
www.hzdr.de

S9347: Performance Analysis for Large Scale
GPU Applications and DL Frameworks

Dr. Guido Juckeland / Robert Henschel
Head Computational Science Dept. / Director of Science CommunityTools at Indiana University

2

Agenda

What to expect from the next 80 minutes

 Motivation

 Generating profiles and trace files with Score-P

 Visualizing trace files with Vampir

 Looking into Deep Learning Frameworks

3

Disclaimer

It‘s extremely easy to waste performance

 Poor/no GPU usage (80-90%)

 Bad MPI (50-90%)

 Total: 1% of peak (or worse)

 Performance tools will not “automagically” make your code faster – they just point to
“areas of interest”

4

Motivation

Performance Tuning 101

5

Profiling vs. Tracing

Preserving the details

Statistics

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Number of Invocations Execution Time

main

foo

bar

Time

main foo bar foo

main foo bar fooTimelines

6

Sampling

Periodic observations of your application (Pull)

 Running program is periodically interrupted to take measurement

 Statistical inference of program behavior
 Not very detailed information on highly volatile metrics
 Requires long-running applications

 Works with unmodified executables

Time

main foo bar Measurement

t
9

t
7

t
6

t
5

t
4

t
1 t

2
t
3

t
8

7

Instrumentation

Modify application to deliver information (Push)

 Measurement code is inserted such that every event of interest is captured directly

 Advantage:
 Much more detailed information

main foo bar Measurement

Time

t
13t

9
t
7

t
6

t
5

t
4

t
1 t

2
t
3

t
8

t
10 t

11
t
12

t
14

 Disadvantage:
 Processing of source-code / executable necessary
 Large relative overheads for small functions

8

Sampling vs. Tracing

Comparing both approaches visually

main
calculate calculate calculate

add add add
f f f f f f

f f f

Trace
Buffer

Function
Instrumen-
tation:

Sampling:

main
calculate calculate calculate

add add add
f f f f f f

f f f

Trace
Buffer

9

Sampling + Instrumentation

Combining the best of both worlds

 Long running applications:
 Requires large buffers or heavy filtering
 Creating a filter requires runs in advance

 Codes with many small functions (e.g.: C++):
 Function instrumentation a challenge

main
calculate calculate calculate

add add add
f MPI f MPI f MPI

f f f

Trace
Buffer

Sample Sample Sample

 Score-P: Sampling+Tracing

10

Terms and How They Relate

Making sure we use the same words

Analysis Layer Analysis Technique

Data
Acquisition

Data
Recording

Data
Presentation

Profiling Tracing

Profiles Timelines

Summarization Logging

Sampling
Event-based

Instrumentation

11

Summary

Making the “right” choices

12

Generating Traces and Profiles

with Score-P

13

Overall workflow

Recording and studying performance data

 Attach Score-P to application

 Run with attached monitor ==> trace/profile data

 Study trace with Vampir / profile with Cube

 Repeat to:
 Adapt instrumentation (“what you measure”)
 Evaluate result of a change

ApplicationApplication
Core

Score-PScore-P

Trace
Data

Performance Visualization

14

Attaching Score-P

a.k.a. instrumenting your source code

CC = pgcc
CXX = pgCC
F90 = pgf90
MPICC = mpicc
NVCC = nvcc

CC = pgcc
CXX = pgCC
F90 = pgf90
MPICC = mpicc
NVCC = nvcc

CC = scorep <options> pgcc
CXX = scorep <options> pgCC
F90 = scorep <options> pgf90
MPICC = scorep <options> mpicc
NVCC = scorep <options> nvcc

CC = scorep <options> pgcc
CXX = scorep <options> pgCC
F90 = scorep <options> pgf90
MPICC = scorep <options> mpicc
NVCC = scorep <options> nvcc

$ scorep --help
This is the Score-P instrumentation tool. The usage is:
scorep <options> <original command>

Common options are:
...
 --instrument-filter=<file>
 Specifies the filter file for filtering functions during
 compile-time. It applies the same syntax, as the one
 used by Score-P during run-time.

 --user Enables user instrumentation.

