DNR SMG PGNR DSRVT QNM

Beyond Polygons, Voxels & Rasterization

Nejc Lešek CTO, Lightmass Dynamics

Minimum Requirements

- Variable rate rendering
- Always grouping similar work items
- No rasterization
- Real-time rates (50 ms or less per frame)

DNR (Deconstruction Rendering)

- Groups similar work items
- Enables efficient implementation of:
 - Variable rate rendering
 - Foveated rendering
 - Checkerboard rendering
 - Any analytic or random pattern

Smart Geometry (SMG)

Attaching neural networks to geometric primitives

- Main concepts:
 - Simple, small and shallow networks
 - Millions of NN working together
 - Real-time training and inference

TIP: as NN input, find scene properties that can be mostly represented with a continuous function.

Performance impact **BVH** vs. **SMG**

BVH – Linear SMG – Sublinear

4 Lights, 10 Light Samples

0ms 2 4 6 8

1 Light, 10 Light Samples

10

4 Lights, 1 Light Samples

4000ms

3000ms

2000ms

1000ms

Shadow rays (ms)

SMG (ms)

SMG Denoise 1 spp 3 bounces No denoise 1 spp 3 bounces

SMG: DENOISE

- Spatial denoise
- NN approximate energy at surface

GOOD FOR:

- Static scenes
- Can compliment lightmaps; by vectorizing soft shadow regions.

BAD FOR:

- Dynamic scenes
- Very small primitives

A viable high performance substitute for:

- Bidirectional PT
- Metropolis light transport

Finds up to 70% more paths than unidirectional path tracing.

PGNR (Path Guided Neural Rendering)

PGNR (Path Guided Neural Rendering)

• DNN autoencoder denoise, but...

- Very sparse secondary ray sampling
- Full resolution primary rays
- Variable DNN depth
- Scene data & NN organized into voxels

PGNR: Voxelized autoencoders

GPU₁

GPU 2

•

GPU N

- Offline voxel data interpolation
- A bit of overfitting is welcome
- Each voxel can be processed by a different GPU, training scales linearly!

Autoencoder inputs

Normals 3D

Roughness 1D

Adaptive temporal reprojection

Albedo 3D

Depth 1D

Direct Light 1D

PGNR

DSRVT (Deep Super Resolution Virtual Texturing)

DSRVT (Deep Super Resolution Virtual Texturing)

- Provides Virtual Texturing benefits:
 - Memory management (use only what you need / can see)
 - Effectevly unlimited texture resolution

- Super Resolution:
 - Adds extra details when we run out of higher res. textures

OR

Reduces shipped texture size by x4

INPUT

1024 x 1024

2048 x 2048

QNM (Quantum Neural Models)

Defines volumetric object with properties

- Uses neural primitives
- Uses Tensor Pipeline
- Potential to unify physics, animation, geometry and materials

QNM

Animation guided by NN inputs

QNM model size: ~5 KB

QNM primitives: 9

Polygonal model size: ~1 MB (vertices, normals, texture coordinates)

Polygonal primitives (triangles): **31 415**

BVH acceleration structure

20-40% reduction in ray-box **intersection** tests

BVH

Questions

Thank you!

Email: nejc@lightmass-dynamics.com

Twitter: @nejclesek