
www.oerc.ox.ac.uk

Karel Adámek, Sofia Dimoudi, Mike Giles, Wes Armour

Fast Convolutions Via the Overlap-

and-Save Method Using Shared

Memory FFT

Content

1. Convolutions and motivation

2. Overlap-and-save method

3. Custom shared memory FFT

4. Results

5. Conclusions

Convolution (time-domain)

Convolution is one of the fundamental signal filtering techniques widely

used in natural sciences and signal processing.

Convolution is given by

s the input signal of size N, h is the filter of length M, and y is the

convolved signal N-M+1,

• Complexity is NM

• Suited for very small filters

y[n] = h[k]s[n] = ෍

𝑘=0

𝑀−1

𝑠 𝑛 − 𝑘 ℎ 𝑘 ,

Convolution (frequency-domain)

We could also invoke convolution theorem and perform convolution

using frequency-domain

H and S are Fourier pairs in frequency domain of h and s which are in

time domain.

In frequency domain the convolution is just a point-wise complex

multiplication.

Complexity of convolution through frequency domain is 3𝑁 log2𝑁 + 2𝑁

ℎ[𝑘]𝑠[𝑛] = 𝐹𝑇−1(𝐻 𝑚 𝑆 𝑚)

How to do convolution in frequency-domain

Doing convolution via frequency domain means

we are performing circular instead of a linear

convolution.

Frequency domain convolution:

• Signal and filter needs to be padded to N+M-1

to prevent aliasing

• It is suited for convolutions with long filters

• Less efficient when convolving long input

signal with a short filter, because due to

padding of the filter we processing a lot of

“zeroes”.

Motivation

Our motivation

Im
a

g
e

s
 b

y
 S

c
o

tt R
a

n
s
o

m

This can be corrected by using a

matched filter approach.

Motivation – Fourier Domain Acceleration Search

Normal pulsar P>10Tobs

Signals from binary systems can undergo

a Doppler shift due to accelerated motion

experienced over the orbital period.

• signal is no longer periodic

• standard pulsar searches are less

sensitive

Motivation – Fourier Domain Acceleration Search

Fourier domain accelerated search1,2 (FDAS) uses multiple matched filters, where

each filter fits a specific acceleration.

• Number of filters F depends on FDAS precision (SKA: 1-200)

• Size of the filters M depends on maximum acceleration searched (SKA: ~200)

• Size of the signal depends on observation time (SKA 8M+ samples)

1 Dimoudi Sofia et. al. A GPU implementation of the Correlation Technique for Real-time Fourier Domain Pulsar Acceleration Searches, 2018
2 Ransom Scott et. al. A New Search Technique for Short Orbital Period Binary Pulsars 2003

Also we would like to

do interbining of the

output.

What is the best

technique?

Our approach is general

Our convolution presented here is for general case.

So If you have

• long input signal

• and a set of short (<2048)​ filters

• and require non-local operations on convolution

result (like interbinning in FDAS), but even without it.

Then our approach could be useful to you…

Overlap-and-Save & Overlap-and-Add

Overlap-and-save(add) method is a hybrid

method which combines advantages of

time-domain convolution and frequency

domain convolution.

It allows us to separate input signal into

segments which are convolved separately

using frequency domain convolution.

Overlap-and-save method:

• Especially suited for long input signals

and short filters

• No need for long paddings of filters

• No synchronization needed for Overlap-

and-save method. Overlap-and-add

needs to know about its neighbors.

• GPU friendly

Image by Sofia Dimoudi

Number of operations

• Time-domain convolution is

most efficient for tiny filter

sizes

• Frequency-domain

convolution is best when

filter is long

• Overlap-and-save is hybrid

method suited for short

filters

Number of operations is only

one of many parameters

affecting performance.

Implementation of OLS using cuFFT

RIGHT: Flow diagram of the OLS method.

• Forward FFT and inverse FFT is

calculated using cuFFT library

• Best performing FFT length for cuFFT is

8192 samples.

