
S9350

Richard Wilton
Department of Physics and Astronomy
Johns Hopkins University

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

S9350

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

Perfect alignment
R: CATGTGTGAAGCCTCCATACTTGAGTCCTGAACTGATGAACTAA

||||||||||||||||||||||||||||||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Short-read alignment

Parameters
match +2
mismatch −6
gap −5

Scoring example

Alignment with mismatches
R: CATGTGTGAAGCCTCCATACCTGAGTCATGAACTGATGAACTAA

|||||||||||| |||||| ||||||||||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

Alignment with mismatches and gaps
R: CATGTGTGAAGCCGCGCGTCCATACATGAGTCATGAAC--ATGAACTAA

|||||| |||||| |||||| ||||| |||||
Q: AAGCCT-----CCATACTTGAGTCCTGAACTGATGAA

gap −5
space −3

Scores
perfect 64
mismatches 48
mismatches and gaps 11

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Short-read alignment

Extract and hash subsequences (“seeds”)
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

AAGCCTCCAT  0xDEA5D502
AGCCTCCATA  0x29DEC1F0
GCCTCCATAC  0xDB840577
CCTCCATACT  0x4DBA90D5
...

Probe hash table to find reference-sequence locations
0xDEA5D502: 01:14353363, 01:15536663, 02:06335366 ...
0x29DEC1F0: 01:14353364, 06:20159342, 18:00513566
0xDB840577: 01:14353365, 01:15536665, 05:83754151 ...
0x4DBA90D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

|||||||||||| |||||| ||||| |||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 Speed
 Short-read alignment is just one step in a processing “pipeline”; the idea is

that this step should not be a bottleneck
 Order-of-magnitude (~10x) faster than CPU-only implementations

Arioc: a GPU-accelerated short-read aligner

 Order-of-magnitude (~10x) faster than CPU-only implementations
 Sensitivity
 Accuracy
 Capable of handling real-world data

 Full-sized sequencer runs
 Human reference genome (and larger)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Arioc is fast

25000

30000

35000

40000

Average elapsed time per sample

BME

 1,304 WGBS samples
 150bp paired-end
 Human reference genome
 Average sample size: 487,757,780

pairs (975,515,560 reads)

0

5000

10000

15000

20000

25000

4·K80 2·P100 2·V100 4·V100

se
co

nd
s BME

XMC

Samblaster

Arioc

pairs (975,515,560 reads)

 One step in a series of analysis tools
 Arioc
 Samblaster
 Bismark methlylation extractor

 Shared compute nodes at MARCC
(Maryland Advanced Research Computing
Center)

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 The human genome is a good starting point for comparison
 About 3 billion nucleotide bases
 If you number each base position consecutively, you can identify each base

with a 32-bit integer!

“Large” compared to what?

 Some interesting organisms have genomes that contain much more DNA than
does the human genome

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Organism Size
(109)

Mexican axolotl 32

Some large genomes whose
DNA has been sequenced

What is a large genome?

Pine tree 22

Wheat 14.5

Human 3.2

Mouse 2.7

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

Identifying genome locations
S9350: CUDA-Accelerated Short-

Read Alignment to a Large
Reference Genome

 Subunit ID
 Usually a chromosome number
 Range of values: 1-127

Chromosome
Size
(109)

1Q 1.48
2P 1.41
2Q 1.51
3P 1.24

Chromosomes in axolotl genome

 DNA strand
 Forward or reverse complement
 Range of values: 0-1

 Offset from the start of the DNA sequence
 Range of values: 0-2,147,483,647

3Q 1.26
4P 1.16
7 2.03
4Q 1.29
8 1.71
5P 1.29
9 1.50
5Q 1.34
10 1.64
6P 1.55
11 1.44
6Q 1.59
12 1.21
13 0.72
14 0.66

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

/* 40-bit (5-byte) representation of a J value */
struct Jvalue5
{

enum bfSize
{

bfSize_J = 31, // 0..30: J (0-based offset into reference sequence)
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subId (e.g., chromosome number)
bfSize_x = 1 // 39..39: end-of-list flag

