59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

Richard Wilton
Department of Physics and Astronomy
Johns Hopkins University




59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

A very brief description of short-read alignment
Arioc: a GPU-accelerated short-read aligner
What is a “large” genome?

A software view of a reference genome
Repetitiveness versus speed

Performance



S9350: CUDA-Accelerated Short- ]
Read Alignment to a Large Short-read ahgnment

Reference Genome

Perfect alignment Scoring example
R: CATGTGTGAAGCCTCCATACTTGAGTCCTGAACTGATGAACTAA Parameters
NERRRRRNARRRRRRRRRRRRARRRREA AR
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA match +2
mismatch -6
. ] ] gap -5
Alignment with mismatches space 3
R: CATGTGTGAAGCCTCCATACCTGAGTCATGAACTGATGAACTAA
LOCETLEEEEEE TEEEEE FEETTTEEETT l
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA
Scores
Alignment with mismatches and gaps perfect 64
R: CATGTGTGAAGCCGCGCGTCCATACATGAGTCATGAAC--ATGAACTAA mismatches 48

LTI LLELEE TTEETE LEEEE T JIEIELICSEE DS 2
Q: AAGCCT---- - CCATACTTGAGTCCTGAACTGATGAA



S9350: CUDA-Accelerated Short-

Read Alignment to a Large Short-read a|ignment

Reference Genome

Extract and hash subsequences (“seeds”)

Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA
AAGCCTCCAT - OxDEA5D502
AGCCTCCATA - Ox29DEC1F0O
GCCTCCATAC —> ©0xDB840577
CCTCCATACT > ©0x4DBA9OD5

Probe hash table to find reference-sequence locations

OxDEA5D502: ©01:14353363, 01:15536663, 02:06335366 ...
Ox29DEC1FO: ©01:14353364, 06:20159342, 18:00513566

OxDB84©577: ©1:14353365, 01:15536665, ©5:83754151 ...
0x4DBA9@D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA



59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

Arioc: a GPU-accelerated short-read aligner



S9350: CUDA-Accelerated Short-

Read Alignment to a Large Arioc: a GPU-accelerated short-read aligner

Reference Genome

Speed
Short-read alignment is just one step in a processing “pipeline”; the idea is
that this step should not be a bottleneck
Order-of-magnitude (~10x) faster than CPU-only implementations
Sensitivity
Accuracy
Capable of handling real-world data
Full-sized sequencer runs
Human reference genome (and larger)



S9350: CUDA-Accelerated Short-

Read Alignment to a Large
Reference Genome

1,304 WGBS samples
150bp paired-end
Human reference genome
Average sample size: 487,757,780
pairs (975,515,560 reads)

One step in a series of analysis tools
Arioc
Samblaster
Bismark methlylation extractor

Shared compute nodes at MARCC
(Maryland Advanced Research Computing
Center)

seconds

40000

35000

30000

25000

20000

15000

10000

5000

Arioc is fast

4-K80

Average elapsed time per sample

2-P100

2:V100

4-V100

BME
XMC
Samblaster

Arioc



59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

What is a “large” genome?



S9350: CUDA-Accelerated Short-

Read Alignment to a Large “La rge" com pa red to Whaf7

Reference Genome

The human genome is a good starting point for comparison
About 3 billion nucleotide bases
If you number each base position consecutively, you can identify each base
with a 32-bit integer!

Some interesting organisms have genomes that contain much more DNA than
does the human genome



S9350: CUDA-Accelerated Short-

Read Alignment to a Large What is a large genome?

Reference Genome

Some large genomes whose
DNA has been sequenced

Organism Size
(x10°)
Mexican axolotl 32
e . Pine tree 22
Wheat 14.5
Other land plants (592) Human 3.2
Mouse 2.7

Vertebrates (5058)




59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

A software view of a reference genome



S9350: CUDA-Accelerated Short-

Read Alignment to a Large Identifying genome locations

Reference Genome

Chromosomes in axolotl genome

Chromosome (x109)

12
13
14

.21
.72
.66

Usually a chromosome number 1Q 1.48
2P 1.41
Range of values: 1-127 20 1.51
3P 1.24
3Q 1.26
DNA strand 4p 1.16
7 2.03
Forward or reverse complement 4Q 1.29
8 1.71
Range of values: 0-1 5P 1.29
9 1.50
Offset from the start of the DNA sequence = =
6P 1.55
Range of values: 0-2,147,483,647 11 124
6Q 1.59
1
0
0



S9350: CUDA-Accelerated Short-
Read Alignment to a Large

/* 40-bit (5-byte)

