

Sharing Physically Based Materials Between Renderers with MDL

Jan Jordan Software Product Manager MDL

Lutz Kettner Director Advanced Rendering and Materials

March 18, GTC San Jose 2019

Agenda

Introduction to NVIDIA Material Definition Language MDL

Matching the appearance of a single material within different rendering techniques

Defining physically-based materials

MDL ecosystem

Become part of the ecosystem

Introduction

The NVIDIA Material Definition Language (MDL)

is technology developed by NVIDIA

to define **physically-based** materials

for physically-based rendering solutions.

Substance Designer

Matching the Appearance of a Single Material Within Different Rendering Techniques

One Scene for Different Renderers

Realtime Rasterizer

Interactive Raytracer

Pathtracer

Share scene and MDL materials for a consistent look

Switching renderers with no scene modifications

Iray Photoreal Path Tracer Iray Interactive Ray Tracer, Direct Illumination Iray Realtime OpenGL Rasterizer

Traditional Shading Language Parts

Renderer

Procedural Programming Language

Texture lookups

Procedurals

Uv-transforms

Projectors

Noise functions

Math functions

Declarative Material Definition

Glossy reflection

Transparency

Translucency

Procedural Programming Language Declarative Material Definition

Procedural Programming Language Declarative Material Definition

MDL is not a Shading Language

MDL defines what to compute, **not** how to compute it

- no programmable shading
- no light loops or access to illumination
- no trace call
- no sampling
- no camera dependence

material surface

backface

...

volume

vdf scattering

- scattering_coefficient
- absorption_coefficient

geometry

material

surface

backface

...

volume

vdf scattering

- scattering_coefficient
- absorption_coefficient

geometry

- 🖌 displacement
- ① cutout_opacity
- 🐇 normal

material

surface

edf

backface

thin_walled

...

ior

emission

intensity

vdf scattering

volume

- scattering_coefficient
- absorption_coefficient

geometry

- 🖌 displacement
- Cutout_opacity
- 🎸 normal

MDL Elemental Distribution Functions

Bidirectional Scattering Distribution Functions

Diffuse Transmission

Glossy (various)

Backscatter Glossy

Specular Reflection

Spec. Refl.+Transm.

Measured BSDF

28 💿 nvidia.

MDL Elemental Distribution Functions

Emissive Distribution Functions

Spot

IES Profile

Volume Distribution Functions

MDL Distribution Function Modifiers

MDL Distribution Functions Combiners

Normalized Mix Clamped Mix Weighted Layer

Custom Curve Layer Measured Curve Layer

MDL Layered Material Example

Defining Physically-based Materials With Source Code

Defining a Material Using MDL

MDL is a 'C' like language. The material viewed as a struct

<pre>struct material {</pre>	
bool	thin_walled;
<pre>material_surface</pre>	surface;
<pre>material_surface</pre>	backface;
color	ior;
<pre>material_volume</pre>	volume;
<pre>material_geometry</pre>	geometry;
};	

Defining a Material Using MDL

MDL is a 'C' like language. The material and its components viewed as a struct

```
struct material {
                           thin walled;
    bool
    material surface
                           surface;
    material surface
                           backface;
    color
                           ior;
    material volume
                           volume;
    material geometry
                           geometry;
};
struct material_surface {
    bsdf
                           scattering;
    material emission
                           emission;
};
```

Defining a Material Using MDL

MDL is a 'C' like language. The material and its components viewed as a struct

```
struct material {
                      thin_walled = false;
    bool
    material_surface surface = material_surface();
    material_surface backface = material_surface();
color ior = color(1.0);
    material volume volume
                                   = material volume();
                                   = material geometry();
    material geometry geometry
};
struct material surface {
    bsdf
                      scattering = bsdf();
    material emission emission
                                   = material emission();
};
```

Material struct is already fully defined

material();

Material struct is already fully defined

material();

Creating new materials


```
material plaster( )
    = material(
        surface: material_surface(
           scattering: df::diffuse_reflection_bsdf()
        )
      );
```


New materials can have parameters

Create complex materials by layering

```
material plastic(
    color diffuse_color = color(.15,0.4,0.0),
    float roughness = 0.05
) = material(
    surface: material surface(
         scattering: df::fresnel_layer (
             ior: color(1.5),
             layer: df::simple glossy bsdf (
                 roughness u: glossy roughness
             ),
             base: df::diffuse_reflection_bsdf (
                 tint: diffuse color )
);
```