15

Attaching Score-P

Instrument once – change measurement via runtime variables
$ scorep-info config-vars --full

SCOREP_ENABLE_PROFILING
 [...]
SCOREP_ENABLE_TRACING
 [...]
SCOREP_TOTAL_MEMORY
 Description: Total memory in bytes for the measurement system
 [...]
SCOREP_EXPERIMENT_DIRECTORY
 Description: Name of the experiment directory
 [...]

$ export SCOREP_ENABLE_PROFILING=true
$ export SCOREP_ENABLE_TRACING=false
$ export SCOREP_EXPERIMENT_DIRECTORY=profile

$ mpirun <instrumented binary>

Profiling Example

16

Combined Sampling+Tracing

Available since Score-P 2.0

 User code is sampled (pull)

 Runtime libraries with tracing support use events (push):
 MPI
 OpenMP / OpenACC / pthreads
 CUDA / OpenCL
 I/O

$ export SCOREP_ENABLE_TRACING=true
$ export SCOREP_ENABLE_UNWINDING=true
$ export SCOREP_SAMPLING_EVENTS=perf_cycles@2000000

17

Things to look at

What can Score-P record?

Run on HPC
system

Appli-
cation

ResultsScore-P

Performance Measurement
(Profile/Trace)

User Functions
 C/C++/Fortran
 Sampling *NEW*
 Custom regions

 Java
 Python

(*Experimenal*)

User Functions
 C/C++/Fortran
 Sampling *NEW*
 Custom regions

 Java
 Python

(*Experimenal*)

Operating
System
 Resource usage

Operating
System
 Resource usage

Hardware
 Performance

counters (PAPI)
 Plugin counters

Hardware
 Performance

counters (PAPI)
 Plugin counters

Parallel Paradigms
 MPI
 Pthreads
 OpenMP
 XeonPhi Native *NEW*
 CUDA
 OpenACC/OpenCL *NEW*
 OpenShmem (+Cray)
 I/O (*Experimental*)

Parallel Paradigms
 MPI
 Pthreads
 OpenMP
 XeonPhi Native *NEW*
 CUDA
 OpenACC/OpenCL *NEW*
 OpenShmem (+Cray)
 I/O (*Experimental*)

18

GPU Tracing

Example CUDA and OpenACC

 Can be used in combination

 Also supports CUPTI counters

$ export SCOREP_ENABLE_TRACING=yes
$ export SCOREP_TIMER=clock_gettime
$ export SCOREP_CUDA_ENABLE=driver,kernel,memcpy,flushatexit
$ export SCOREP_OPENACC_ENABLE=yes
$ export ACC_PROFLIB=$SCOREP_LIB/libscorep_adapter_openacc_event.so

19

Limitations

Why tracing is hard

 Event tracing requires trade-offs:
 Only add the data sources you need
 Limit granularity (i.e., filtering)

 Score-P is a profiling experiment

ApplicationApplication
CPU

Score-PScore-P

Trace
Data

Performance Visualization

Adds Overhead at runtime
=> Overhead must be low for

meaningful performance analysis

Temporarily stored in main memory
Limited size

20

DEMO:

Generating Traces and Profiles
with Score-P

21

Visualizing

Profiles with CUBE
Traces with Vampir

22

Bringing it all together

Score-P + Analysis Tools

Application

Vampir Scalasca PeriscopeTAU

Accelerator-based
parallelism

(CUDA, OpenCL, OpenACC)

Score-P measurement infrastructure

Event traces (OTF2)

User instrumentation

Call-path profiles
(CUBE4, TAU)

Online interface
Hardware counter (PAPI, rusage)

Process-level parallelism
(MPI, SHMEM)

Thread-level parallelism
(OpenMP, Pthreads)

Instrumentation wrapper

Source code
instrumentation

CUBE TAUdb

23

CUBE

Interactive profile analysis

How is it
distributed across

the processes/threads?
What kind of
performance

metric?

Where is it in the
source code?

In what context?