Reference Genome

struct Jvalue5

{

};

enum bfSize

representation of a J value */

Reference genome position in C++

J (0-based offset into reference sequence)

chromosome number)

bfSize_3J) - 1,
bfSize_s) - 1,
bfSize_subId) - 1,
bfSize_x) - 1

{
bfSize_J = 31, // e..30:
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subld (e.g.,
bfSize_x = 1 // 39..39: end-of-list flag

}s

enum bfMaxVal : UINT64

{
bfMaxval_J = (static_cast<UINT64>(1) <<
bfMaxVval_s = (static_cast<UINT64>(1) <<
bfMaxVal_subId = (static_cast<UINT64>(1) <<
bfMaxVal_x = (static_cast<UINT64>(1) <<

}s

UINT32 3] : bfSize_3J;

UINT32 s : bfSize_s;

UINT8  subId : bfSize_sublId;

UINT8 X : bfSize_x;



S9350: CUDA-Accelerated Short-

Read Alignment toa Large Large genome — large lookup tables

Reference Genome

Extract and hash subsequences (“seeds”) Hash table data-sort sizes
Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA #1i #1 .
AAGCCTCCAT > OxDEA5D502 Ists ocations
AGCCTCCATA - Ox29DEC1F0 to sort to sort
GCCTCCATAC —> 0xDB840577
CCTCCATACT = ©x4DBA96DS5 human 1,263,683,062 3,687,638,902
T wheat 2,120,243,009  20,602,998,718

Probe hash table to find reference-sequence locations

OxDEA5D502: ©01:14353363, 01:15536663, 02:06335366 ...
Ox29DEC1FO: ©01:14353364, 06:20159342, 18:00513566
OxDB84©577: ©1:14353365, 01:15536665, ©5:83754151 ...
0x4DBA9@D5: (none)

Look for high-scoring alignments (“extend”) at high-priority reference-sequence locations
R: CATGTGTGAAGCCGCCATACCTGAGTCATGAAC--ATGAACTAA

Q: AAGCCTCCATACTTGAGTCCTGAACTGATGAA



S9350: CUDA-Accelerated Short-

Read Alignment to a Large "Sortable” reference genome position in C++

Reference Genome

/* 64-bit (8-byte) representation of a 40-bit (5-byte) J value */
struct Jvalue8

{

enum bfSize

{
bfSize_J = 31, // ©..30: ] (0-based offset into reference sequence)
bfSize_s = 1, // 31..31: strand (0: R+; 1: R-)
bfSize_subId = 7, // 32..38: subId (e.g., chromosome number)
bfSize_x = 1, // 39..39: flag (used only for sorting and filtering J lists; zero in final J table)
bfSize_tag = 24 // 40..63: used for sorting (see tuSortlgpu)

¥

enum bfMaxVal : UINT64

{
bfMaxval_J = (static_cast<UINT64>(1) << bfSize_J) - 1,
bfMaxval_s = (static_cast<UINT64>(1) << bfSize_s) - 1,
bfMaxVal_subId = (static_cast<UINT64>(1) << bfSize_subId) - 1,
bfMaxval_x = (static_cast<UINT64>(1) << bfSize _x) - 1,
bfMaxval_tag = (static_cast<UINT64>(1) << bfSize tag) - 1

s

UINT64 ] : bfSize_3J;

UINT64 s : bfSize_s;

UINT64 subId : bfSize_subId;

UINT64 X : bfSize_x;

UINT64 tag : bfSize_tag;

};



S9350: CUDA-Accelerated Short-

Read Alignment to a Large A bit-packed segmented sort

Reference Genome

The lists are sorted in a call to a CUDA Thrust sort implementation

/* Sort the current J-list buffer chunk. Since each 64-bit value contains a "tag" that associates the value
with the J list that corresponds to an H (hash key) value, this is in effect a segmented operation. */

thrust::device_ptr<UINT64> ttplbuf( m_pJlbuf->p );

thrust::sort( epCGA, ttplbuf, ttpJibuf+m_pJlbuf->Count );

The high-order bits identify individual lists so the result is effectively a
segmented sort

There are more lists than can be uniquely identified in the available high-
order bits, so the Thrust sort APl is called iteratively



59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

Repetitiveness versus speed



S9350: CUDA-Accelerated Short-

Read Alignment to a Large Large genomes are repetitive

Reference Genome

The genome of complex organisms contains mostly non-coding DNA

Non-coding DNA in large genomes contains many long and/or repetitive
seguences

The repetitive nature of the DNA affects the way we construct the hash
tables (lookup tables)



S9350: CUDA-Accelerated Short-

5Gb

4 Gb

3Gb

2Gb

1Gb

0Gb

Read Alignment to a Large

Reference Genome

OCoding DNA
DOUnannotated

O Unclassified repeats (XXX)
B Helitron (DHH)

B hAT (DTA)

B Unclassified class 2 (DXX)
B Mariner (DTT)

