

#### Mapping Informal Settlements in Developing Countries Using Machine Learning

Patrick Helber, Benjamin Bischke

German Research Center for Artificial Intelligence (DFKI)



Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

### NASA and ESA Frontier Development Lab



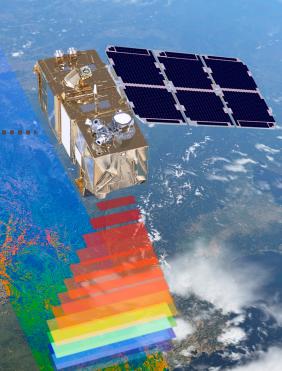
### Sustainable Development Goals + EO Data



Large amount of Earth observation data Copernicus Sentinel-2 Data available from 2015

**Global challenges:** Global vision for humanity SDG: Defined by UN in 2015

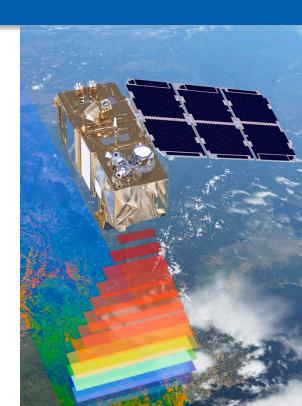




### Sustainable Development Goals + EO Data



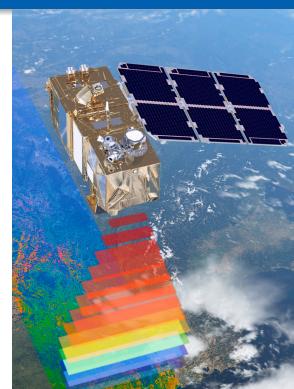
- Half of humanity 3.5 billion people lives in cities today and 5 billion people are projected to live in cities by 2030
- 95 per cent of urban expansion in the next decades will take place in developing world
- 883 million people live in slums
- Rapid urbanization is exerting pressure on fresh water supplies, sewage, the living environment, and public health



### Sustainable Development Goals + EO Data



- Ensure **access** for all to adequate, **safe** and affordable **housing** and **basic services and upgrade slums**
- Reduce people affected by disasters with a focus on protecting the poor and people in vulnerable situations
- Building sustainable and resilient buildings utilizing local materials
- Expansion monitoring to deliver effective economic and social aid to informal settlements



## Machine Learning-Based Detection and Mapping of Informal Settlements

With freely and openly available multi-spectral low-resolution satellite imagery





. .

Video: ESA/ATG medialab



## Informal Settlement (Slums)

#### United Nations (UN) and OECD:

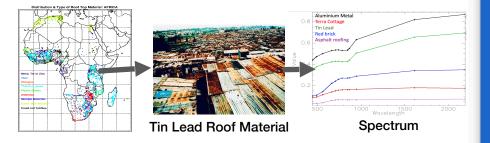
- Inhabitants have no security of tenure vis-à-vis the land or dwellings they inhabit
- Neighborhoods lack, or are cut off from, basic services and city infrastructure.
- The housing may not comply with current planning

## The Problem

Lack of information about the informal settlements (slums)

- The **locations** of (small) slums are often unknown
- No reliable information about the number of residents
- Most vulnerable in case of natural disaster situations

Spectral Model: Extracting materials from single-pixel spectra



Textural Model: Extracting context information using convolutional filter





El Geneina, Sudan

Informal

Formal

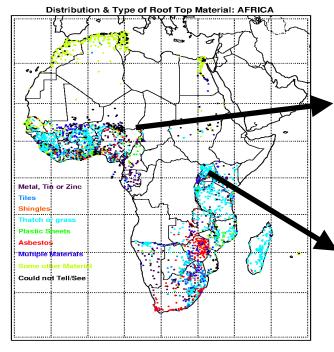


Informal Settlements can be characterized remotely by:

