order scheme | 3-D hydro-mechanics

Pseudo-Transient | improved

• 1st versus 2nd order scheme | 3-D hydro-mechanics

Pseudo-Transient | improved

• 1st versus 2nd order scheme | 3-D hydro-mechanics

9

Iteration count \neq time to solution

Comparison to algorithms with ideal scalability ٠

Iteration count \neq time to solution

Comparison to algorithms with ideal scalability •

Iteration count \neq time to solution

Comparison to algorithms with ideal scalability

Iteration count \neq time to solution

Comparison to algorithms with ideal scalability •

1/ Pseudo-Transient

Summary

- Pseudo-transient brings back transient physics and converges fast: $O(N^{1.3})$
- Second order no additional communication (still local)
- But ... additional memory transfers (past residual field [k-1] damping)
- No need to gather information across the entire domain

1/ Pseudo-Transient

Summary

- Pseudo-transient brings back transient physics and converges fast: $O(N^{1.3})$
- Second order no additional communication (still local) •
- But ... additional memory transfers (past residual field [k-1] damping) •
- No need to gather information across the entire domain •

2/ Parallel efficiency

Distributed memory | large 3-D problem does not fit in a single GPU memory

- MPI: domain decomposition •
- Send boundary points to neighbours as B.C. •
- 6 planes to send in 3-D per sub-domain
- Volume to area ratio is the killer in 3-D
- Parallel efficiency will drop with more procs - network congestion, many HPC users, ...

Conceptual 2-D domain decomposition

2/ Parallel efficiency

Distributed memory | large 3-D problem does not fit in a single GPU memory

- MPI: domain decomposition •
- Send boundary points to neighbours as B.C. •
- 6 planes to send in 3-D per sub-domain •
- Volume to area ratio is the killer in 3-D
- Parallel efficiency will drop with more procs - network congestion, many HPC users, ...

Conceptual 2-D domain decomposition

Costs of communication increase

What will naively happen (weak scaling - physics efficiency = 1) •

Costs of communication increase

What will naively happen (weak scaling - physics efficiency = 1) •

Costs of communication increase

What will naively happen (weak scaling - physics efficiency = 1) •

Solution: hide MPI communication

Hiding communication

The simple concept: •

Overlap boundary node communication with inner points computations

Hiding communication

• The simple concept:

Overlap boundary node communication with inner points computations

Conceptually simple, but no "easy solution" for real-world applications

Hiding communication

The simple concept: •

Overlap boundary node communication with inner points computations

[1] Hoefler and Lumsdaine, 2008. IEEE on cluster comp.

Hiding communication

The simple concept:

Overlap boundary node communication with inner points computations

The "MPI_test" approach may be complicated to do for a real world application... •

[1] Hoefler and Lumsdaine, 2008. IEEE on cluster comp.

Hiding communication

• The simple concept:

Overlap boundary node communication with inner points computations

Control goes back to host thread, next step begins directly. The host threads blocks only when reaching MPI_Waitall: > trivially ensures persistent message progression (basic MPI)

Hiding communication

The simple concept: •

Overlap boundary node communication with inner points computations

/!\ Only avoid blocking the GPU kernel [Compute inner points] !

Synchronise + call MPI_Waitall freely in this function

Hiding communication

The simple concept: •

Overlap boundary node communication with inner points computations

- How to make this fast in order to quickly initiate the MPI data transfers ?

• How to access boundary data on the GPU without blocking the ongoing computations?

Hiding communication

• The simple concept:

