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A very brief description of short-read alignment
Arioc: a GPU-accelerated short-read aligner
What is a “large” genome?

A software view of a reference genome
Repetitiveness versus speed

Performance
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Read Alignment to a Large Short-read ahgnment

Reference Genome

Perfect alignment Scoring example
R: CATGTGTGAAGCCTCCATACTTGAGTCCTGAACTGATGAACTAA Parameters
NERRRRRNARRRRRRRRRRRRARRRREA AR
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA match +2
mismatch -6
. ] ] gap -5
Alignment with mismatches space 3
R: CATGTGTGAAGCCTCCATACCTGAGTCATGAACTGATGAACTAA
LOCETLEEEEEE TEEEEE FEETTTEEETT l
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA
Scores
Alignment with mismatches and gaps perfect 64
R: CATGTGTGAAGCCGCGCGTCCATACATGAGTCATGAAC--ATGAACTAA mismatches 48

LTI LLELEE TTEETE LEEEE T JIEIELICSEE DS 2
Q: AAGCCT---- - CCATACTTGAGTCCTGAACTGATGAA
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Read Alignment to a Large Short-read a|ignment

Reference Genome

Extract and hash subsequences (“seeds”)

Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA
AAGCCTCCAT - OxDEA5D502
AGCCTCCATA - Ox29DEC1F0O
GCCTCCATAC —> ©0xDB840577
CCTCCATACT > ©0x4DBA9OD5

Probe hash table to find reference-sequence locations

OxDEA5D502: ©01:14353363, 01:15536663, 02:06335366 ...
Ox29DEC1FO: ©01:14353364, 06:20159342, 18:00513566

OxDB84©577: ©1:14353365, 01:15536665, ©5:83754151 ...
0x4DBA9@D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA
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Arioc: a GPU-accelerated short-read aligner
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Read Alignment to a Large Arioc: a GPU-accelerated short-read aligner

Reference Genome

Speed
Short-read alignment is just one step in a processing “pipeline”; the idea is
that this step should not be a bottleneck
Order-of-magnitude (~10x) faster than CPU-only implementations
Sensitivity
Accuracy
Capable of handling real-world data
Full-sized sequencer runs
Human reference genome (and larger)
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Read Alignment to a Large
Reference Genome

1,304 WGBS samples
150bp paired-end
Human reference genome
Average sample size: 487,757,780
pairs (975,515,560 reads)

One step in a series of analysis tools
Arioc
Samblaster
Bismark methlylation extractor

Shared compute nodes at MARCC
(Maryland Advanced Research Computing
Center)
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What is a “large” genome?
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Reference Genome

The human genome is a good starting point for comparison
About 3 billion nucleotide bases
If you number each base position consecutively, you can identify each base
with a 32-bit integer!

Some interesting organisms have genomes that contain much more DNA than
does the human genome
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Read Alignment to a Large What is a large genome?

Reference Genome

Some large genomes whose
DNA has been sequenced

Organism Size
(x10°)
Mexican axolotl 32
e . Pine tree 22
Wheat 14.5
Other land plants (592) Human 3.2
Mouse 2.7

Vertebrates (5058)
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A software view of a reference genome
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Read Alignment to a Large Identifying genome locations

Reference Genome

Chromosomes in axolotl genome

Chromosome (x109)

12
13
14

.21
.72
.66

Usually a chromosome number 1Q 1.48
2P 1.41
Range of values: 1-127 20 1.51
3P 1.24
3Q 1.26
DNA strand 4p 1.16
7 2.03
Forward or reverse complement 4Q 1.29
8 1.71
Range of values: 0-1 5P 1.29
9 1.50
Offset from the start of the DNA sequence = =
6P 1.55
Range of values: 0-2,147,483,647 11 124
6Q 1.59
1
0
0
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/* 40-bit (5-byte)

Reference Genome

struct Jvalue5

{

};

enum bfSize

representation of a J value */

Reference genome position in C++

J (0-based offset into reference sequence)

chromosome number)

bfSize_3J) - 1,
bfSize_s) - 1,
bfSize_subId) - 1,
bfSize_x) - 1

{
bfSize_J = 31, // e..30:
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subld (e.g.,
bfSize_x = 1 // 39..39: end-of-list flag