- Roofing materials
- Roofing size
- Building density

# Creation of a spectral and textural model

### Types of Roofing Material in Africa

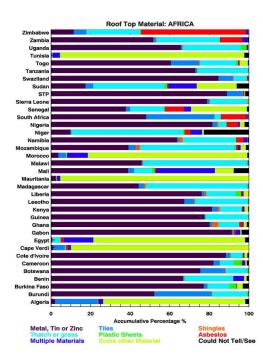




Tin roof

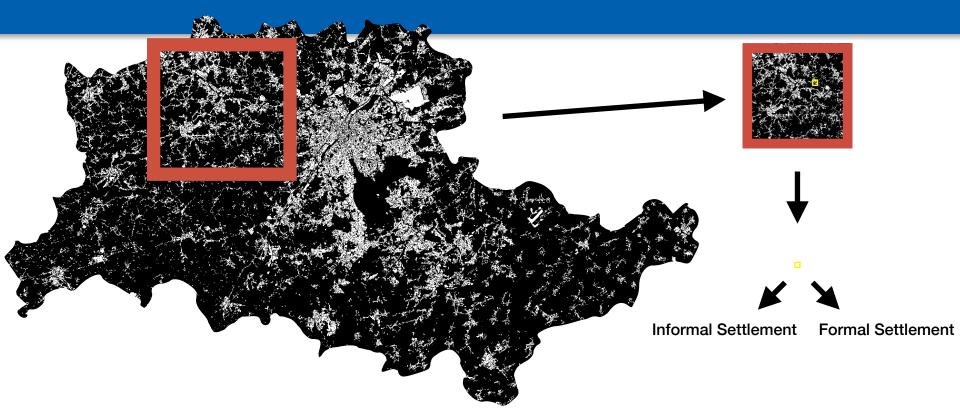


Thatch roof

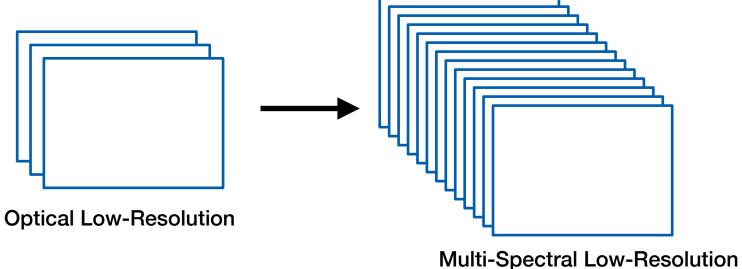




#### **Detecting and Mapping Informal Settlements**



### Single-Pixel Spectral Analysis



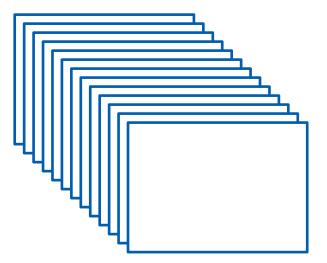
This work!

### How is it possible?

Not possible with features based on the spatial resolution

Upsampling (super resolution) methods not applicable

Use of multi-spectral sensor information



Multi-Spectral Low-Resolution This work!

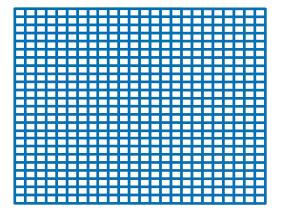
## Sentinel-2 Multi-Spectral Sensing



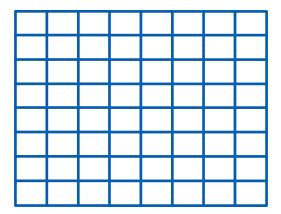
| Band              | Spatial resolution | Central wavelength | Band width   |  |
|-------------------|--------------------|--------------------|--------------|--|
|                   | in meter           | in nanometer       | in nanometer |  |
| Bo1 - Aerosols    | 60                 | 443                | 20           |  |
| Bo2 - Blue        | 10                 | 490                | 65           |  |
| Bo3 - Green       | 10                 | 560                | 35           |  |
| Bo4 - Red         | 10                 | 665                | 30           |  |
| B05 - Red Edge 1  | 20                 | 705                | 15           |  |
| Bo6 - Red Edge 2  | 20                 | 740                | 15           |  |
| Bo7 - Red Edge 3  | 20                 | 783                | 20           |  |
| Bo8 - NIR         | 10                 | 842                | 115          |  |
| Bo8A - Red Edge 4 | 20                 | 865                | 20           |  |
| Bo9 - Water vapor | 60                 | 945                | 20           |  |
| B10 - Cirrus      | 60                 | 1375               | 30           |  |
| B11 - SWIR 1      | 20                 | 1610               | 90           |  |
| B12 - SWIR 2      | 20                 | 2190               | 180          |  |

Sentinel-2 Multi-spectral bands

### Single-Pixel Spectral Analysis



**Very-High-Resolution** 





**High-Resolution** 

Low-Resolution

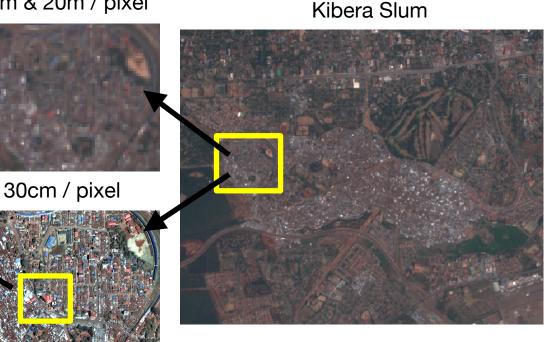
This work!