Overlap boundary node communication with inner points computations

		0.276 s	0.277 s	0.278 s	0.279 s	0.28 s	0.281 s	0.282 s	0.283 s	0.284 s	0.285 s	0.286 s	0.287 s	0.288 s	0.289 s	0.29 s	0.291	s 0.292	2 s 0.293 s
	[0] Tesla V100-SXM2-32GB																		
	Context 1-11421 (CUDA)																		
	⊢ 🍸 MemCpy (PtoP)																		
Я	 Compute 	at*, float*, float*, floa	at, float, float,	. Vel_qD_Mn_ph	i(int, float, float, f	loat, float, float, flo	oat*, float*, floa	t*, float*, float*, f	'loat*, float*, float'	', float*, float*, fl	oat*, float*, float*, fl						nor	lin_div(float, flo	at, float, float, float, fl
	Streams																		
<u> </u>	└ Default	at*, float*, float*, floa	at, float, float,	. Vel_qD_Mn_ph	i(int, float, float, f	loat, float, float, flo	oat*, float*, floa	t*, float*, float*, f	'loat*, float*, float'	', float*, float*, fl	oat*, float*, float*, fl						nor	llin_div(float, flo	at, float, float, float, fl
\square	└ Stream 21																		
$\frac{\mathbf{U}}{\mathbf{U}}$	[3] Tesla V100-SXM2-32GB																		
	Context 1-11431 (CUDA)																		
\bigcirc	└ 🍸 MemCpy (PtoP)																		
	Compute	ıt*, float*, float*, floa	at, float, float,	. Vel_qD_Mn_phi	(int, float, float, fl	oat, float, float, flo	at*, float*, float	*, float*, float*, fl	oat*, float*, float*	, float*, float*, flo	at*, float*, float*, fl.						nor	lin_div(float, flo	at, float, float, float, fl
	Streams																		
	└ Default	ıt*, float*, float*, floa	at, float, float,	. Vel_qD_Mn_phi	(int, float, float, fl	oat, float, float, flo	at*, float*, float	*, float*, float*, fl	oat*, float*, float*	, float*, float*, flo	at*, float*, float*, fl.						nor	llin_div(float, flo	at, float, float, float, fl
	Stream 21																		
	L																		

		0.276 s	0.277 s	0.278 s	0.279 s	0.28 s	0.281 s	0.282 s	0.283 s	0.284 s	0.285 s	0.286 s	0.287 s	0.28				291	s 0.292	s 0.293 s
	[0] Tesla V100-SXM2-32GB														tera	ntion	en	dT		
	Context 1-11421 (CUDA)																0			
	⊢ 🍸 MemCpy (PtoP)																			
Я	Compute	at*, float*, float*, float,	float, float,	. Vel_qD_Mn_phi(ir	nt, float, float,	float, float, float, flo	oat*, float*, float	*, float*, float*, flo	oat*, float*, float*	*, float*, float*, flo	at*, float*, float*, f	fl						no	nlin_div(float, flo	at, float, float, float, fl
	Streams																			
<u> </u>	└ Default	at*, float*, float*, float,	float, float,	. Vel_qD_Mn_phi(ir	nt, float, float,	float, float, float, flo	oat*, float*, float	*, float*, float*, flo	oat*, float*, float*	*, float*, float*, flo	at*, float*, float*, f	fl						no	nlin_div(float, flo	at, float, float, float, fl
\square	└ Stream 21																			
· <u> </u>	[3] Tesla V100-SXM2-32GB					Indata	korn			hi)										
	Context 1-11431 (CUDA)					Opuale	Rem	er(v)	$q\nu, \rho$	III <i>)</i>			D.U.							
\bigcirc	⊢ 🍸 MemCpy (PtoP)																			
	Compute	ıt*, float*, float*, float,	float, float,	. Vel_qD_Mn_phi(in	t, float, float, f	float, float, float, flo	at*, float*, float*	, float*, float*, flo	at*, float*, float*,	, float*, float*, flo	at*, float*, float*, fl	l						10	nlin_div(float, flo	at, float, float, float, fl
	 Streams 																			
	└ Default	ıt*, float*, float*, float,	float, float,	. Vel_qD_Mn_phi(in	t, float, float, f	float, float, float, flo	at*, float*, float*	, float*, float*, flo	at*, float*, float*,	, float*, float*, flo	at*, float*, float*, fl	l						no	nlin_div(float, flo	at, float, float, float, fl
	L Stream 21																			