• Custom GPU kernels are needed for

point-wise multiplication and removing

aliased parts

• Each segment is convolved with same

set of filters, these are reused

Point-wise complex multiplication kernel

Parallelization of point-wise multiplication of a segment with set of filters

Image by Sofia Dimoudi

Can we do better?

What is the limiting factor in the cuFFT

implementation of Overlap-and-save?

• Accesses to the device memory

Can we do better?

What is the limiting factor in the cuFFT

implementation of Overlap-and-save?

• Accesses to the device memory

We can eliminate these by having an FFT

implementation invokable from the thread-

block.

• This would allow us to perform all steps

of the overlap-and-save method inside

the thread-block

Shared Memory FFT

Shared Memory FFT

What FFT algorithm to choose

There are three basic algorithms

1) Cooley-Tukey

+ Simple access pattern

+ Local to the warp for first 5 iterations

- Needs reordering of the output

2) Pease

+ Memory access pattern does not

change

- Needs reordering of the output

3) Stockham

+ Does not need reordering of the

output

+ Great for stand alone FFT code

The custom FFT algorithm should

• be best suited to our needs; aim is to

develop a convolution not general

purpose FFT

• be fast but does not need to be the best

• be using shared memory

• In-place

• consume as little registers as possible so

it would not impact the kernel which is

calling it

• focus on FFT size N=2t

Custom FFT

We have chosen Cooley-Tukey implementation

1) Getting rid of the reordering step
Convolution in frequency domain is point-wise

multiplication which is order invariant we can leave

FFT result in wrong order as long as we correct it

during inverse FFT.

Using combination of DIF and DIT Cooley-Tukey

algorithm will do the trick.

2) Simple data access pattern

3) Small butterflies
Butterflies smaller than warp could performed using

shuffles without synchronization

4) Large butterflies
Performed using shared memory

Calculation of twiddle factors requires evaluating exp(), we

use fastmath intrinsics for that.

Decimation in time or in frequency?

Cooley-Tukey FFT

The discrete Fourier transformation is given

X 𝑛 = ෍

𝑘=0

𝑁

𝑥 𝑛 𝑒−
𝑖2𝜋𝑘𝑛
𝑁

𝑊𝑘 = 𝑒−
𝑖2𝜋𝑘𝑛
𝑁

W is called twiddle factor.

FFT algorithm is based on divide and conquer, two

smaller FFTs (A, B) are combined into new bigger

one C

C 𝑘 = 𝐴 𝑘mod
𝑁

2
+𝑊𝑘𝐵 𝑘mod

𝑁

2

Initial implementation:

• One thread calculates two different elements of

C from the same FFT which share the same

input data and uses the same twiddle factor

(C[0], C[2])

Cooley-Tukey FFT

The discrete Fourier transformation is given

X 𝑛 = ෍

𝑘=0

𝑁

𝑥 𝑛 𝑒−
𝑖2𝜋𝑘𝑛
𝑁

𝑊𝑘 = 𝑒−
𝑖2𝜋𝑘𝑛
𝑁

W is called twiddle factor.

FFT algorithm is based on divide and conquer, two

smaller FFTs (A, B) are combined into new bigger

one C

C 𝑘 = 𝐴 𝑘mod
𝑁

2
+𝑊𝑘𝐵 𝑘mod

𝑁

2

Initial implementation:

• One thread calculates two different elements of

C from the same FFT which share the same

input data and uses the same twiddle factor

(C[0], C[2])

Custom FFT progression

Kernel
Time

(ms)
Speed-up

Total

Speed-up

Basic 2.22 X X

Basic:

• Limited by shared memory

bandwidth

• High special function unit (SFU)

utilisation

• Shared Mem. bank conflicts

• Low twiddle factor reuse

• Low instruction level parallelism

Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs

per kernel to avoid being device memory bandwidth limited.