### Very-High-Resolution vs. Low-Resolution

~33x higher resolution

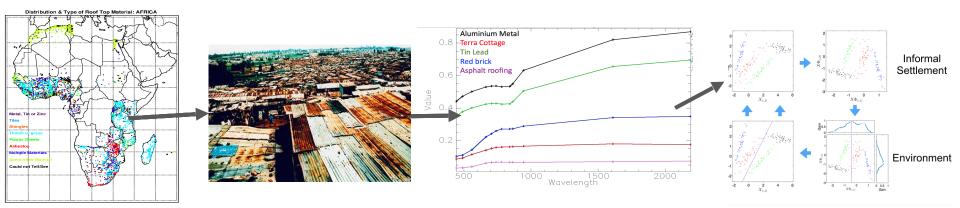


#### 10m & 20m / pixel



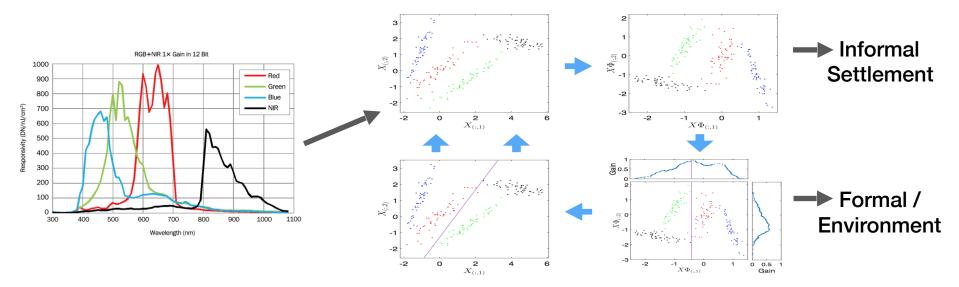
## **The Spectral Model**

#### **Spectral Model:** Extracting materials from single-pixel spectra



## **Canonical Correlation Analysis**

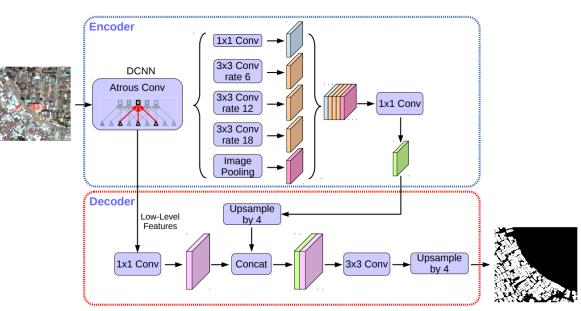
#### • Use of a Canonical Correlation Forests



## The Textural Model

#### Convolutional Neural Network (CNN) for spatial features

- Trained on VHR satellite images
- Multi-Resolution
- Single-Scale Evaluation
- Deeplabv3+ is pre-trained using Pascal VOC
- Trained using 8 GPUs (Batch Size 32. initial LR 0.001)  $y[i] = \sum_{k} x[i + r \cdot k]w[k]$



Mapping Informal Settlements in Developing Countries using Machine Learning and Low Resolution Multi-spectral Data. Bradley Gram-Hansen\*, Patrick Helber\* (shared first author), Indhu Varatharajan, Faiza Azam, Alejandro Coca-Castro, Veronika Kopackova, Piotr Bilinski. AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, 2019 (accepted)

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, Liang-Chieh Chen et al., arXiv: 1802.02611, 2018.

#### Global Case Study

**Provided Benchmarks** 

Low-Resolution Multi-Spectral Satellite Imagery

Very-High-Resolution Satellite Imagery



## **Quantitative Results**

SpecM







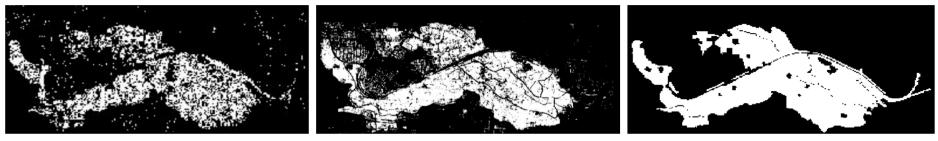
Pixel-wise Classification of Informal Settlements (SpecM) and Contextual Classification(TexM)

| Continent            | Region                                                                                                    | Mean IOU                                                     |                                                | Pixel Accuracy                                 |                                                |
|----------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| Informal Settlements |                                                                                                           | SpecM                                                        | TexM                                           | SpecM                                          | TexM                                           |
| Africa               | Kenya (Northern Nairobi)<br>Kenya (Kibera)<br>Sudan (El Daien)<br>Sudan (Al Geneina)<br>Nigeria (Makoko)* | 62.0 %<br><b>73.3 %</b><br>61.3 %<br><b>35.7 %</b><br>59.9 % | 80.8 %<br>65.5 %<br>73.4 %<br>76.3 %<br>74.0 % | 69.4 %<br>69.0 %<br>78.0 %<br>83.2 %<br>76.2 % | 93.1 %<br>78.2 %<br>86.0 %<br>89.2 %<br>87.4 % |
| Asia                 | India (Mumbai)*                                                                                           | 40 %                                                         | -                                              | 97 %                                           | -                                              |
| South America        | Colombia (Medellin)*                                                                                      | 74.0 %                                                       | 83.0 %                                         | 84.2 %                                         | 95.3 %                                         |