		0.276 s	0.277 s	0.278 s	0.279 s	0.28 s	0.281 s	0.282 s	0.283 s	0.284 s	0.285 s	0.286 s	0.287 s	0.28		29	91 s 0.292 s	0.293 s
	[0] Tesla V100-SXM2-32GB													Itera	ation	end		
	 Context 1-11421 (CUDA) 																	
	- 🍸 MemCpy (PtoP)																	
Т	+ Compute	at*, float*, float*, float	t, float, float, V	el_qD_Mn_phi(int,	float, float, float,	, float, float, flo	oat*, float*, float*,	float*, float*, flo	at*, float*, float*,	float*, float*, floa	at*, float*, float*, fl.						nonlin_div(float, float	, float, float, float, fl
	Streams																	
	L Default	at*, float*, float*, float	t, float, float, V	el_qD_Mn_phi(int,	float, float, float,	, float, float, flo	oat*, float*, float*,	float*, float*, flo	at*, float*, float*,	float*, float*, floa	at*, float*, float*, fl.						nonlin_div(float, float	, float, float, float, fl
\square	└ Stream 21																	
	[3] Tesla V100-SXM2-32GB				1.1	ndate	korn		aD nh	hi)		R	\mathbf{C}		MDI			
	Context 1-11431 (CUDA)				U	puaic		רי, י⊐ו <i>ע</i> י, י	$q \boldsymbol{\nu}, \boldsymbol{\mu}$	11)			U.					
\cup	└ 🍸 MemCpy (PtoP)																	
	+ Compute	ıt*, float*, float*, float	, float, float, Ve	el_qD_Mn_phi(int, 1	float, float, float,	float, float, flo	at*, float*, float*, f	float*, float*, floa	at*, float*, float*, f	float*, float*, floa	at*, float*, float*, fl						nonlin_div(float, float	, float, float, float, fl
	 Streams 																	
	└ Default	it*, float*, float*, float	, float, float, Ve	el_qD_Mn_phi(int, 1	float, float, float,	float, float, flo	at*, float*, float*, f	float*, float*, floa	at*, float*, float*, f	float*, float*, floa	at*, float*, float*, fl						nonlin_div(float, float	, float, float, float, fl
	└ Stream 21																	
r																		
		72 s 0.273 s	0.274 s	0.275 s	0.276 s	0.277 s	s 0.278 s	0.279	s 0.28 s	s 0.281	s 0.282 s	s 0.283 s	0.284 s	0.285 s	0.286 s	0.287 s	0.288 s	0.289 s
	[0] Tesla V100-SXM2-32GB																	
	Context 1-10656 (CUDA)																	
	└ 🍸 MemCpy (PtoP)																	
	+ Compute	int, Vel_qD_Mn_p	phi(int, float, float,	float, float, float, fl	oat*, float*, fl			Vel_qD_Mn_pl	hi(int, float, float, '	float, float, float	, float*, float*, float	*, float*, float*, flo	at*, float*, float*,	nonlin_div(flo	oat, float, float, flo	oat, float, float, floa	at, float, float, float,	float, float, float, flo
\cap	 Streams 																	
	L Default	int,												nonlin_div(flo	oat, float, float, flo	oat, float, float, flo	at, float, float, float,	float, float, float, flo
\geq	L Stream 21	Vel_qD_Mn_r	phi(int, float, float,	float, float, float, fl	oat*, float*, fl													
	└ Stream 22							Vel_qD_Mn_pl	hi(int, float, float, '	float, float, float	, float*, float*, float	*, float*, float*, flo	at*, float*, float*,					
	└ Stream 23																	
O	😑 [3] Tesla V100-SXM2-32GB																	
	Context 1-10665 (CUDA)																	
	L 🍸 MemCpy (PtoP)																	
	+ Compute	oat, int, Vel_qD_M	In_phi(int, float, flo	at, float, float, floa	t, float*, float*, fl			Vel_qD_Mr	n_phi(int, float, flo	at, float, float, fl	oat, float*, float*, fl	loat*, float*, float*	, float*, float*, floa	at*, nonlin_div(flo	oat, float, float, flo	oat, float, float, flo	at, float, float, float,	float, float, float, flo
	 Streams 																	
	L Default	pat, int,												nonlin_div(flo	oat, float, float, flo	oat, float, float, flo	at, float, float, float,	float, float, float, flo
	L Stream 21	Vel_qD_M	In_phi(int, float, flo	at, float, float, floa	t, float*, float*, fl													
	L Stream 22							Vel_qD_Mr	n_phi(int, float, flo	at, float, float, fl	oat, float*, float*, fl	loat*, float*, float*	, float*, float*, floa	at*,				
	Stream 23																	

