e-Research
Centre

OXFORD

Fast Convolutions Via the Overlap-
and-Save Method Using Shared
Memory FFT

Karel Adamek, Sofia Dimoudi, Mike Giles, Wes Armour

WWW.0erc.ox.ac.uk

Convolutions and motivation
Overlap-and-save method
Custom shared memory FFT
Results

Conclusions

/‘ DEPARTMENT OF

ENGINEERING
SCIENCE

UNIVERSITY OF

OXFORD

0),€:(0)23D)

e-Research
CENTRE

Oxford
) [l &-Research
Centre

Convolution (time-domain)

Convolution is one of the fundamental signal filtering techniques widely
used in natural sciences and signal processing.

Convolution is given by

y[n] = h[k]xs[n] = > s[n —k]hl[k],

s the input signal of size N, h is the filter of length M, and y is the
convolved signal N-M+1,

e Complexity is NM
« Suited for very small filters

Convolution (frequency-domain)

We could also invoke convolution theorem and perform convolution
using frequency-domain

h[k]xs[n] = FT~Y(H[m]-S[m])

H and S are Fourier pairs in frequency domain of h and s which are in
time domain.

In frequency domain the convolution is just a point-wise complex
multiplication.

Complexity of convolution through frequency domain is 3N log, N + 2N

How to do convolution in frequency-domain

Doing convolution via frequency domain means
we are performing circular instead of a linear
convolution.

Frequency domain convolution:
« Signal and filter needs to be padded to N+M-1
to prevent aliasing

« Itis suited for convolutions with long filters

» Less efficient when convolving long input
signal with a short filter, because due to
padding of the filter we processing a lot of
“zeroes”.

/ Filters (M) /
/ Input signal (NS)/

Pad to N,tM-1

FFT

Complex multiply

inverse FFT

Reject edges

/ Output signal (NS-M-i-l)/

Motivation

Our motivation

Motivation — Fourier Domain Acceleration Search

Normal pulsar P>10T,s

Isolated 3ms Pulsar P, = 1day

0.02
T

0.5
T
Normalised Power

Normalised Power
0.01
T

wosuey N09S Ag sabew|

N N N N N
-500 0 500 -500 0
Fourier Frequency Offset Fourier Frequency Offset

Signals from binary systems can undergo

a Doppler shift due to accelerated motion

experienced over the orbital period.

» signal is no longer periodic

» standard pulsar searches are less
sensitive matched filter approach.

This can be corrected by using a

500

Motivation — Fourier Domain Acceleration Search

Fourier domain accelerated search!2 (FDAS) uses multiple matched filters, where
each filter fits a specific acceleration.

« Number of filters F depends on FDAS precision (SKA: 1-200)

« Size of the filters M depends on maximum acceleration searched (SKA: ~200)

« Size of the signal depends on observation time (SKA 8M+ samples)

. A—
Also we would like to)
do interbining of the ’
tput | V-
outpult. v
* L = I AV_
What is the best . .
technique? | | | —A—
—

1 Dimoudi Sofia et. al. A GPU implementation of the Correlation Technique for Real-time Fourier Domain Pulsar Acceleration Searches, 2018
2 Ransom Scott et. al. A New Search Technique for Short Orbital Period Binary Pulsars 2003

_ = S
~ D P e-Research
= Centre

Our approach is general

Our convolution presented here is for general case.

So If you have
e long input signal

« and a set of short (<2048) filters

« and require non-local operations on convolution
result (like interbinning in FDAS), but even without it.

Then our approach could be useful to you...

Overlap-and-Save & Overlap-and-Add

Overlap-and-save(add) method is a hybrid
method which combines advantages of
time-domain convolution and frequency
domain convolution.

It allows us to separate input signal into
segments which are convolved separately
using frequency domain convolution.

Overlap-and-save method:

» Especially suited for long input signals
and short filters

* No need for long paddings of filters

* No synchronization needed for Overlap-
and-save method. Overlap-and-add
needs to know about its neighbors.