## **Qualitative Results**



Predictions of informal settlements (white pixels) in Kibera, Nairobi

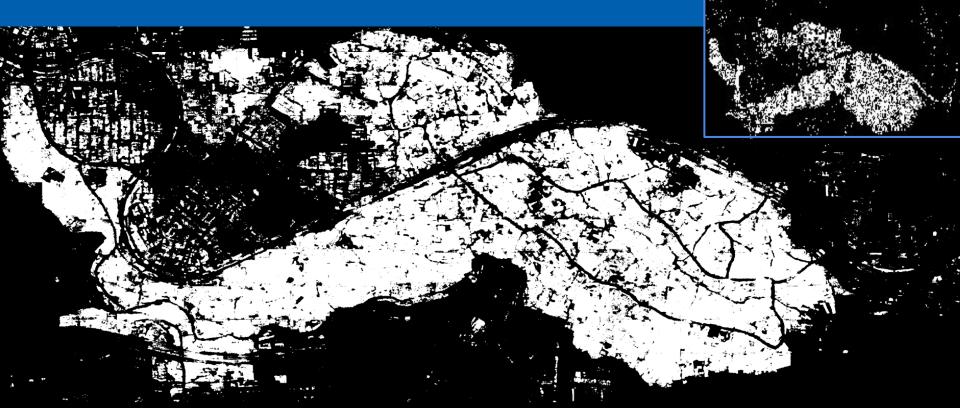


CCF prediction (LR MS)

**CNN prediction (VHR RGB)** 

**Ground Truth** 

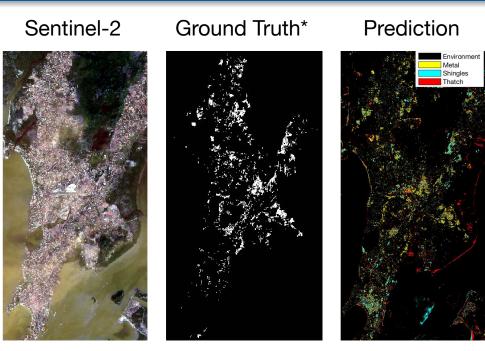
## Qualitative Results



#### Generating Material Maps to Map Informal Settlements



Mumbai, India



Generating Material Maps to Map Informal Settlements. Patrick Helber\*, Bradley Gram-Hansen\* (shared first author), Indhu Varatharajan, Faiza Azam, Alejandro Coca-Castro, Veronika Kopackova, Piotr Bilinski. NeurIPS 2018 Machine Learning for the Developing World Workshop, 2018

### **Open Source Solutions - Map Visualizations**



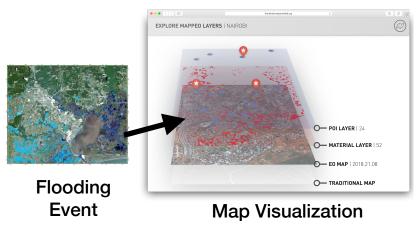
Open Source Code + Models + Data

#### **Pre-Disaster and Disaster Relief**

Government

#### Support Well-Being

Government, NGOs, Developing Organizations



https://frontierdevelopmentlab.github.io/informal-settlements/

### Machine Learning-Aided Disaster Response Identifying flood-affected buildings after disaster events for emergency response

# The Problem

Lack of information about the disaster

- the **location** of affected communities
- the severity of the event/ level of damage
- rapid response time over accuracy





#### **SENTINEL-**



#### All-weather, day-and-night radar imaging satellite for land and ocean services

- Able to "see" through clouds and rain
- Data delivery within 1 hour of acquisition
- Airbus Defence and Space developed C-band radar instrument

#### Medium Res Multispectral optical satell for observation of land, vegetation and water

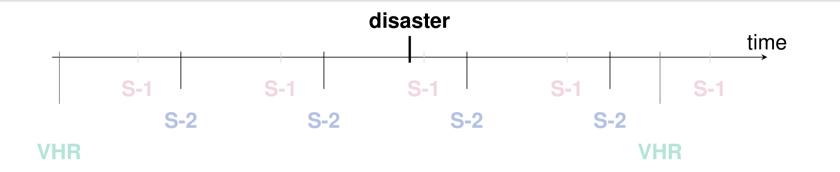
SENTINEL-2

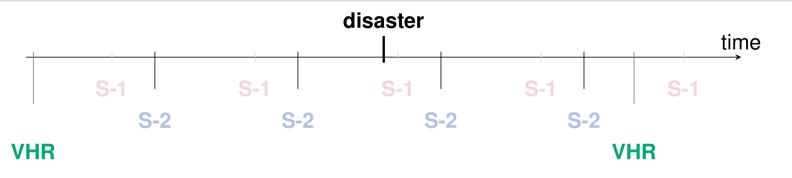
13 spectral bands with 10, 20 or 60 m resolution and 290 km swath width
Global coverage of the Earth's land surface every 5 days
Airbus Defence and Space prime contractor for stabilities and instruments