Basic:

Shared memory bandwidth: 10,248 TB/s; (73%)

Synchronization: 31.4%; pipe busy: 33.5%;

Theoretical occupancy: 100%;

Load/Store instructions: 50%; single: 50%;

Introduction of shuffle instruction

Shared memory bank conflicts are caused

by small butterflies.

For butterflies smaller then 32 use shuffle

instructions.

Different parallelization:

• One thread calculates the same element C

from independent sub-FFTs (for example C[0])

• Allows us to use shuffle instructions

• No share memory bank conflicts

• No synchronization required

• Increases Load/Store instruction

utilization

Introduction of shuffle instruction

Shared memory bank conflicts are caused

by small butterflies.

For butterflies smaller then 32 use shuffle

instructions.

Different parallelization:

• One thread calculates the same element C

from independent sub-FFTs (for example C[0])

• Allows us to use shuffle instructions

• No share memory bank conflicts

• No synchronization required

• Increases Load/Store instruction

utilization

Shuffle instructions

Kernel
Time

(ms)
Speed-up

Total

Speed-up

Basic 2.22 X X

Unroll 1.95 1.13 1.13

Unroll:

First 5 iteration of the FFT algorithm

are calculated using shuffle inst.

Less synchronization

No bank conflicts

• Limited by Load/Store

instructions

• Medium special function unit

(SFU) utilisation

• NO Shared Mem. bank conflicts

• Low twiddle factor reuse

• Low instruction level parallelism

Unroll:

Shared memory bandwidth: 5,225 TB/s;

Synchronization: 24.9%; pipe busy: 33%;

Theoretical occupancy: 50%;

Load/Store instructions: 70%; single: 50%;

Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs

per kernel to avoid being device memory bandwidth limited.

Four elements per thread

Kernel
Time

(ms)
Speed-up

Total

Speed-up

Basic 2.22 X X

Unroll 1.95 1.13 1.13

Four elements 1.49 1.31 1.49

Four elements:

Four FFT element are processed per

thread.

Good:

• Better twiddle factor reuse

• More instruction level parallelism

• Less threads per thread-block

Bad:

• More registers

Status:

• Limited by Load/Store

instructions

• Low SFU utilisation

• NO Shared Mem. bank conflicts

• Good twiddle factor reuse

Four elements:

Shared memory bandwidth: 6,365 TB/s;

Synchronization: 17%; pipe busy: 43%;

Theoretical occupancy: 50%;

Load/Store instructions: 75%; single: 50%;

Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs

per kernel to avoid being device memory bandwidth limited.

Less shuffle instruction per thread

Shuffle instructions increasing Load/Save

instruction utilization which limits the code.

In previous version thread does not know which

element (A or B) is local to the thread and which it

needs to load. This is a problem since B needs to

be multiplied by twiddle factors while A should not.

Multiplying with modified twiddle factor, which is for

A W=1, before shuffle instructions means we no

longer need to know which element is local to the

thread, since shuffled element has proper value.

Less shuffle instructions

Kernel
Time

(ms)
Speed-up

Total

Speed-up

Basic 2.22 X X

Unroll 1.95 1.13 1.13

Four elements 1.49 1.31 1.49

Final 1.18 1.26 1.89

Final:

Less shuffle instruction, reduced

number of registers

Good:

• Occupation 62.5% but number

of active blocks is 2.5x larger

(from 2 to 5)

• Shared Mem. B. 60% utilized

• Limited by floating point

operations and Load/Store

instructions

• Low SFU utilisation

• NO Shared Mem. bank conflicts

• Good twiddle factor reuse

Final:

Shared memory bandwidth: 8,374 TB/s;

Synchronization: 21%; pipe busy: 41%;

Theoretical occupancy: 62.5%;

Load/Store instructions: 75%; single: 75%;

Execution time for TitanV is for 100k FFTs each 1024 samples long. Code performs 100 FFTs

per kernel to avoid being device memory bandwidth limited.