* GPU friendly

Image by Sofia Dimoudi

\l . ‘I‘ filter: h <1 H
[t et
i TR
L L L
a ; b c Input signal
= i
! N !
i N !
i !
FT |
y ! !
I FT
A
UIFT
i i
B !
|
: . \ i
Contamigra_.l.if! bins i FT"{/E\"H} c
e
o Result(;-)'""'f"m FT"{?*H}
v !
! Result(b) ! FT-{C*H}
' Ly
Result(c)
Out@ & Outb) | Outc) | Output signal

Number of operations

. . . . Number of operation required for 8M input signal
« Time-domain convolution is

most efficient for tiny filter d | ﬁmé-doma/nl BN BL T
sizes Frequency-domain
4+ OLS (8192) —— _
OLS (4096) ——

* Frequency-domain
convolution is best when
filter is long

« Overlap-and-save is hybrid

filters p ’ J

method suited for short

Number of operations [Gop]

Number of operations is only
one of many parameters
affecting performance.

0 - et Ll ool L
1 10 100 1000

Filter length

Implementation of OLS using cuFFT

RIGHT: Flow diagram of the OLS method. @rt: nput— data to be comvolved, Seto)
filters
 Forward FFT and inverse FFT is ¥
calculated using cuFFT Iibrary Forward FFT a padded filter for all filters
v

Forward FFT a padded segment of input (for
overlap-save convolution algorithm)

« Best performing FFT length for cuFFT is

8192 samples. T
Pointwise multiply of a FFT'd segment with all
» Custom GPU kernels are needed for filters
point-wise multiplication and removing i
aliased parts Backward FFT of a convolved segment
- Each Segment is convolved with same Remove polluted part of a segment and save
set of filters, these are reused segment in appropriate place in output plane

!

Gnd: Output — convolved output pla nD

Point-wise complex multiplication kernel

Parallelization of point-wise multiplication of a segment with set of filters

Array of
filters

GPU threads Execution iterates over input segments

Q n n n n Input array

GPU threads

X

(-

C

Compl E
MuItFi)pl;(® g
-

Output plane

GPU threads Each thread loops ovgr_flltgrs for each input sggment
one complex multiplication result for each filter

OXFORD

Image by Sofia Dimoudi

Can we do better?

What is the limiting factor in the cuFFT

v

Remove polluted part of a segment and save | €——
segment in appropriate place in output plane | —>

implementation of Overlap-and-save? Start: Input — data to be convolved, set of
filters
. | y
Accesses to the device memaory | Forward FFT a padded filter for all filters |
v
Forward FFT a padded segment of input (for | ««——0 a"
overlap-save convolution algorithm) —_— (@)
! =
Pointwise multiply of a FFT'd segment with all | -—— O
filters —_— E
Y q)
Backward FFT of a convolved segment : 9
>
o
O

A 4

Gnd: Output — convolved output planD

Can we do better?

What is the limiting factor in the cuFFT

implementation of Overlap-and-save? Start: Input — data to be convolved, set of
filters
. i y
Accesses to the device memaory | Forward FFT a padded filter for all filters |
| " ____________ |
Forward FFT a padded segment of input (for
overlap-save convolution algorithm)
. . v
We can eliminate these by having an FFT Pointwise multiply of a FFT’d segment with all
filters

implementation invokable from the thread-
block.