# Approach

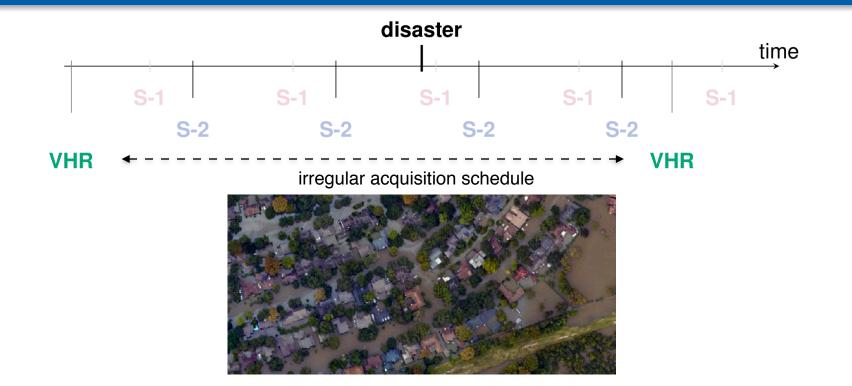
Fast **building** and **damage detection** by fusion of **multi-resolution** and **multi-temporal** satellite imagery Input data sources:

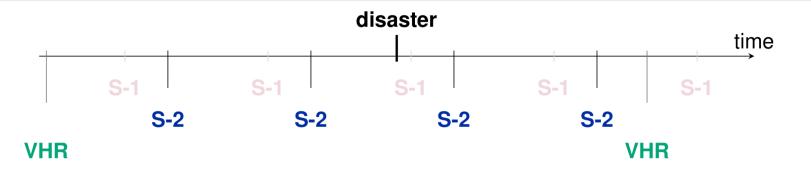
- Radar: Sentinel 1 (public)
- Optical: Sentinel 2 (public)
- Very high resolution (commercial)













pre

during



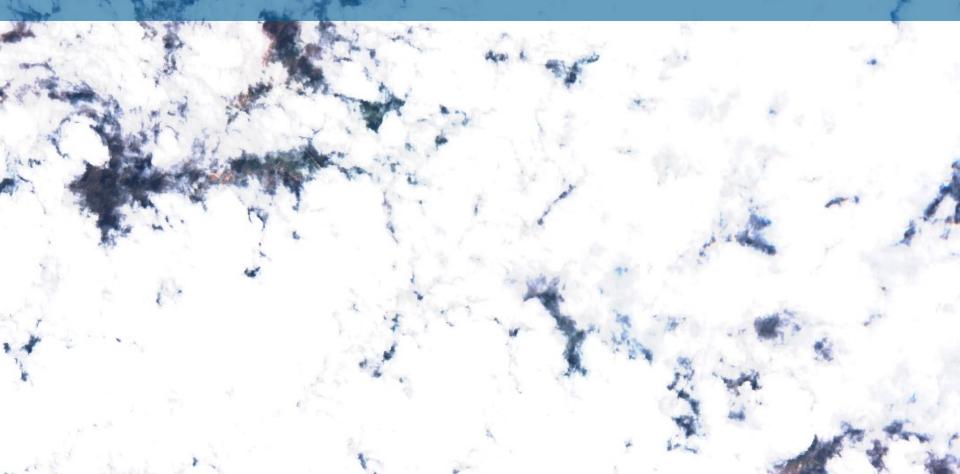
#### **Optical Satellite Imagery: multispectral Information**

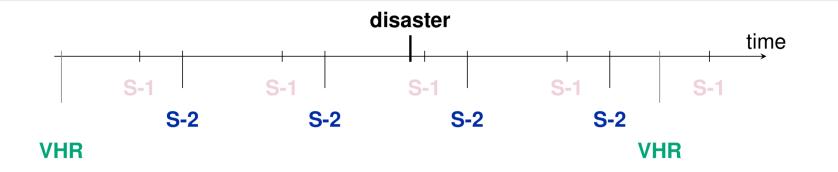
#### **Optical Satellite Imagery: multispectral Information**

