
S9350

Richard Wilton
Department of Physics and Astronomy
Johns Hopkins University

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

S9350

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

Perfect alignment
R: CATGTGTGAAGCCTCCATACTTGAGTCCTGAACTGATGAACTAA

||||||||||||||||||||||||||||||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Short-read alignment

Parameters
match +2
mismatch −6
gap −5

Scoring example

Alignment with mismatches
R: CATGTGTGAAGCCTCCATACCTGAGTCATGAACTGATGAACTAA

|||||||||||| |||||| ||||||||||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

Alignment with mismatches and gaps
R: CATGTGTGAAGCCGCGCGTCCATACATGAGTCATGAAC--ATGAACTAA

|||||| |||||| |||||| ||||| |||||
Q: AAGCCT-----CCATACTTGAGTCCTGAACTGATGAA

gap −5
space −3

Scores
perfect 64
mismatches 48
mismatches and gaps 11

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Short-read alignment

Extract and hash subsequences (“seeds”)
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

AAGCCTCCAT 0xDEA5D502
AGCCTCCATA 0x29DEC1F0
GCCTCCATAC 0xDB840577
CCTCCATACT 0x4DBA90D5
...

Probe hash table to find reference-sequence locations
0xDEA5D502: 01:14353363, 01:15536663, 02:06335366 ...
0x29DEC1F0: 01:14353364, 06:20159342, 18:00513566
0xDB840577: 01:14353365, 01:15536665, 05:83754151 ...
0x4DBA90D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

|||||||||||| |||||| ||||| |||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 Speed
 Short-read alignment is just one step in a processing “pipeline”; the idea is

that this step should not be a bottleneck
 Order-of-magnitude (~10x) faster than CPU-only implementations

Arioc: a GPU-accelerated short-read aligner

 Order-of-magnitude (~10x) faster than CPU-only implementations
 Sensitivity
 Accuracy
 Capable of handling real-world data

 Full-sized sequencer runs
 Human reference genome (and larger)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Arioc is fast

25000

30000

35000

40000

Average elapsed time per sample

BME

 1,304 WGBS samples
 150bp paired-end
 Human reference genome
 Average sample size: 487,757,780

pairs (975,515,560 reads)

0

5000

10000

15000

20000

25000

4·K80 2·P100 2·V100 4·V100

se
co

nd
s BME

XMC

Samblaster

Arioc

pairs (975,515,560 reads)

 One step in a series of analysis tools
 Arioc
 Samblaster
 Bismark methlylation extractor

 Shared compute nodes at MARCC
(Maryland Advanced Research Computing
Center)

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 The human genome is a good starting point for comparison
 About 3 billion nucleotide bases
 If you number each base position consecutively, you can identify each base

with a 32-bit integer!

“Large” compared to what?

 Some interesting organisms have genomes that contain much more DNA than
does the human genome

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Organism Size
(109)

Mexican axolotl 32

Some large genomes whose
DNA has been sequenced

What is a large genome?

Pine tree 22

Wheat 14.5

Human 3.2

Mouse 2.7

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

Identifying genome locations
S9350: CUDA-Accelerated Short-

Read Alignment to a Large
Reference Genome

 Subunit ID
 Usually a chromosome number
 Range of values: 1-127

Chromosome
Size
(109)

1Q 1.48
2P 1.41
2Q 1.51
3P 1.24

Chromosomes in axolotl genome

 DNA strand
 Forward or reverse complement
 Range of values: 0-1

 Offset from the start of the DNA sequence
 Range of values: 0-2,147,483,647

3Q 1.26
4P 1.16
7 2.03
4Q 1.29
8 1.71
5P 1.29
9 1.50
5Q 1.34
10 1.64
6P 1.55
11 1.44
6Q 1.59
12 1.21
13 0.72
14 0.66

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

/* 40-bit (5-byte) representation of a J value */
struct Jvalue5
{

enum bfSize
{

bfSize_J = 31, // 0..30: J (0-based offset into reference sequence)
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subId (e.g., chromosome number)
bfSize_x = 1 // 39..39: end-of-list flag