A 4

Backward FFT of a convolved segment

v

Remove polluted part of a segment and save
segment in appropriate place in output plane

« This would allow us to perform all steps
of the overlap-and-save method inside
the thread-block

Custom FFT convolution kernel

Shared Memory FFT

Shared Memory FFT

What FFT algorithm to choose

The custom FFT algorithm should There are three basic algorithms
* be best suited to our needs; aim is to
develop a convolution not general

purpose FFT

1) Cooley-Tukey
+ Simple access pattern
+ Local to the warp for first 5 iterations

- Needs reordering of the output
* Dbe fast but does not need to be the best g P

] _ hared 2) Pease
€ using shared memory + Memory access pattern does not
- change
n-place - Needs reordering of the output
* consume as little registers as possible so 3) Stockham
it would not impact the kernel which is + Does not need reordering of the
calling it output

e focus on FFT size N=2t + Great for stand alone FFT code

_ = S
~ D P e-Research
= Centre

Custom FFT

We have chosen Cooley-Tukey implementation

1) Getting rid of the reordering step
Convolution in frequency domain is point-wise
multiplication which is order invariant we can leave
FFT result in wrong order as long as we correct it
during inverse FFT.
Using combination of DIF and DIT Cooley-Tukey
algorithm will do the trick.

2) Simple data access pattern

3) Small butterflies
Butterflies smaller than warp could performed using
shuffles without synchronization

4) Large butterflies
Performed using shared memory

Calculation of twiddle factors requires evaluating exp(), we
use fastmath intrinsics for that.

Decimation in time or in frequency?

INPUT
In Order Scrambled

Stockham

In Order Scrambled
OUTPUT

Cooley-Tukey FFT

The discrete Fourier tr?vnsformation IS given x[0] /—X[O]
21Tk
X[n] = Z x[n]e_l N X[d] e " X[1]
k=0 x[2] ‘v’v’ X[2]
i2kn 6 OO X[3
k— - x[6] ERVAVAVAVARRY
we=e X XXX

W is called twiddle factor. x[1] y’y X[4]
[5] X[5]

FFT algorithm is based on divide and conquer, two § /\X
smaller FFTs (A, B) are combined into new bigger x[3] X[6]
one ¢ (7] X[7]

N N
Clk]=4 [kmod (§>] + W*B [kmod (§>]

C[0]=A[0[+W°B[0]

C[1]=A[1]+W'B[1]

Initial implementation:

* One thread calculates two different elements of
C from the same FFT which share the same
input data and uses the same twiddle factor
(C[0], C[2])

C[2]=A[0]-W°B[0]

C[3]=A[1]-W'B[1]

Cooley-Tukey FFT

The discrete Fourier transformation is given

_i2mkn

N
X[n] = x[nle” N

i2mkn
Wk = e N
W is called twiddle factor.

FFT algorithm is based on divide and conquer, two
smaller FFTs (A, B) are combined into new bigger
one C

c1k1 = A[fmoa ()] + w5 [imod ()

Initial implementation:

* One thread calculates two different elements of
C from the same FFT which share the same
input data and uses the same twiddle factor
(C[0], C[2])

x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]

/—X[O]

X[1]

‘" <l
XX/

X[3]
O

AN
\

X[7]

A[O]—a _a—C[0]=A[0]+W°B[0]]

C[1]=A[1]+W'B[1]

B[0]—" > Yo— C[2]=A[0]-W’B[0] |

B[]]_/ \._ C[3]=A[1]-W1B[1]

Custom FFT progression

Basic: Basic:
* Limited by shared memory Shared memory bandwidth: 10,248 TB/s; (73%)
bandwidth Synchronization: 31.4%; pipe busy: 33.5%;
Theoretical occupancy: 100%;
* High special function unit (SFU) Load/Store instructions: 50%; single: 50%;
utilisation

* Shared Mem. bank conflicts
Kernel T|me Speed-u iz,
| P P Speed up
2 22

* Low twiddle factor reuse
Basic

* Low instruction level parallelism

Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs

per kernel to avoid being device memory bandwidth limited.

Introduction of shuffle instruction

Shared memory bank conflicts are caused
by small butterflies.

For butterflies smaller then 32 use shuffle
instructions.