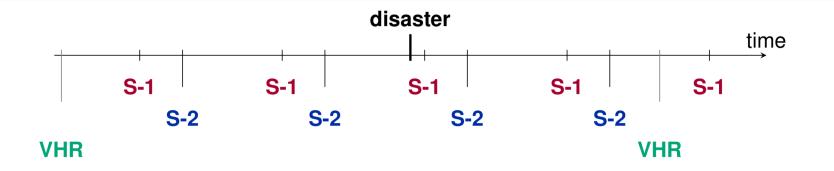
#### **Optical Satellite Imagery: multispectral Information**

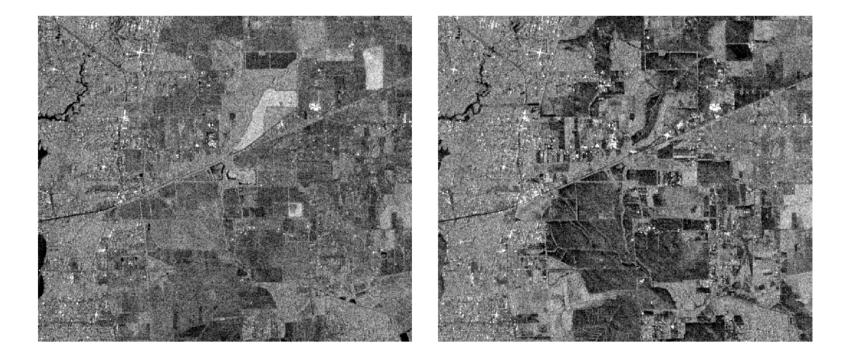
# **Optical Satellite Imagery: clouds**

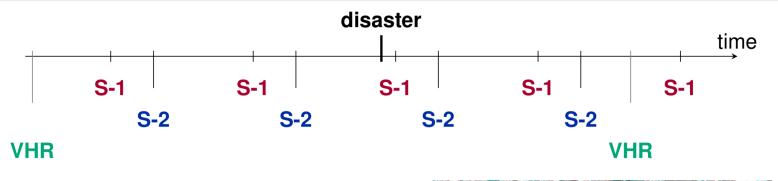
# Optical Satellite Imagery: clouds everywhere













coherence pre high correlation values coherence post correlation decreases



coherence RGB pre & post

### Challenge: different spatial resolutions

0.5m post-disaster

#### 10m post-disaster

#### 10m post-disaster



very high resolution

optical

radar

### Advantage: spatiotemporal information

0.5m post-disaster

#### 10m pre-disaster

#### 10m pre-disaster



very high resolution

optical

radar

# Flooded-Affected Buildings

Hurricane Events (2017)

Damage Detection & Estimation



# Ground truth, towards two objectives







### Dataset

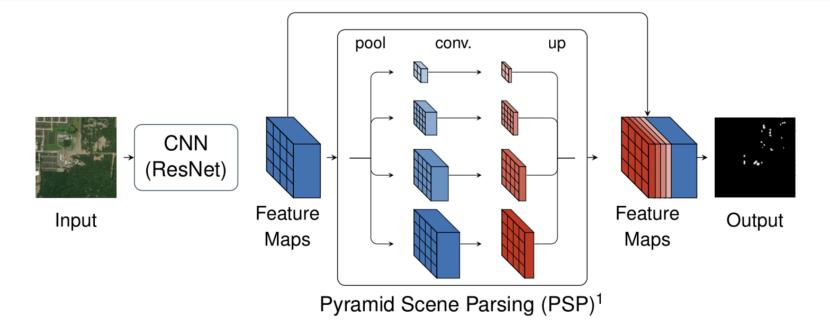
- Preprocessed imagery
- Crowdsourced labels
- Two Partitions

**Metrics** 

Intersection over UnionPixel Accuracy

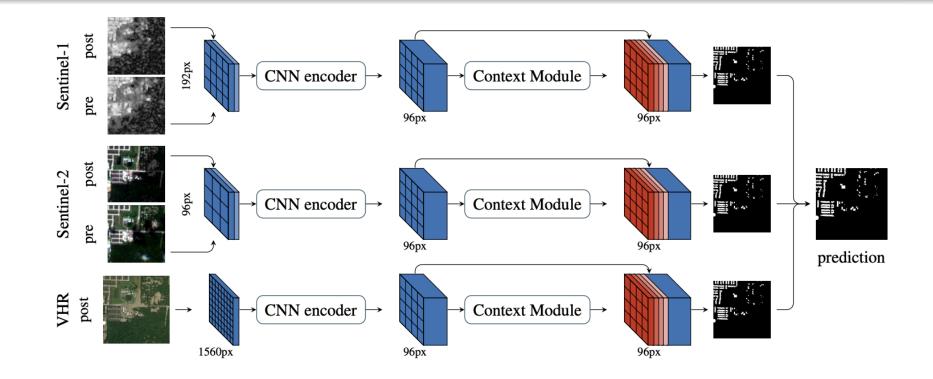
Houston, Texas Affected Areas Hurricane Harvey Twin Lakes, Charlston Colony, Bear Creek **Se**mmizant Village Disctrict Building footprints aquired from Open Street Map And flooded buildings crowd sourced from https://www.digitalglobe.com/opendata/hur harvey/vector-data Coordinate Frame: UTM15N 3305000.0001 304000.000N Legend OSM Building Footprints 303000.000 Crowdsourced Flooded Building Annotations Extent 1000 2000 m 500 1500 West partition (test) East partition (train and validation) 245000.000E 243000.000E 244000.000E 246000.000E 247000.0