FFT performance – fair and unfair comparison

Fair comparison is when both codes are limited by

device memory bandwidth.

In fair comparison custom FFT is as fast as cuFFT

for tested FFT sizes.

FFT size is limited by size of the shared memory or number of threads.

Unfair comparison with custom FFT is when

custom FFT is not limited by device memory

bandwidth while cuFFT is.

We have calculated 100 FFTs per kernel to avoid

being device memory bandwidth limited.

Putting convolution kernel together

Convolution kernel is using same

implementation of point-wise complex

multiplication as in cuFFT convolution.

For 2M points, filter M=192, convolution =

1024, F=64 filters

• FP32 instructions and Load/Store

instructions are high

• Device memory bandwidth 67%

• Shared memory bandwidth 53%

• L2 hit rate is 62%

• L1 is sacrificed for shared memory

• Occupancy 50%

Results

Results

Callbacks

X1

X2

Callbacks are user defined functions which

enable modification of input or output of the

cuFFT.

Access to the data is provided per element

basis.

Two places where we could use callbacks

X1 – when we would multiply output from

forward FFT with filters

X2 – when would remove polluted parts

after inverse FFT

However for non-local operation on

elements (like interbinning) callbacks

cannot be used. They are not suitable for

FDAS example.

Performance comparison

Input and output are complex. M is length of the filter. For number of filters F=8.

LEFT:

Shows the execution

time of custom FFT

OLS in black and

cuFFT OLS with

callbacks in gray.

Spread in ex. time is

due to segment size.

The custom FFT is

restricted to 4096.

The execution time

scales linearly with

increasing input signal

length.

Performance comparison with callbacks

Input and output are complex. M is length of the filter.

LEFT:

Even with callbacks

used in the OLS with

cuFFT, the speed-ups

are decent for filter

sizes <1024 samples.

Performance comparison

Input and output are complex. M is length of the filter. Signal length N=2Mil.

RIGHT:

Shows the execution

time of custom FFT

OLS in black and

cuFFT OLS with

callbacks in gray.

The execution time

scales linearly with

increasing number of

filters.

Performance comparison with callbacks

Input and output are complex. M is length of the filter.

RIGHT:

Even with callbacks

used in the OLS with

cuFFT, the speed-ups

are, decent for filter

sizes <1024 samples.

Convolutions with post-processing

X2

Convolution with post-

processing

For non-local post-processing of

the convolution callbacks are not

usable (like in FDAS).

Performance comparison

Input and output are complex. M is length of the filter. For number of filters F=8.

LEFT:

Shows speed-up of

custom FFT OLS over

cuFFT OLS.

Speed-up to time-

domain convolution in

gray.

Speed-up is more or

less constant as signal

length is increasing.

Performance is gained

by not performing global

accesses. These scales

with number of

segments.

Performance comparison

Input and output are complex. M is length of the filter. Signal length N=2Mil.

RIGHT:

Shows speed-up of

custom FFT OLS over

cuFFT OLS.

Speed-up is more or

less constant as

number of filters is

increasing.

Performance is

gained by not

performing global

accesses. These

scales with number of

elements (segments).

When cuFFT wins

LEFT:

Shows execution time

of OLS with custom

FFT for different

segment sizes (FFT

size) and how it

depends on filter size.

The execution time for

OLS with cuFFT with

optimal segment size

(usually 8192) is

shown in red.

Convolution of N=2Mil samples, 32 filters.

Conclusions

• Implemented custom shared memory FFT and integrated

into overlap-and-save method

• For convolution with post-processing on V100 using OLS

with custom FFT we have achieved speedup 2x up to 4x

over OLS with cuFFT depending on filter size (<2048)

• For convolutions without postprocessing on V100 we

have achieved speedups 1.8x up to 2.5x for filters <512.

(2x-2.8x for Titan V)

• Investigating possibility of 2D convolutions

End

Thank you for your attention!