24

Vampir

Interactive trace analysis

Large imbalance
instantly visible

>50% time wasted

25

Vampir

Performance data visualization in a complex environment

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Compute Nodes
(Batch jobs)

Compute Nodes
(Batch jobs)

Core

Core

Core

Core

Login
Nodes
Login
Nodes

Trace
File

(OTF2)

I/O
System

I/O
System

Core

Core

Dekstop
System

Dekstop
System

26

Simplest Approach

Use your destop system

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Compute Nodes
(Batch jobs)

Compute Nodes
(Batch jobs)

Core

Core

Core

Core

Login
Nodes
Login
Nodes

Trace
File

(OTF2)

I/O
System

I/O
System

Dekstop
System

Dekstop
System

Core

Core

Visualization and
analysis:
Vampir

+ Minimal setup (no installations, no batch job)

- Copying of traces to desktop

- Only small traces

27

(Re)Using the HPC Resources

Run analysis engine on compute nodes, GUI on desktop

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Core Core Core Core

Compute Nodes
(Batch jobs)

Compute Nodes
(Batch jobs)

Core

Core

Core

Core

Login
Nodes
Login
Nodes

Trace
File

(OTF2)

I/O
System

I/O
System

Dekstop
System

Dekstop
System

Core

Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core CoreAnalysis:
VampirServer

Visualization:
Vampir

TCP Socket
connection

+ Best performance, low response time

- Tunneling to connect to batch job

- Installation on desktop system needed

28

Vampir GUI

What do the fancy colors mean?

Master Timeline

Summary Timeline

Process Timeline

Counter Data Timeline

Master Timeline

Summary Timeline

Process Timeline

Counter Data Timeline

Function Summary

Communication
Matrix View

Process Summary

Function Summary

Communication
Matrix View

Process Summary

29

Vampir GUI

Timeline Charts

all threads’ activities over time per thread

all threads’ activities over time per activity

all threads’ perf-metric over time

single thread’s activities over time

single threads perf-metric over time

 Master Timeline

 Summary Timeline

 Performance Radar

 Process Timeline

 Counter Data Timeline

30

Vampir GUI

Summary/Profile Charts

 Function Summary

 Message Summary

 I/O Summary

 Process Summary

 Communication Matrix View

runtime/invocation summaries

data transfer statistics

I/O statistics

Clustering of similar event streams

Pairwise communincation statistics

31

Vampir Performance Charts in Detail

 Master Timeline

Detailed information about
functions, communication

and synchronization events
for collection of processes.

32

Vampir Performance Charts in Detail

 Summary Timeline

Fractions of the number of
processes that are actively
involved in given activities
at a certain point in time.

33

Vampir Performance Charts in Detail

 Process Timeline

Detailed information about
different levels of function
calls in a stacked bar chart
for an individual process.

34

Vampir Performance Charts in Detail

 Counter Timeline

Detailed counter
information over time

for an individual
process.

35

Vampir Performance Charts in Detail

 Performance Radar

Detailed counter
information over time for
a collection of processes.

36

Vampir Performance Metrics

Where do they come from?

37

Vampir Performance Charts in Detail

 Function Summary

Overview of the
accumulated information

across all functions and for
a collection of processes.

38

Vampir Performance Charts in Detail

 Process Summary

Overview of the
accumulated

information across all
functions and for every
process independently.

Clustering: Grouping of
similar processes by
using summarized

function information.

39

Vampir Performance Charts in Detail

 Communication Matrix View

40

Vampir at Scale

Fit to chart height (feat. 200,000+ event streams)

41

Comparing Traces with Vampir

42

Seeing the differences

43

Zooming in

One iteration of solution1

One iteration of solution2

Computation/
Communicatio
n overlap for
solution 3

44

DEMO:

Visualizing Trace Files with Vampir

45

Looking into DL Frameworks

46

Score-P Python Bindings

Tracing/Profiling for all python programs

$ export SCOREP_ENABLE_PROFILING=true
$ export SCOREP_ENABLE_TRACING=false
$ export SCOREP_EXPERIMENT_DIRECTORY=profile

$ python -m scorep --mpi <script.py>

Profiling Example

 Not yet included in main release
 Available on GitHub:

 https://github.com/score-p/scorep_binding_python

 NSight/nvvp for single node DL frameworks still better (user instrumentation)

 Score-P only choice for MPI-parallel DL frameworks

https://github.com/score-p/scorep_binding_python

47

Vampir with Python Traces

It looks all the same

48

Vampir is available at http://www.vampir.eu
Vampir at IU: https://kb.iu.edu/d/awbv

Get support via vampirsupport@zih.tu-dresden.de
Score-P: http://www.vi-hps.org/projects/score-p

http://www.vampir.eu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