### Semantic Segmentation with Context Aggregation

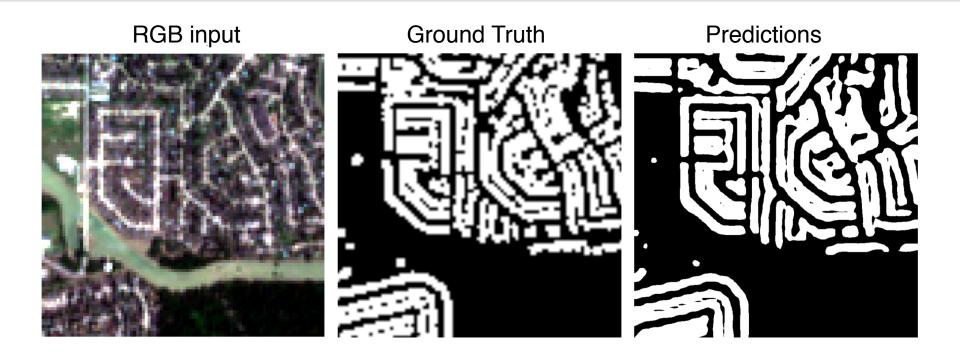


<sup>1</sup> Hengshuang Zhao et al. "Pyramid scene parsing network". In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017

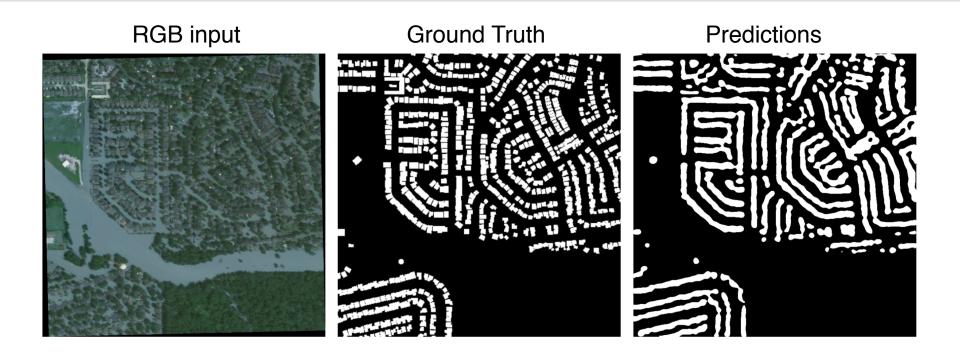
### Multimodal Fusion with Multi<sup>3</sup>-Net



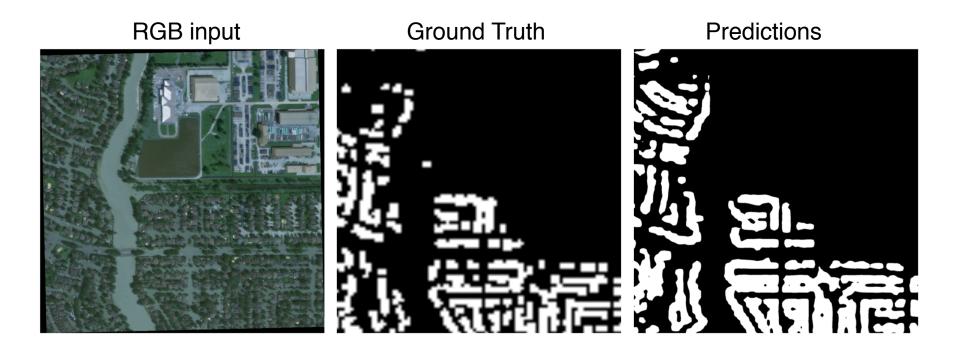
# Segmentation of buildings with Sentinel-2



# Segmentation of buildings with VHR imagery



# Segmentation of flood-affected buildings



### Better segmentation with fusion



| Data          | mloU  | bloU  | Acc   |
|---------------|-------|-------|-------|
| S1            | 50.2% | 17.1% | 88.7% |
| S2            | 52.6% | 12.7% | 87.4% |
| VHR           | 74.2% | 56.0% | 93.1% |
| S1 + S2       | 59.7% | 34.1% | 86.4% |
| S1 + S2 + VHR | 75.3% | 57.5% | 93.7% |