}s

enum bfMaxVal : UINT64

{
bfMaxval_J = (static_cast<UINT64>(1) <<
bfMaxVval_s = (static_cast<UINT64>(1) <<
bfMaxVal_subId = (static_cast<UINT64>(1) <<
bfMaxVal_x = (static_cast<UINT64>(1) <<

}s

UINT32 3] : bfSize_3J;

UINT32 s : bfSize_s;

UINT8  subId : bfSize_sublId;

UINT8 X : bfSize_x;
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Read Alignment toa Large Large genome — large lookup tables

Reference Genome

Extract and hash subsequences (“seeds”) Hash table data-sort sizes
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA #1i #1 .
AAGCCTCCAT > OxDEA5D502 Ists ocations
AGCCTCCATA - Ox29DEC1F0 to sort to sort
GCCTCCATAC —> 0xDB840577
CCTCCATACT = ©x4DBA96DS5 human 1,263,683,062 3,687,638,902
T wheat 2,120,243,009  20,602,998,718

Probe hash table to find reference-sequence locations

OxDEA5D502: ©01:14353363, 01:15536663, 02:06335366 ...
Ox29DEC1FO: ©01:14353364, 06:20159342, 18:00513566
OxDB84©577: ©1:14353365, 01:15536665, ©5:83754151 ...
0x4DBA9@D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA
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Read Alignment to a Large "Sortable” reference genome position in C++

Reference Genome

/* 64-bit (8-byte) representation of a 40-bit (5-byte) J value */
struct Jvalue8

{

enum bfSize

{
bfSize_J = 31, // ©..30: ] (0-based offset into reference sequence)
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subId (e.g., chromosome number)
bfSize_x = 1, // 39..39: flag (used only for sorting and filtering J lists; zero in final J table)
bfSize_tag = 24 // 40..63: used for sorting (see tuSortlgpu)

¥

enum bfMaxVal : UINT64

{
bfMaxval_J = (static_cast<UINT64>(1) << bfSize_J) - 1,
bfMaxval_s = (static_cast<UINT64>(1) << bfSize_s) - 1,
bfMaxVal_subId = (static_cast<UINT64>(1) << bfSize_subId) - 1,
bfMaxval_x = (static_cast<UINT64>(1) << bfSize _x) - 1,
bfMaxval_tag = (static_cast<UINT64>(1) << bfSize tag) - 1

s

UINT64 ] : bfSize_3J;

UINT64 s : bfSize_s;

UINT64 subId : bfSize_subId;

UINT64 X : bfSize_x;

UINT64 tag : bfSize_tag;

};
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Read Alignment to a Large A bit-packed segmented sort

Reference Genome

The lists are sorted in a call to a CUDA Thrust sort implementation

/* Sort the current J-list buffer chunk. Since each 64-bit value contains a "tag" that associates the value
with the J list that corresponds to an H (hash key) value, this is in effect a segmented operation. */

thrust::device_ptr<UINT64> ttplbuf( m_pJlbuf->p );

thrust::sort( epCGA, ttplbuf, ttpJibuf+m_pJlbuf->Count );

The high-order bits identify individual lists so the result is effectively a
segmented sort

There are more lists than can be uniquely identified in the available high-
order bits, so the Thrust sort APl is called iteratively
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Repetitiveness versus speed



S9350: CUDA-Accelerated Short-

Read Alignment to a Large Large genomes are repetitive

Reference Genome

The genome of complex organisms contains mostly non-coding DNA

Non-coding DNA in large genomes contains many long and/or repetitive
seguences

The repetitive nature of the DNA affects the way we construct the hash
tables (lookup tables)
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5Gb

4 Gb

3Gb

2Gb

1Gb

0Gb

Read Alignment to a Large

Reference Genome

OCoding DNA
DOUnannotated

O Unclassified repeats (XXX)
B Helitron (DHH)

B hAT (DTA)

B Unclassified class 2 (DXX)
B Mariner (DTT)

B Harbinger (DTH)

B Unclassified with TIRs (DTX)
B Mutator (DTM)

B CACTA (DTC)