};

Reference genome position in C++

};

enum bfMaxVal : UINT64
{

bfMaxVal_J = (static_cast<UINT64>(1) << bfSize_J) - 1,
bfMaxVal_s = (static_cast<UINT64>(1) << bfSize_s) - 1,
bfMaxVal_subId = (static_cast<UINT64>(1) << bfSize_subId) - 1,
bfMaxVal_x = (static_cast<UINT64>(1) << bfSize_x) - 1

};

UINT32 J : bfSize_J;
UINT32 s : bfSize_s;
UINT8 subId : bfSize_subId;
UINT8 x : bfSize_x;

};

Large genome large lookup tables
S9350: CUDA-Accelerated Short-

Read Alignment to a Large
Reference Genome

Extract and hash subsequences (“seeds”)
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

AAGCCTCCAT 0xDEA5D502
AGCCTCCATA 0x29DEC1F0
GCCTCCATAC 0xDB840577
CCTCCATACT 0x4DBA90D5
...

32-bit
seeds

lists
to sort

locations
to sort

human 1,263,683,062 3,687,638,902

wheat 2,120,243,009 20,602,998,718

Hash table data-sort sizes

Probe hash table to find reference-sequence locations
0xDEA5D502: 01:14353363, 01:15536663, 02:06335366 ...
0x29DEC1F0: 01:14353364, 06:20159342, 18:00513566
0xDB840577: 01:14353365, 01:15536665, 05:83754151 ...
0x4DBA90D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

|||||||||||| |||||| ||||| |||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

wheat 2,120,243,009 20,602,998,718

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

/* 64-bit (8-byte) representation of a 40-bit (5-byte) J value */
struct Jvalue8
{

enum bfSize
{

bfSize_J = 31, // 0..30: J (0-based offset into reference sequence)
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subId (e.g., chromosome number)
bfSize_x = 1, // 39..39: flag (used only for sorting and filtering J lists; zero in final J table)
bfSize_tag = 24 // 40..63: used for sorting (see tuSortJgpu)

“Sortable” reference genome position in C++

bfSize_tag = 24 // 40..63: used for sorting (see tuSortJgpu)
};

enum bfMaxVal : UINT64
{

bfMaxVal_J = (static_cast<UINT64>(1) << bfSize_J) - 1,
bfMaxVal_s = (static_cast<UINT64>(1) << bfSize_s) - 1,
bfMaxVal_subId = (static_cast<UINT64>(1) << bfSize_subId) - 1,
bfMaxVal_x = (static_cast<UINT64>(1) << bfSize_x) - 1,
bfMaxVal_tag = (static_cast<UINT64>(1) << bfSize_tag) - 1

};

UINT64 J : bfSize_J;
UINT64 s : bfSize_s;
UINT64 subId : bfSize_subId;
UINT64 x : bfSize_x;
UINT64 tag : bfSize_tag;

};

 The lists are sorted in a call to a CUDA Thrust sort implementation
/* Sort the current J-list buffer chunk. Since each 64-bit value contains a "tag" that associates the value

with the J list that corresponds to an H (hash key) value, this is in effect a segmented operation. */
thrust::device_ptr<UINT64> ttpJbuf(m_pJbuf->p);
thrust::sort(epCGA, ttpJbuf, ttpJbuf+m_pJbuf->Count);

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

A bit-packed segmented sort

 The high-order bits identify individual lists so the result is effectively a
segmented sort

 There are more lists than can be uniquely identified in the available high-
order bits, so the Thrust sort API is called iteratively

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 The genome of complex organisms contains mostly non-coding DNA
 Non-coding DNA in large genomes contains many long and/or repetitive

sequences
The repetitive nature of the DNA affects the way we construct the hash

Large genomes are repetitive

 The repetitive nature of the DNA affects the way we construct the hash
tables (lookup tables)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 In large genomes, much of the DNA is repetitive:
 Human: ~50%
 Bread wheat (Triticum aestivum): ~85%