	0.276 s	0.277 s	0.278 s	0.279 s	0.28 s	0.281 s	0.282 s	0.283 s	0.284 s	0.285 s	0.286 s	0.287 s	0.28		•	91s 0.29	92 s 0.293 s
[0] Tesla V100-SXM2-32GB													Iter	ation	end	· · · · · · · · · · · · · · · · · · ·	
Context 1-11421 (CUDA)														allon			
- 🍸 MemCpy (PtoP)																	
Compute	at*, float*, float*, f	iloat, float, float,	, Vel_qD_Mn_pł	ni(int, float, float, flo	at, float, float, floa	at*, float*, float*, f	float*, float*, fl	oat*, float*, float	t*, float*, float*,	float*, float*, float*	', fl					nonlin_div(float, fl	oat, float, float, float, fl
 Streams 																	
└ Default	at*, float*, float*, f	iloat, float, float,	, Vel_qD_Mn_pł	ni(int, float, float, flo	at, float, float, floa	at*, float*, float*, f	float*, float*, fl	oat*, float*, float	t*, float*, float*,	float*, float*, float*	', fl					nonlin_div(float, fl	oat, float, float, float, fl
└ Stream 21																	
[3] Tesla V100-SXM2-32GB					Indata				ה:)								
Context 1-11431 (CUDA)				L	Jpdale	ekerne	$\Theta (V)$	qD, ρ	DATI)			5.0.		INIPI			
L 🍸 MemCpy (PtoP)							· ·		·								
Compute	ıt*, float*, float*, f	loat, float, float,	Vel_qD_Mn_ph	i(int, float, float, flo	at, float, float, floa	at*, float*, float*, f	float*, float*, flo	oat*, float*, float'	*, float*, float*, :	float*, float*, float*	, fl					nonlin_div(float, fl	oat, float, float, float, fl
Streams																	
└ Default	ıt*, float*, float*, f	loat, float, float,	Vel_qD_Mn_ph	i(int, float, float, flo	at, float, float, floa	at*, float*, float*, f	float*, float*, flo	oat*, float*, float*	*, float*, float*, i	float*, float*, float*	, fl					nonlin_div(float, fl	oat, float, float, float, fl
└ Stream 21																	
	72 s 0.27	′3s 0.2	274 s 0.275	5s 0.276s	0.277 s	0.278 s	0.279	9s 0.2	8s 0.1	281 s 0.2	82 s 0.28	3s 0.284	s 0.285 s	0.286 s	0.287 s	0.288 s	0.289 s
[0] Tesla V100-SXM2-32GB					· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •					•		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		•
Context 1-10656 (CUDA)																	
└ Ţ MemCpy (PtoP)																	
	int, Vel_qD_N	/In_phi(int, float,	, float, float, float, fl	oat, float*, float*, fl.			Vel_qD_Mn_p	phi(int, float, floa	at, float, float, fl	oat, float*, float*, f	loat*, float*, float*	, float*, float*, float	*, nonlin_div(float, float, float, f	loat, float, float, fl	loat, float, float, flo	oat, float, float, float, flo
+ Compute																	
 Streams 																	
└ Default	int,												nonlin_div(float, float, float, f	loat, float, float, fl	loat, float, float, flo	oat, float, float, float, flo
└ Stream 21	Vel_qD_N	/In_phi(int, float,	, float, float, float, fl	oat, float*, float*, fl.													
└ Stream 22					_		Vel_qD_Mn_p	phi(int, float, floa	at, float, float, fl	oat, float*, float*, f	loat*, float*, float*	, float*, float*, float	*,				
└ Stream 23																	
- [3] Tesla V100-SXM2-32GB																	
 Context 1-10665 (CUDA) 																	
L 🍸 MemCpy (PtoP)																	
	pat, int, Vel_qD	_Mn_phi(int, flo	oat, float, float, float	, float, float*, float*	, fl		Vel_qD_M	In_phi(int, float, i	float, float, float	t, float, float*, float	*, float*, float*, flo	at*, float*, float*, fl	oat*, nonlin_div((float, float, float, f	loat, float, float, f	loat, float, float, flo	oat, float, float, float, flo
Streams																	
L Default	pat, int,												nonlin_div	(float, float, float, f	loat, float, float, f	loat, float, float, flo	oat, float, float, float, flo
L Stream 21	Vel_q		oat, float, float, float	, float, float*, float*	, fl												
L Stream 22							Vel_qD_M	In_phi(int, float, i	float, float, floai	t, float, float*, float	*, float*, float*, flo	at*, float*, float*, fl	oat*,				
└ Stream 23																	