Different parallelization:
* One thread calculates the same element C
from independent sub-FFTs (for example C[0])

* Allows us to use shuffle instructions

* No share memory bank conflicts

* No synchronization required

* Increases Load/Store instruction
utilization

x[0]
x[4]
x[2]
x[6]
x[1]
x[5]
x[3]
x[7]

C[0]=A[0]+W°B[0]
C[1]=A[1]+W'B[1]
C[2]=A[0]-W°B[0]

C[3]=A[1]-W'BJ[1]

)

Oxford
e-Research
Centre

Introduction of shuffle instruction

Shared memory bank conflicts are caused
by small butterflies.

For butterflies smaller then 32 use shuffle
instructions.

Different parallelization:
* One thread calculates the same element C
from independent sub-FFTs (for example C[0])

* Allows us to use shuffle instructions

* No share memory bank conflicts

* No synchronization required

* Increases Load/Store instruction
utilization

//-—> Second through Fifth iteration (no synchronization)
FoT==2;

PoTpl=4;
for({g=_ rg<s rgtt) {
m param = (local_id & (PoTpl - 1))

itemp=m params>J;
W=Get W _vwalue(PoIpl,m param); // Twiddle factors

// Reading B

flremp.®= shfl xor(A DFT walue.x, (. -itcemp)*FoT) :
f2temp.y=_shfl xor(A DFT wvalue.y, (1-itemp) *PoT) ;
/{ Calculation C = L + W*E

L DFT walue.x = =shfl xor(h DFT wvalue.x,itemp*PoT)
+ W.x*frtemp? . x-W.y*f2temp. v’
A DFT wvalue.y = _ shfl xor(k DFT wvalue.y,itemp*PoT)

+ W.x*ftemp?.yv+W.yv*f2tenp.x;

PoT=PoT<<';
PoTpl=PoTpl<<l;

C[0]=A[0]+W’B[0]
C[1]=A[1]+W'B[1]
C[2]=A[0]-W°B[0]

C[3]=A[1]-W'B[1]

Shuffle instructions

Unroll: Unroll:

First 5 iteration of the FFT algorithm Shared memory bandwidth: 5,225 TB/s;
are calculated using shuffle inst. Synchronization: 24.9%; pipe busy: 33%:;
Less synchronization Theoretical occupancy: 50%;

No bank conflicts Load/Store instructions: 70%; single: 50%;

* Limited by Load/Store

instructions
. . . . T|me Total
« Medium special function unit Kernel Speed-up Speed-u
(SFU) utilisation b b

« NO Shared Mem. bank conflicts Basic 2 22
« Low twiddle factor reuse Unroll 1.95 1.13 1.13

* Low instruction level parallelism

Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs

per kernel to avoid being device memory bandwidth limited.

Four elements per thread

Four elements: Four elements:

Four FFT element are processed per Shared memory bandwidth: 6,365 TB/s;

thread. Synchronization: 17%; pipe busy: 43%;
Good: Theoretical occupancy: 50%;
* Better twiddle factor reuse Load/Store instructions: 75%; single: 50%;

* More instruction level parallelism

* Less threads per thread-block

Bad: T|me Total
- More registers Kernel SppEiilip Speed up

Basic 2 22
Status:
* Limited by Load/Store Unroll 1.95 1.13 1.13
instructions Four elements 1.49 1.31 1.49

* Low SFU utilisation
« NO Shared Mem. bank conflicts

Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs
‘ Good twiddle factor reuse per kernel to avoid being device memory bandwidth limited.

Less shuffle instruction per thread

Shuffle instructions increasing Load/Save
instruction utilization which limits the code.

In previous version thread does not know which

element (A or B) is local to the thread and which it
needs to load. This is a problem since B needs to
be multiplied by twiddle factors while A should not.

Multiplying with modified twiddle factor, which is for
A W=1, before shuffle instructions means we no
longer need to know which element is local to the
thread, since shuffled element has proper value.