};

Reference genome position in C++

};

enum bfMaxVal : UINT64
{

bfMaxVal_J = (static_cast<UINT64>(1) << bfSize_J) - 1,
bfMaxVal_s = (static_cast<UINT64>(1) << bfSize_s) - 1,
bfMaxVal_subId = (static_cast<UINT64>(1) << bfSize_subId) - 1,
bfMaxVal_x = (static_cast<UINT64>(1) << bfSize_x) - 1

};

UINT32 J : bfSize_J;
UINT32 s : bfSize_s;
UINT8 subId : bfSize_subId;
UINT8 x : bfSize_x;

};

Large genome  large lookup tables
S9350: CUDA-Accelerated Short-

Read Alignment to a Large
Reference Genome

Extract and hash subsequences (“seeds”)
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

AAGCCTCCAT  0xDEA5D502
AGCCTCCATA  0x29DEC1F0
GCCTCCATAC  0xDB840577
CCTCCATACT  0x4DBA90D5
...

32-bit
seeds

lists
to sort

locations
to sort

human 1,263,683,062 3,687,638,902

wheat 2,120,243,009 20,602,998,718

Hash table data-sort sizes

Probe hash table to find reference-sequence locations
0xDEA5D502: 01:14353363, 01:15536663, 02:06335366 ...
0x29DEC1F0: 01:14353364, 06:20159342, 18:00513566
0xDB840577: 01:14353365, 01:15536665, 05:83754151 ...
0x4DBA90D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

|||||||||||| |||||| ||||| |||||
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA

wheat 2,120,243,009 20,602,998,718

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

/* 64-bit (8-byte) representation of a 40-bit (5-byte) J value */
struct Jvalue8
{

enum bfSize
{

bfSize_J = 31, // 0..30: J (0-based offset into reference sequence)
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subId (e.g., chromosome number)
bfSize_x = 1, // 39..39: flag (used only for sorting and filtering J lists; zero in final J table)
bfSize_tag = 24 // 40..63: used for sorting (see tuSortJgpu)

“Sortable” reference genome position in C++

bfSize_tag = 24 // 40..63: used for sorting (see tuSortJgpu)
};

enum bfMaxVal : UINT64
{

bfMaxVal_J = (static_cast<UINT64>(1) << bfSize_J) - 1,
bfMaxVal_s = (static_cast<UINT64>(1) << bfSize_s) - 1,
bfMaxVal_subId = (static_cast<UINT64>(1) << bfSize_subId) - 1,
bfMaxVal_x = (static_cast<UINT64>(1) << bfSize_x) - 1,
bfMaxVal_tag = (static_cast<UINT64>(1) << bfSize_tag) - 1

};

UINT64 J : bfSize_J;
UINT64 s : bfSize_s;
UINT64 subId : bfSize_subId;
UINT64 x : bfSize_x;
UINT64 tag : bfSize_tag;

};

 The lists are sorted in a call to a CUDA Thrust sort implementation
/* Sort the current J-list buffer chunk. Since each 64-bit value contains a "tag" that associates the value

with the J list that corresponds to an H (hash key) value, this is in effect a segmented operation. */
thrust::device_ptr<UINT64> ttpJbuf(m_pJbuf->p);
thrust::sort(epCGA, ttpJbuf, ttpJbuf+m_pJbuf->Count);

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

A bit-packed segmented sort

 The high-order bits identify individual lists so the result is effectively a
segmented sort

 There are more lists than can be uniquely identified in the available high-
order bits, so the Thrust sort API is called iteratively

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 The genome of complex organisms contains mostly non-coding DNA
 Non-coding DNA in large genomes contains many long and/or repetitive

sequences
The repetitive nature of the DNA affects the way we construct the hash

Large genomes are repetitive

 The repetitive nature of the DNA affects the way we construct the hash
tables (lookup tables)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 In large genomes, much of the DNA is repetitive:
 Human: ~50%
 Bread wheat (Triticum aestivum): ~85%