		0.276 s	0.277 s	0.278 s	0.279 s	0.28 s	0.281 s	0.282 s	0.283 s	0.284 s	0.285 s	0.286 s	0.287 s	0.28				91 s	0.292 s	0.293 s
	[0] Tesla V100-SXM2-32GB														erati	n	end			
	Context 1-11421 (CUDA)																			
	L 🍸 MemCpy (PtoP)																			
Я	+ Compute	at*, float*, float*, float	t, float, float,	Vel_qD_Mn_phi(ii	nt, float, float, fl	loat, float, float, fl	oat*, float*, float'	', float*, float*, flo	at*, float*, float	*, float*, float*, flo	at*, float*, float*, fl							nonlin_div	(float, float, flo	at, float, float, flo
	Streams																			
<u> </u>	└ Default	at*, float*, float*, float	t, float, float,	Vel_qD_Mn_phi(ii	nt, float, float, fl	loat, float, float, fl	oat*, float*, float'	', float*, float*, flo	at*, float*, float	*, float*, float*, flo	at*, float*, float*, fl							nonlin_div	(float, float, flo	at, float, float, fl
\square	└ Stream 21																			
· <u></u>	[3] Tesla V100-SXM2-32GB				-	Indate	larn		aD n	hi)					ΝЛΕ					
	 Context 1-11431 (CUDA) 				le l	Jpuale	ekeni	$\mathbf{e}_{\mathbf{I}}(\mathbf{v}, \mathbf{v})$	qυ, p	111 <i>)</i>			D.U.							
\bigcirc	⊢ 🍸 MemCpy (PtoP)																			
	+ Compute	ıt*, float*, float*, float	i, float, float,	Vel_qD_Mn_phi(in	nt, float, float, flo	oat, float, float, flo	oat*, float*, float*	, float*, float*, floa	at*, float*, float*	*, float*, float*, flo	at*, float*, float*, fl.							nonlin_div	(float, float, flo	at, float, float, fl
	 Streams 																			
	└ Default	ıt*, float*, float*, float	i, float, float,	Vel_qD_Mn_phi(in	nt, float, float, flo	oat, float, float, flo	oat*, float*, float*	, float*, float*, floa	at*, float*, float*	, float*, float*, flo	at*, float*, float*, fl.							nonlin_div	(float, float, flo	at, float, float, fl
	└ Stream 21																			

S	0.28	3 S	0.2	81 s	lte	ratio	n end	0.285 s	0.286 s	0.287 s	0.288 s	0.289 s
hi(int, f	iloat, floai	t, float, flo	at, flo	at, float*, flo	oat*, float*,	float*, float*, floa	at*, float*, float*,	nonlin_div(float	, float, float, fl	loat, float, float, fl	oat, float, float, flo	at, float, float, float, f
hi(int, f	iloat, floai	, float, flo	at, flo	at, float*, flo	pat*, float*,	float*, float*, floa	at*, float*, float*,	nonlin_div(float	, float, float, fl	loat, float, float, fl	oat, float, float, flo	at, float, float, float, f
		Upc	late	e [inn	er po	ints]						
		MPI										
1_phi(ii	nt, float, f	loat, float,	float,	float, float*	, float*, floa	at*, float*, float*,	float*, float*, float*, .	nonlin_div(float	t, float, float, f	loat, float, float, fl	oat, float, float, flo	at, float, float, float, f
phi/it	t float f		float	float, float	floatt floa	att floatt floatt	float* float* float*	nonlin_div(float	t, float, float, f	loat, float, float, fl	oat, float, float, flo	at, float, float, float,
n_phi(ii	nt, float, f	loat, float,	float,	float, float*	, float*, floa	it*, float*, float*,	float*, float*, float*, .					