C[0]=A[0]+W"B[0]
C[1]1=A[1]+W'B[1]
C[2]=A[0]-W"BJ[0]

C[3]=A[1]-W'BJ[1]

C[O]=(1A[0]))+(W"B[0])
C[1]=(1A[1])+(W'B[1])
C2]=(1A[0])-(W"B[0])

1A[0]
1A[1]
WOB[0]

W'B[1] C[3]=(LA[1])-(W'B[1])

Less shuffle instructions

Final: Final:

Less shuffle instruction, reduced Shared memory bandwidth: 8,374 TB/s;
number of registers Synchronization: 21%; pipe busy: 41%:
Good: Theoretical occupancy: 62.5%;

* Occupation 62.5% but number Load/Store instructions: 75%; single: 75%:

of active blocks is 2.5x larger
(from 2 to 5)

« Shared Mem. B. 60% utilized
Kernel T|me Speed-u Total
P P Speed up

- Limited by floating point Basic 2 22
operations and Load/Store Unroll 1.95 1.13 1.13
instructions
N Four elements 1.49 1.31 1.49
 Low SFU utilisation
* NO Shared Mem. bank conflicts Final 1.18 1.26 1.89
° GOOd twiddle factor reuse Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs

per kernel to avoid being device memory bandwidth limited.

FFT performance — fair and unfair comparison

Execution time of cuFFT library and custom FFT))))
, Unfair comparison with custom FFT is when

14 T
Titan V cuFFT —&—
Titan V custom FFT —o— custom FFT is not limited by device memory
= Titan RTX cuFFT - -4 - . . .
2 Titan RTX custom FET - -0 - . bandwidth while cuFFT is.
hé" -
& We have calculated 100 FFTs per kernel to avoid
L
g being device memory bandwidth limited.
g
3
% Speed-up vs. cuFFT library
I ' ' Titan V fair —8—
2.8 ¢ Titan V unfair —o— -
Titan RTX fair = =& -
2.6 Titan RTX unfair = -© -
256 512 1024 2048 4096 24 ' X
FFT length [samples] 221 Treal
s Tt o
| 2+ e
. . . . T ! Tl
Fair comparison is when both codes are limited by S st el p
device memory bandwidth. T e]
"o
14 | .
In fair comparison custom FFT is as fast as cuFFT 12} |
for tested FFT sizes.
08 | | 1
256 512 1024 2048 4096
FFT size is limited by size of the shared memory or number of threads. FFT length [samples]

Putting convolution kernel together

Convolution kernel is using same
implementation of point-wise complex
multiplication as in cuFFT convolution.

For 2M points, filter M=192, convolution =
1024, F=64 filters

FP32 instructions and Load/Store
instructions are high

« Device memory bandwidth 67%
« Shared memory bandwidth 53%
« L2 hit rate is 62%

» L1 is sacrificed for shared memory

* Occupancy 50%

100%
90%
B80%
70%
60%
50%
40%

Utilization

30%
20%
10%

Function Unit (Sinale) Memory (Device)

sed by this kernel for the various types of memory on the device. The table also shows the utilization
sughput supported by the memary. More...

Bandwidth Utilization

3,822,827 GB(s
3,854.209 GBfs

7.677.037 GBJs } - - - - - - - - 1
/ Idle Low Medium High Max

514.353 GBfs
467.121 GB(s

981.473 GB/s | | - - - - - - - - 1
/ idle Low Mediurn High Max
0 Bfs
0BJs

528.966 GB/fs
457.121 GB/fs
6,784,412 GB(s

7.780.499 GB/s | | - - - - - - - - - 1
! Idle Low Medium High Max

11.005 GB/s
426.483 GB/s

437.488 GB/fs

1]
Idle Low Medium High Max

Results

Results

Callbacks

Callbacks are user defined functions which
enable modification of input or output of the Cm; Input — data to be convolved, setD

CUFFT filters
' v
)] | Forward FFT a padded filter for all filters |
Access to the data is provided per element 1
basis. Forward FFT a padded segment of input (for | <e— 2‘
overlap-save convolution algorithm) —_— (@)
! =
Two places where we could use callbacks Pointwise multiply of a FFT'd segment with all O
filters E
X, —when we would multiply output from v]I. O
forward FFT with filters Backward FFT of a convolved segment s L_)
7 >
o
X., — when would remove polluted partS Remove polluted part of a segment and save D
2) segment in appropriate place in output plane
after inverse FFT 2_
Y

However for non-local operation on G“d: Output - convolved output p'a“‘D
elements (like interbinning) callbacks
cannot be used. They are not suitable for
FDAS example.