 Repetitive DNA may contain…
 Multiple copies of a variety of short subsequences

Large genomes are repetitive

 Multiple copies of a variety of short subsequences
 Low-information sequences

• Homopolymers (e.g., AAAAAAAAAAAA)
• Tandem repeats (e.g., CGCGCGCGCGCG)

 With a large repetitive genome, any given read may have
multiple locations at which it aligns
 More alignment computations per read
 Increased post-alignment processing to identify and

classify high-scoring mappings for each read

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

 Large-genome lookup tables (LUTs) contain
more reference-sequence locations per hash
value
 Big LUT bins more alignments

computed

Repetitive genome  large lookup tables

 Large-genome LUTs are hard to optimize
 Pruning highly-repetitive seed locations

decreases sensitivity in the read aligner

nJ human wheat
raw 5,875,619,304 28,516,821,874
final nJ 5,261,735,533 28,516,821,874
% pruned 10% 0%

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

 A very brief description of short-read alignment
 Arioc: a GPU-accelerated short-read aligner
 What is a “large” genome?
 A software view of a reference genome
 Repetitiveness versus speed
 Performance

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

• ~5x slower
• Wheat vs human
• Speed vs sensitivity
• One through four V100 GPUs

Large genome more work

105

106

re
ad

s/
se

c

• One through four V100 GPUs

human ERR1347712 Simons Foundation Genome Diversity Project: SA_Kusunda_K-15_M

wheat SRR6001710 Sequencing of flow sorted chromosome 7D from Canthatch K

103

104

87 88 89 90 91 92

re
ad

s/
se

c

% mapped

human

wheat

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Large genome more work

• More data transferred to GPU
• TR/TQ = (time to load reference sequences)

÷ (time to load reads)

human wheat

TR/TQ 1.22 13.32

human wheat

tuAlignN20 3.56 17.66

tuAlignN52 10.31 113.97

tuAlignGs22 1.86 31.79

tuAlignGs12 0.65 23.67

tuAlignGwn12 0.36 2.60

tuAlignGs42 0.03 0.25

• More alignment computations per read
• tuAlignN* = nongapped aligner (spaced seeds)
• tuAlignG* = gapped aligner (Smith-Waterman)

Speed versus sensitivity

 GPU-accelerated implementation is about
10x faster than CPU-only implementation
 Arioc (2019)
 Bowtie 2 (2019)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

105

106

 GPU-accelerated implementation scales
appropriately with multiple GPUs

• Workstation configuration
• 4  Intel Xeon Gold 6130 CPU @ 2.10GHz (64 total threads)
• 384GB RAM
• CentOS 7.5.1804
• 4  Nvidia V100, 32GB RAM each

103

104

91.0 91.5 92.0

re
ad

s/
se

c

% mapped

1 GPU
2 GPUs
3 GPUs
4 GPUs
Bowtie 2

Accuracy

 WGS sample SRR6001710 contains DNA from a
subset of the wheat genome (flow-sorted
chromosome 7D)

 Distribution of mapped reads is reasonable
 Chromosome 2D is a major contaminant

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

100000000

120000000

Read mappings per chromosome

 Chromosome 2D is a major contaminant
(its size is very close to that of
chromosome 7D)

 Very similar to Bowtie 2

0

20000000

40000000

60000000

80000000

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D Un

 A short-read aligner runs slower with a large reference genome, but not prohibitively so

 The size of the genome demands capable hardware:
 Up to 500GB of system RAM (for building lookup tables)
 Fast GPUs (Volta microarchitecture at a minimum)

S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Takeaways

 Fast GPUs (Volta microarchitecture at a minimum)

 The repetitive nature of the genome requires careful software configuration:
 Do not “over-optimize” the lookup tables
 Place some of the lookup tables in GPU RAM
 Choose optimal criteria for concordant (proper) mappings and optimal speed-vs-

sensitivity tradeoff

Questions / Discussion

S9350
CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

Arioc is available on Github: https://github.com/RWilton/Arioc

Contact: richard.wilton@jhu.edu