	0.276 s	0.277 s	0.278 s	0.279 s	0.28 s	0.281 s	0.282 s	0.283 s	0.284 s	0.285 s	0.286 s	0.287 s	0.288 s	0.2	89 s	0.29 s	0.29	91s 0.292	s 0.293 s
[0] Tesla V100-SXM2-32GB										-				tera	atior	n er	าดไ		
Context 1-11421 (CUDA)			Ar	nd wit	th on	lv m	inim	al ch	ande	es to	the c	ode							
L 🍸 MemCpy (PtoP)						• • • •													
Compute	at*, float*, float*, float	, float, float,	Vel_qD_Mn_phi(ir															ionlin_div(float, floa	at, float, float, float, fl
Streams																			
L Default	at*, float*, float*, float	, float, float,	Vel_qD_Mn_phi(ir								fl							ionlin_div(float, floa	at, float, float, float, fl
└ Stream 21																			
[3] Tesla V100-SXM2-32GB					Indata				ト i)										
Context 1-11431 (CUDA)				U	puale	Kerri	ΘΙ (V ,	$q\nu, \rho$	[]] <i>)</i>						IVIPI				
– 🍸 MemCpy (PtoP)																			
🕂 Compute	ut*, float*, float*, float,	, float, float,	Vel_qD_Mn_phi(in	nt, float, float, float,					, float*, float*, flo		il							ionlin_div(float, floa	at, float, float, float, fl
Streams																			
L Default	ut*, float*, float*, float,	, float, float,	Vel_qD_Mn_phi(in	nt, float, float, float,	, float, float, float		, float*, float*, f		, float*, float*, flo	at*, float*, float*, f	il							ionlin_div(float, floa	at, float, float, float, fl
Stream 21																			

		72 s 0.273 s 0.274 s 0.275 s 0.276 s 0.277 s 0.278 s 0.279 s 0.28 s 0.281 s 0.285 s 0.286 s 0.287 s 0.288 s 0.289 s
	[0] Tesla V100-SXM2-32GB	Iteration end
	 Context 1-10656 (CUDA) 	
	⊢ 🍸 MemCpy (PtoP)	
	Compute Compute	int, Vel_qD_Mn_phi(int, float, flo
	 Streams 	
	L Default	int,
\geq	L Stream 21	Vel_qD_Mn_phi(int, float, float, float, float*, float*
()	└─ Stream 22	Vel_qD_Mn_phi(int, float, float, float, float, float*,
Q	└ Stream 23 ☐ [3] Tesla V100-SXM2-32GB	Update [inner points]
Ī	Context 1-10665 (CUDA) _ \[\] MemCpy (PtoP)	MPI
	+ Compute	pat, int, Vel_qD_Mn_phi(int, float, float
	Streams	
	└ Default	pat, int,
	L Stream 21	Vel_qD_Mn_phi(int, float, float, float, float*, float*
	Stream 22	Vel_qD_Mn_phi(int, float, float, float, float, float*,
	L Stream 23	

Minimal changes to the code

Minimal changes to the code

Minimal changes to the code

Avoid loss of performance

Impact of boundary width on single GPU performance •

Avoid loss of performance

Impact of boundary width on single GPU performance •

Avoid loss of performance

Impact of boundary width on single GPU performance •

Parallel efficiency

• 2% drop on 5120 Tesla P100 GPUs on Cray XC50 "Piz Daint" @ CSCS

Parallel efficiency

•

In-house: 4% drop on 128 Titan Xm GPUs on in-house supercomputer "Octopus" @ Unil 2% drop on 8 Tesla V100 Nvlink GPUs (DGX-1) "Volta" @ Unil

2/ Parallel efficiency

Summary

- Only 2% drop of parallel efficiency on 5120 GPUs compared to single GPU execution
- CudaStream: simple approach to access GPU memory while computations are ongoing
- Boundary width > 2, can avoid loss of performance when splitting computations
- Avoid blocking the computing and prioritise boundary update workflow
- Only minimal changes to original code even for real-world applications !