Performance comparison

Input and output are complex. M is length of the filter. For number of filters F=8.

LEET V100 (CUDA 10) Titan V (CUDA 10) Titan RTX (CUDA 10)

' : 12 — - ‘ - — 12
Shows the execution . cuFFT B . Mgt —e— |
time of custom FFT custom FIT - (I v < e
OLS in black and 10 T 1 w100 — - | 10
CUuFFT OLS with 91 T [M=2048 =& 4 9

: > sl M=3072 - = | 4
callbacks in gray. g
7 7
Spread in ex. timeis T 4| 6
due to segment size. § 5| 5
The custom FFT is > 4l p
restricted to 4096. = ;1 3
L 2 | 2
The execution time ; .
scales linearly with)
. . . . 0 . . Lo 0
Increasing input Slgnal IM2m 4Mm Sm ImM2m 4Mm Sm IM2m 4Mm SMm
length.
Signal length

_ s S
8) ') [l &-Research
= Centre

Performance comparison with callbacks

Input and output are complex. M is length of the filter.

V100 (CUDA 10) Titan V (CUDA 10) Titan RTX (CUDA 10)
. M=64 —o— o R
LEFT : 6| M=256 —e— | A | - 16
Even with callbacks 551 M=512 - -& - o o s
used in the OLS with ' M=1024 —v - e me '
S5t M=2048 = & ¢ R | o 13
CUFFT, the speed-ups ol M=3072 - +— | - e .5
are decent for filter ' | N '
sizes <1024 samples. & ¢ ‘ e D 1
s 33 | I I A R)
25 ¢ 0—0—0 | 00— o & o 0 | {25
Jle—0—0— 0= o ol a-a-A-Ac-A--A | o—0— " 12
B el e e oS ¥ =k O
’-5'15?",;,'_3':&-1'; o —Fﬂ_n--k ﬂ_.;._@..;-.-n'l-5
D e o e o o [¥ = = a | s e e | !
oS 5

250K 500K IM 2M 4M 8M 250K 500K 1M 2M 4Mm 8M 250K 500K IM 2M 4M M

Signal length

Execution time [ms]

Performance comparison

Input and output are complex. M is length of the filter. Signal length N=2Mil.

28

V100 (CUDA 10)

Titan V (CUDA 10)

Titan RTX (CUDA 10)

26 |

24
22
20
181
16 | ; ;
2t
0t

" CuFFT
custom FFT

| M=64 —o—
M=256 —e—

M=512 = & -

1| M=1024 —v - 1
M=2048 — B »
WM=30.72 - -0— v

S o A OV X

816 32 64

96 816 32 64

Number of filters

96 816 32 64 96

RIGHT:

Shows the execution
time of custom FFT
OLS in black and
CUFFT OLS with
callbacks in gray.

The execution time
scales linearly with
increasing number of
filters.

Performance comparison with callbacks

Input and output are complex. M is length of the filter.

V100 (CUDA 10) Titan V (CUDA 10) Titan RTX (CUDA 10)

6 - 6 RIGHT:

| M=64 —o— | | - Even with callbacks

M=5]12 - & - | j o used in the OLS with
Sl Me1024 —w -] | B cuFFT, the speed-ups

45| M=2048 - | | N q tor fil

T M=3072 - -%— | | o : a.re, ecent Tor tilter
4t | | . | ebed 4 sizes <1024 samples.