BSINE (RSX)

BLINE (RIX)

O Unclassified LTR-RT (RLX)
B Copia (RLC)

B Gypsy (RLG)

Large genomes are repetitive

In large genomes, much of the DNA is repetitive:
Human: ~50%
Bread wheat (Triticum aestivum): ~85%

Repetitive DNA may contain...
Multiple copies of a variety of short subsequences
Low-information sequences
Homopolymers (e.g., AAAAAAAAAAAA)
Tandem repeats (e.g., CGCGCGCGCGCQG)

With a large repetitive genome, any given read may have
multiple locations at which it aligns
More alighment computations per read
Increased post-alignment processing to identify and
classify high-scoring mappings for each read
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Number of bins

10°

10%

107

108

10°

10*

10°

10?

10

Read Alignment to
Reference Genome

alarge

Lookup table bin sizes

10
log,(bin size)

15

Repetitive genome — large lookup tables

—o—human

—o—wheat

20

Large-genome lookup tables (LUTs) contain
more reference-sequence locations per hash
value
Big LUT bins — more alighnments
computed

Large-genome LUTs are hard to optimize
Pruning highly-repetitive seed locations
decreases sensitivity in the read aligner

raw 5,875,619,304 28,516,821,874

finaln)  5,261,735,533 28,516,821,874
% pruned 10% 0%
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Performance
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Read Alignment to a Large
Reference Genome

3
N

Large genome — more work

6
10 ~5x slower

Wheat vs human

By

g Speed vs sensitivity
i One through four V100 GPUs
104 human
—— wheat
103
87 88 89 90 91 92

% mapped

human ERR1347712 Simons Foundation Genome Diversity Project: SA_Kusunda_K-15_M

wheat SRR6001710 Sequencing of flow sorted chromosome 7D from Canthatch K
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Read Alignment to a Large La rge genome —> More Work

Reference Genome

More data transferred to GPU
Tx/To = (time to load reference sequences) Te/Tq  1.22 13.32

+ (time to load reads)

More alignment computations per read T human wheat |

tuAlignN* = nongapped aligner (spaced seeds) tuAlignN20 3.56 17.66
tuAlignG* = gapped aligner (Smith-Waterman) tuAlignN52 10.31  113.97
tuAlignGs22 1.86 31.79
tuAlignGs12 0.65 23.67
tuAlignGwn12 0.36 2.60
tuAlignGs42 0.03 0.25
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Read Alignment to a Large Speed versus sensitivity

Reference Genome

GPU-accelerated implementation is about 10°
10x faster than CPU-only implementation
Arioc (2019)
Bowtie 2 (2019)

10°

y

GPU-accelerated implementation scales 8
S~
appropriately with multiple GPUs E
Q
104
—=—1 GPU
—=—2 GPU
Workstation configuration .3 GpUz
4 x Intel Xeon Gold 6130 CPU @ 2.10GHz (64 total threads) ——4 GPUSZ
—a—B i
384GB RAM owtie
CentOS 7.5.1804 10°
91.0 91.5 92.0

4 x Nvidia V100, 32GB RAM each % mapped
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Accuracy

WGS sample SRR6001710 contains DNA from a
subset of the wheat genome (flow-sorted
chromosome 7D)

Distribution of mapped reads is reasonable
Chromosome 2D is a major contaminant
(its size is very close to that of
chromosome 7D)
Very similar to Bowtie 2
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60000000

40000000

20000000

Read mappings per chromosome

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D Un



S9350: CUDA-Accelerated Short-

Read Alignment to a Large Ta keaways

Reference Genome

A short-read aligner runs slower with a large reference genome, but not prohibitively so

The size of the genome demands capable hardware:
Up to 500GB of system RAM (for building lookup tables)
Fast GPUs (Volta microarchitecture at a minimum)

The repetitive nature of the genome requires careful software configuration:
Do not “over-optimize” the lookup tables
Place some of the lookup tables in GPU RAM
Choose optimal criteria for concordant (proper) mappings and optimal speed-vs-

sensitivity tradeoff
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Questions / Discussion

Arioc is available on Github: https://github.com/RWilton/Arioc

Contact: richard.wilton@jhu.edu