Summary

We tackled hardware limit with our multi-GPU 3-D solver

- 1/Using simple physics-based fast local iterative scheme • > Pseudo-time brings physics back
- 2/ Implementing domain decomposition and asynchronous execution to hide MPI > Scale on the world's fastest supercomputers

Summary

We tackled hardware limit with our multi-GPU 3-D solver

- 1/Using simple physics-based fast local iterative scheme • > Pseudo-time brings physics back
- 2/ Implementing domain decomposition and asynchronous execution to hide MPI > Scale on the world's fastest supercomputers

A general approach that is not restricted to our particular geo-physics application

Outlook

- This approach can be applied to a wide range of computational physics problems
- Get the most out of a tight interplay •

- •
- What's next: Testing PT iterations for for Finite-Elements •
- What's next: Application to various coupled physical processes in Earth sciences

Improve the effective memory throughput of our solver | MTP_{eff} @ ~25% of memcpy

Outlook

- This approach can be applied to a wide range of computational physics problems
- Get the most out of a tight interplay

Numerics

- What's next: Testing PT iterations for for Finite-Elements
- What's next: Application to various coupled physical processes in Earth sciences

Improve the effective memory throughput of our solver | MTP_{eff} @ ~25% of memory

Unil

UNIL | Université de Lausanne Swiss Geocomputing Centre

Thank you

Schweizerischer Nationalfonds **Swiss National Science Foundation**

Unil

UNIL | Université de Lausanne Swiss Geocomputing Centre

Thank you

wp.unil.ch/geocomputing/

Iraess@stanford.edu

Schweizerischer Nationalfonds **Swiss National Science Foundation**

References

Räss, L., Simon, N. S. C., & Podladchikov, Y. Y. (2018). Spontaneous formation of fluid escape pipes from subsurface reservoirs. *Scientific Reports*, 8(1), 11116.

Løseth, H., Wensaas, L., Arntsen, B., Hanken, N.-M., Basire, C., & Graue, K. (2011). 1000 m long gas blowout pipes. *Marine and Petroleum Geology*, *28*(5), 1047–1060.

Plaza-Faverola, A., Bünz, S., & Mienert, J. (2011). Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles. *Earth and Planetary Science Letters*, *305*(3–4), 297–308.

Hoefler, T., & Lumsdaine, A. (2008). Message progression in parallel computing - to thread or not to thread? In 2008 IEEE International Conference on Cluster Computing (Vol. Proceeding, pp. 213–222). IEEE.

Frankel, S. P. (1950). Convergence rates of iterative treatments equations of partial differential. Mathematical Tables and Other Aids to Computation, 4(30), 65–75.

Effective memory throughput

Effective and absolute metric to measure optimality of data access: MTP_{effective}

- Minimal # of memory access / iteration: 15 read + write (30 accesses)
- $MTP_{peak} = memcpy only$
- MTP_{eff} < MTP_{peak}: no neighbours read or access (derivatives) counted but they occur -(a stencil code).

40

Effective memory throughput

Effective and absolute metric to measure optimality of data access: MTP_{effective}

- Minimal # of memory access / iteration: 15 read + write (30 accesses)
- $MTP_{peak} = memcpy only$
- MTP_{eff} < MTP_{peak}: no neighbours read or access (derivatives) counted but they occur -(a stencil code).

3-D fully coupled hydro-mechanics

Spontaneous formation: 3-D numerical simulation

- Sediment deformation coupled to fluid motion
- Buoyancy driven flow: $\rho^{s} = 2\rho^{f}$
- Nonlinear mechanics (tensor + vector fields)
- Nonlinear fluid flow (vector field) •
- Very high resolution: • - space: 1000 x 1000 x 2000 grid points in 3-D - time: 20'000 time steps