Speedup

2 4 8 16326496 2 4 8 16 32 64 96 2 4 8§ 16 32 64 96
Number of filters

Convolutions with post-processing

ConVOIUtlon Wlth pOSt- Glrt:Input—datatobeconvolved,setD

filters

processing | .

Forward FFT a padded filter for all filters |

Remove polluted part of a segment and save
segment in appropriate place in output plane
v

Gnd: Output = convolved output planD

v
Forward FFT a padded segment of input (for | ««——0 2"
For non |Ocal pOSt processing Of overlap-save convolution algorithm) —>| O
- - ‘ E
the CcO nVOI ution Cal | baCkS are not Pointwise multiply 0:1: FFT'd segment with all | <e— D
. . ilters —_—
usable (like in FDAS). i S
- | @
Backward FFT of a convolved segment s L_)
>
()
p=

Oxford
D P e-Research
Centre

Performance comparison

Input and output are complex. M is length of the filter. For number of filters F=8.

LEFT V100 (CUDA 10) Titan V (CUDA 10) Titan RTX (CUDA 10)
Shows speed-up of . M=64 —e— | TDM=64
custom FFT OLS over 61 b T | T T 6
CUFFT OLS. I M=1024 —w - | B | A e B
- ime- 5t M=2048 = B 1 S R | 15
Speeql up to time- M=3072 - -— - D
domain convolution in 4.5 | ; t
gray. S 4| oy
hﬁ) o [}
_ N 35 ¢ |
Speed-up is more or N A
less constant as signal 05 | A g A
length is increasing. 51 _ r;__;_ v |
a -8- -a
Performance is gained L3 & o
by not performing global ' A i g

accesses. These scales
with number of
segments.

250K 500K IM 2M 4M 8M 250K 500K 1M 2M 4Mm 8M 250K 500K IM 2M 4M M

Signal length

Performance comparison

Input and output are complex. M is length of the filter. Signal length N=2Mil.

V100 (CUDA 10) Titan V (CUDA 10) Titan RTX (CUDA 10)
: M=64 —o— TD M=64
551 M=256 —o— : f
] M=512 - -& - Q
St M=1024 — - |
45 | - M=2048 = & | -
: - M=3072 - — :
4 [g O—C] B 1
& s |o—r—oo0 | o o A
% O /Q—Q ‘_‘I A -“4-A
Y 3 Q_'HA_ - A- A SR TS WS SO S - _e
[7%5) A - A Q'—H--.e__o__a .

25|

15}

2 4 8 1632649 2 4 8 1632649 2 4 8 16 32 64 96

Number of filters

55

4.5

3.5

2.5

1.5

RIGHT:

Shows speed-up of
custom FFT OLS over
cuFFT OLS.

Speed-up is more or
less constant as
number of filters is
increasing.

Performance is
gained by not
performing global
accesses. These
scales with number of
elements (segments).

When cuFFT wins

Convolution of N=2Mil samples, 32 filters.

10
LEFT:
Shows execution time |
of OLS with custom
FFT for different =
segment sizes (FFT g p |
size) and how it IS
depends on filter size. %‘
- E :
The execution time for g
OLS with cuFFT with ™
: : N=256 —o—
optimal segment size 5 N=512 —3— -
(usually 8192) is %iégﬁ —v—
shown in red.] N=4096
IchTYTT-ch—

0 | | | | | |

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Filter length [samples]

Conclusions

* Implemented custom shared memory FFT and integrated
Into overlap-and-save method

* For convolution with post-processing on V100 using OLS
with custom FFT we have achieved speedup 2x up to 4x
over OLS with cuFFT depending on filter size (<2048)

« For convolutions without postprocessing on V100 we
have achieved speedups 1.8x up to 2.5x for filters <512.
(2x-2.8x for Titan V)

 Investigating possibility of 2D convolutions

UNIY
e R
(0):43(0)23D) B

Thank you for your attention!