B Harbinger (DTH)

B Unclassified with TIRs (DTX)
B Mutator (DTM)

B CACTA (DTC)

BSINE (RSX)

BLINE (RIX)

O Unclassified LTR-RT (RLX)
B Copia (RLC)

B Gypsy (RLG)

Large genomes are repetitive

In large genomes, much of the DNA is repetitive:
Human: ~50%
Bread wheat (Triticum aestivum): ~85%

Repetitive DNA may contain...
Multiple copies of a variety of short subsequences
Low-information sequences
Homopolymers (e.g., AAAAAAAAAAAA)
Tandem repeats (e.g., CGCGCGCGCGCQG)

With a large repetitive genome, any given read may have
multiple locations at which it aligns
More alighment computations per read
Increased post-alignment processing to identify and
classify high-scoring mappings for each read



S9350: CUDA-Accelerated Short-

Number of bins

10°

10%

107

108

10°

10*

10°

10?

10

Read Alignment to
Reference Genome

alarge

Lookup table bin sizes

10
log,(bin size)

15

Repetitive genome — large lookup tables

—o—human

—o—wheat

20

Large-genome lookup tables (LUTs) contain
more reference-sequence locations per hash
value
Big LUT bins — more alighnments
computed

Large-genome LUTs are hard to optimize
Pruning highly-repetitive seed locations
decreases sensitivity in the read aligner

raw 5,875,619,304 28,516,821,874

finaln)  5,261,735,533 28,516,821,874
% pruned 10% 0%




59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

Performance



S9350: CUDA-Accelerated Short-

Read Alignment to a Large
Reference Genome

3
N

Large genome — more work

6
10 ~5x slower

Wheat vs human

By

g Speed vs sensitivity
i One through four V100 GPUs
104 human
—— wheat
103
87 88 89 90 91 92

% mapped

human ERR1347712 Simons Foundation Genome Diversity Project: SA_Kusunda_K-15_M

wheat SRR6001710 Sequencing of flow sorted chromosome 7D from Canthatch K



S9350: CUDA-Accelerated Short-

Read Alignment to a Large La rge genome —> More Work

Reference Genome

More data transferred to GPU
Tx/To = (time to load reference sequences) Te/Tq  1.22 13.32

+ (time to load reads)

More alignment computations per read T human wheat |

tuAlignN* = nongapped aligner (spaced seeds) tuAlignN20 3.56 17.66
tuAlignG* = gapped aligner (Smith-Waterman) tuAlignN52 10.31  113.97
tuAlignGs22 1.86 31.79
tuAlignGs12 0.65 23.67
tuAlignGwn12 0.36 2.60
tuAlignGs42 0.03 0.25




S9350: CUDA-Accelerated Short-

Read Alignment to a Large Speed versus sensitivity

Reference Genome

GPU-accelerated implementation is about 10°
10x faster than CPU-only implementation
Arioc (2019)
Bowtie 2 (2019)

10°

y

GPU-accelerated implementation scales 8
S~
appropriately with multiple GPUs E
Q
104
—=—1 GPU
—=—2 GPU
Workstation configuration .3 GpUz
4 x Intel Xeon Gold 6130 CPU @ 2.10GHz (64 total threads) ——4 GPUSZ
—a—B i
384GB RAM owtie
CentOS 7.5.1804 10°
91.0 91.5 92.0

4 x Nvidia V100, 32GB RAM each % mapped



S9350: CUDA-Accelerated Short-
Read Alignment to a Large
Reference Genome

Accuracy

WGS sample SRR6001710 contains DNA from a
subset of the wheat genome (flow-sorted
chromosome 7D)

Distribution of mapped reads is reasonable
Chromosome 2D is a major contaminant
(its size is very close to that of
chromosome 7D)
Very similar to Bowtie 2

120000000

100000000

80000000

60000000

40000000

20000000

Read mappings per chromosome

1A 1B 1D 2A 2B 2D 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D 7A 7B 7D Un



S9350: CUDA-Accelerated Short-

Read Alignment to a Large Ta keaways

Reference Genome

A short-read aligner runs slower with a large reference genome, but not prohibitively so

The size of the genome demands capable hardware:
Up to 500GB of system RAM (for building lookup tables)
Fast GPUs (Volta microarchitecture at a minimum)

The repetitive nature of the genome requires careful software configuration:
Do not “over-optimize” the lookup tables
Place some of the lookup tables in GPU RAM
Choose optimal criteria for concordant (proper) mappings and optimal speed-vs-

sensitivity tradeoff



59350

CUDA-Accelerated Short-Read Alignment to a Large Reference Genome

Questions / Discussion

Arioc is available on Github: https://github.com/RWilton/Arioc

Contact: richard.wilton@jhu.edu