**larger is better**: mean Intersection over Union (mIoU), building Intersection over Union (bIoU), accuracy (acc)

Data

- ► first available (globally)
- Iater available (selected areas)

- ► VHR > radar, optical
- radar+optical > radar, optical
- ► radar+optical+VHR > VHR

| Data          | mloU  | bloU  | Acc   |
|---------------|-------|-------|-------|
| S1            | 50.2% | 17.1% | 88.7% |
| S2            | 52.6% | 12.7% | 87.4% |
| VHR           | 74.2% | 56.0% | 93.1% |
| S1 + S2       | 59.7% | 34.1% | 86.4% |
| S1 + S2 + VHR | 75.3% | 57.5% | 93.7% |

**larger is better**: mean Intersection over Union (mIoU), building Intersection over Union (bIoU), accuracy (acc)

Data

- first available (globally)
- later available (selected areas)

- ► VHR > radar, optical
- ► radar+optical > radar, optical
- ► radar+optical+VHR > VHR

| Data          | mloU  | bloU  | Acc   |
|---------------|-------|-------|-------|
| S1            | 50.2% | 17.1% | 88.7% |
| S2            | 52.6% | 12.7% | 87.4% |
| VHR           | 74.2% | 56.0% | 93.1% |
| S1 + S2       | 59.7% | 34.1% | 86.4% |
| S1 + S2 + VHR | 75.3% | 57.5% | 93.7% |

**larger is better**: mean Intersection over Union (mIoU), building Intersection over Union (bIoU), accuracy (acc)

Data

- first available (globally)
- Iater available (selected areas)

- ► VHR > radar, optical
- radar+optical > radar, optical
- radar+optical+VHR > VHR

| Data          | mloU  | bloU  | Acc   |
|---------------|-------|-------|-------|
| S1            | 50.2% | 17.1% | 88.7% |
| S2            | 52.6% | 12.7% | 87.4% |
| VHR           | 74.2% | 56.0% | 93.1% |
| S1 + S2       | 59.7% | 34.1% | 86.4% |
| S1 + S2 + VHR | 75.3% | 57.5% | 93.7% |

**larger is better**: mean Intersection over Union (mIoU), building Intersection over Union (bIoU), accuracy (acc)

Data

- first available (globally)
- Iater available (selected areas)

#### Findings:

- ► VHR > radar, optical
- radar+optical > radar, optical

radar+optical+VHR > VHR

| Data          | mloU  | bloU  | Acc   |
|---------------|-------|-------|-------|
| S1            | 50.2% | 17.1% | 88.7% |
| S2            | 52.6% | 12.7% | 87.4% |
| VHR           | 74.2% | 56.0% | 93.1% |
| S1 + S2       | 59.7% | 34.1% | 86.4% |
| S1 + S2 + VHR | 75.3% | 57.5% | 93.7% |

**larger is better**: mean Intersection over Union (mIoU), building Intersection over Union (bIoU), accuracy (acc)

Data

- ► first available (globally)
- Iater available (selected areas)

- ► VHR > radar, optical
- radar+optical > radar, optical
- ► radar+optical+VHR > VHR

# Collapsed Buildings in Ecuador Earthquake (2016)

Damage Detection & Estimation







# Extraction of Collapsed Buildings

| RGB input | Ground Truth | Predictions |
|-----------|--------------|-------------|
|           | *            | •           |

### Extraction of Collapsed Buildings





#### final prediction overlay



### Extraction of Collapsed Buildings





#### final prediction overlay



## Publications, Data and Source Code

NIPS 2018 Conference December 2nd - 8th in Montreal, Canada

- Spatiotemporal Workshop
- Al for Social Good

AAAI 2019 Conference January 27th - Feb. 1st in Hawaii, USA

Multi<sup>3</sup>Net: Segmenting Flooded Buildings via Fusion of Multiresolution, Multisensor, and Multitemporal Satellite Imagery

More infos, code and data at GitHub

https://github.com/FrontierDevelopmentLab/multi3net

### Multimedia-Satellite Benchmark at MediaEval Satellite Image Analysis + Social Media

### Multimedia Satellite Task at MediaEval

#### MMSat 2017

Detection of Flooding Events from Social Media Based on YFCC100m Segmentation of Flooded Areas



Classification of **Road possibility from Social Media** Based on images in Tweets, newspapers (Flooded) Road Segmentation from VHR- Imagery

**MMSat 2018** 





### Multimedia Satellite Task at MediaEval

#### Two subtasks: Satellite Image & Social Media Analysis

**15 Teams** registered in 2017 from all over the world with more than **60 submissions** 



**18 Teams** registered in 2018 from all over the world with more than **50 submissions** 



### Multimedia-Satellite Benchmark at MediaEval Satellite Image Analysis + Social Media

Contact: Benjamin.Bischke@dfki.de Website: http://www.multimediaeval.org/mediaeval2019



# Questions?