Hiding communication

•

	0.277 s	0.278 s	0.279 s	0.28 s	0.281 s	0.282 s	0.283 s	0.284
[0] Tesla V100-SXM2-32GB								
Context 1-11764 (CUDA)								
└ 🍸 MemCpy (PtoP)								
Compute	', float*, floa	t*, float, float, float	Vel_qD_N	In_phi(int, float, fl	ioat, float, float, f	float, float*, float*,		
Streams								
L Default	, float*, floa	t*, float, float, float						
Stream 21			Vel_qD_N	In_phi(int, float, fl	loat, float, float, f	float, float*, float*,		
Stream 22								
Stream 23								
[3] Tesla V100-SXM2-32GB								
Context 1-11773 (CUDA)								
└ 🍸 MemCpy (PtoP)								
+ Compute	, float*, floa	t*, float, float, float	Vel_qD_M	n_phi(int, float, fl	oat, float, float, f	loat, float*, float*,		
Streams								
L Default	, float*, floa	t*, float, float, float						
Stream 21			Vel_qD_M	n_phi(int, float, fl	oat, float, float, f	loat, float*, float*,		
Stream 22								
└ Stream 23								

Wrong implementation of CudaStream with blocking call to cudaDeviceSynchronize();

cudaStream implementation

CudaStream: simple approach to access memory on GPU while computations are ongoing:

- streams > flag for stream creation: cudaStreamNonBlocking.
- as it is done for stream 2 only: cudaStreamSynchronize().
- Higher priority of stream 2 vs stream 1: cudaStreamCreateWithPriority().
- Boundary width > 2 ensures optimal performance.

Non blocking data accesses on the GPU as they happen on different non-blocking

Syncing [Update boundaries] kernel does not interfere with [Compute inner points] kernel

Hiding communication 2

• Alternative approach

Overlap boundary node communication with inner points computations

cudaStream

Minimal changes to the code 2

Hiding communication 2

Alternative approach for hiding MPI communication

- Synchronise only stream 2 (cudaStreamSynchronize instead of cudaDeviceSynchronize): only 1 modification to switch between two approaches !
- [compute inner points] begins simultaneous with [compute boundary points] kernels
- (+) No performance lost: boundary points & inner points are computed at the same time
- (-) Strongly rely on the stream priority feature to work very well
- (-) The less the priority is respected, the more the MPI data transfer begin will be delayed •
- (-) Difficult to predict the time available for the MPI update

Avoid loss of performance

Impact on the parallel efficiency | similar trend •

Avoid loss of performance

Impact on the parallel efficiency | similar trend •

Avoid loss of performance

Impact on the parallel efficiency | similar trend

Optimality of data access

Optimality of data access

- PDE solvers are memory bound: computations \$ | memory accesses \$\$\$\$
- Choose an appropriate solution strategy (solver):
 Low memory footprint algorithm
 Simple and regular data access pattern
- Computations are for free: recompute fields instead of storing them

/!\ High MTP_{eff} ≠ fast convergence (low # of iterations)

Performance limiters

- 15 fields to update R+W
- Bytes \neq numbers (here float = 4 bytes)
- Current = main memory + cache
- Upper bound = minimal n_{IO}
- ratio = flops/bytes

0.1 < 1.8 << machine balances (17 or 24)

We are memory bound

3-D hydro-mechanics

Operation	Count	# flops	# bytes (float)	ratio
R+W	15	0	120	
$\frac{\partial}{\partial x}$	31	62	372	
Total (current)		62	524	0.1

GPU	# flops	# bytes (float)	ratio
Tesla V100	15.7 x 10 ¹²	0.9 x 10 ¹²	17
Titan Xm	12.1 x 10 ¹²	0.5 x 10 ¹²	24

Effective memory throughput

- Use an effective and absolute metric to measure optimality of data access: MTP_{eff}
- Minimal # of memory transfers / iteration: • $n_{\rm RW} = 30 \, (R+W \, every \, 15 \, variable \, once)$
- Tells us how far we are from ideal: compare to MTP_{peak} (memcopy only - no flops)

 MTP_{eff} = lower bound of required memory transfers / time per iteration 7 MTP_{profiler} = performed memory transfers / time per iteration

$$MTP_{eff} = \frac{n_{RW} n_i^{tot} n_{precis}}{2^{30} t_{elapsed}} \quad [GB/s]$$

 $n_{\rm RW} = 2 \times (\text{read and write}) + \text{read only fields}$ $n_i^{\text{tot}} = n_x \times n_y \times n_z \times n_t$ $n_{\text{precis}} = \text{word size [bytes]}$ $t_{\text{elapsed}} = \text{elapsed time [sec]}$