 Repetitive DNA may contain…
 Multiple copies of a variety of short subsequences

Large genomes are repetitive

 Multiple copies of a variety of short subsequences
 Low-information sequences

• Homopolymers (e.g., AAAAAAAAAAAA)
• Tandem repeats (e.g., CGCGCGCGCGCG)

 With a large repetitive genome, any given read may have
multiple locations at which it aligns
 More alignment computations per read
 Increased post-alignment processing to identify and

classify high-scoring mappings for each read

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 Large-genome lookup tables (LUTs) contain
more reference-sequence locations per hash
value
 Big LUT bins more alignments

computed

Repetitive genome large lookup tables

 Large-genome LUTs are hard to optimize
 Pruning highly-repetitive seed locations

decreases sensitivity in the read aligner

nJ human wheat
raw 5,875,619,304 28,516,821,874
final nJ 5,261,735,533 28,516,821,874
% pruned 10% 0%

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

• ~5x slower
• Wheat vs human
• Speed vs sensitivity
• One through four V100 GPUs

Large genome more work

105

106

re
ad

s/
se

c

• One through four V100 GPUs

human ERR1347712 Simons Foundation Genome Diversity Project: SA_Kusunda_K-15_M

wheat SRR6001710 Sequencing of flow sorted chromosome 7D from Canthatch K

103

104

87 88 89 90 91 92

re
ad

s/
se

c

% mapped

human

wheat

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Large genome more work

• More data transferred to GPU
• TR/TQ = (time to load reference sequences)

÷ (time to load reads)

human wheat

TR/TQ 1.22 13.32

human wheat

tuAlignN20 3.56 17.66

tuAlignN52 10.31 113.97

tuAlignGs22 1.86 31.79

tuAlignGs12 0.65 23.67

tuAlignGwn12 0.36 2.60

tuAlignGs42 0.03 0.25

• More alignment computations per read
• tuAlignN* = nongapped aligner (spaced seeds)
• tuAlignG* = gapped aligner (Smith-Waterman)

Speed versus sensitivity

 GPU-accelerated implementation is about
10x faster than CPU-only implementation
 Arioc (2019)
 Bowtie 2 (2019)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

105

106

 GPU-accelerated implementation scales
appropriately with multiple GPUs

• Workstation configuration
• 4 Intel Xeon Gold 6130 CPU @ 2.10GHz (64 total threads)
• 384GB RAM
• CentOS 7.5.1804
• 4 Nvidia V100, 32GB RAM each

103

104

91.0 91.5 92.0

re
ad

s/
se

c

% mapped

1 GPU
2 GPUs
3 GPUs
4 GPUs
Bowtie 2

Accuracy

 WGS sample SRR6001710 contains DNA from a
subset of the wheat genome (flow-sorted
chromosome 7D)

 Distribution of mapped reads is reasonable
 Chromosome 2D is a major contaminant

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

100000000

120000000

Read mappings per chromosome

 Chromosome 2D is a major contaminant
(its size is very close to that of
chromosome 7D)

 Very similar to Bowtie 2

0

20000000

40000000

60000000

80000000

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D Un

 A short-read aligner runs slower with a large reference genome, but not prohibitively so

 The size of the genome demands capable hardware:
 Up to 500GB of system RAM (for building lookup tables)
 Fast GPUs (Volta microarchitecture at a minimum)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Takeaways

 Fast GPUs (Volta microarchitecture at a minimum)

 The repetitive nature of the genome requires careful software configuration:
 Do not “over-optimize” the lookup tables
 Place some of the lookup tables in GPU RAM
 Choose optimal criteria for concordant (proper) mappings and optimal speed-vs-

sensitivity tradeoff

Questions / Discussion

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

Arioc is available on Github: https://github.com/RWilton/Arioc

Contact: richard.wilton@jhu.edu