MDL Handbook www.mdlhandbook.com

January 10th update: more on procedural texturing and displacement

Upcoming: advanced volumes

MDLProcedural Programming LanguageC-like language for function definitions

Function results feed into material and function parameters

"Shader graphs" are equivalent to function call graphs

Defining a Function Using MDL

Functions allow control flow like loops, switches, conditionals

```
float summed_perlin_noise (
    float3 point,
    int level count=4,
    float level_scale=0.5,
    float point scale=2.0,
    bool turbulence=false)
{
    float scale = 0.5, noise sum = 0.0;
    float3 level point = point;
    for (int i = 0; i < level count; i++)</pre>
     ł
         float noise value = perlin noise(level point);
         if (turbulence)
              noise value = math::abs(noise_value);
         else noise value = 0.5 + 0.5 * noise value;
         noise sum += noise value * scale;
         scale *= level scale;
         level point *= point scale;
    return noise sum;
```

MDL Handbook

Defining a Function Using MDL

Call graph of functions substitute shader graphs

```
material perlin_noise_material()
= plaster(
    plaster_color: color(
        summed_perlin_noise(
            point: state::texture_coordinate(0)
        )
    )
```


MDL Module System

MDL is program code

MDL is a programming language allowing dependencies among modules and materials

import nvidia::vMaterials::Design::Metal::chrome::*;

We use search paths to resolve imports

MDL Module System

MDL is program code

MDL is a programming language allowing dependencies among modules and materials

import nvidia::vMaterials::Design::Metal::chrome::*;

We use search paths to resolve imports

C:\Users\Jan\Documents\mdl\nvidia\vMaterials\Design\Metal\chrome.mdl

MDL 1.5 Preview

MDL Encapsulated File Format (MDLE)

MDL 1.5 Preview

Internationalization (i18n)

Localization of all MDL string annotations

Based on OASIS standard XLIFF 1.2: XML Localisation Interchange File Format http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html

Package and module XLIFF files in MDL file hierarchy

Example

C:\Users\%USERNAME%\Documents\mdl\ nvidia\vMaterials\fr.xlf nvidia\vMaterials\AEC\Glass\Mirror_fr.xlf MDL search path French vMaterial package XLIFF file French Mirror module XLIFF file

MDL 1.5 Preview Hair shading

```
struct material {
    ...
    hair_bsdf hair;
};
```

hiang_hair_bsdf {		
<pre>diffuse_reflection_weight</pre>	=	0.0;
diffuse_reflection_tint	=	<pre>color(1.0);</pre>
roughness_R	=	float2(0.0);
roughness_TT	=	roughness_R;
roughness_TRT	=	roughness_TT;
cuticle_angle	=	0.0;
absorption_coefficient	=	<pre>color();</pre>
ior	=	1.55;
	<pre>diffuse_reflection_weight diffuse_reflection_tint roughness_R roughness_TT roughness_TRT cuticle_angle absorption_coefficient</pre>	<pre>diffuse_reflection_weight = diffuse_reflection_tint = roughness_R = roughness_TT = roughness_TRT = cuticle_angle = absorption_coefficient =</pre>

MDL 1.5 Preview

Microfacet coloring to support flip-flop car paints and more

1D measured curve (MDL >=1.4)

2D measured curve (new in MDL 1.5) n_{A}

 ω_{o}

Wi.

Additional MDL Benefits

Measured Materials

Spatially Varying BRDF AxF from X-Rite Measure Isotropic BSDF

Designed for Parallelism

Little data dependencies Side-effect free functions

Material Catalogs

Modules and packages Archives **MDL Ecosystem**

MDL - Past, Present and Future

58 💿 nvidia.

MDL Advisory Council

Companies sharing our vision of MDL

Joint direction of MDL and the MDL eco system

Include expertise other companies have gained in the field and with MDL

NVIDIA Iray Iray 2019 roadmap

Iray RTX 2019

- Release in May
- RTX support, up to 5 times speedup!
- MDL 1.5 support for
 - MDLE
 - localization
 - 2d measured curve

SOLIDWORKS Visualize

MDL import since 10/2018, tweaking + viewport preview coming

Epic Unreal Studio

"Real-time workflows for enterprise" www.unrealengine.com/studio

MDL support through DATASMITH

UNREAL EDITOR

Unreal Studio includes access to Unreal Editor, a powerful realtime tool for creating photorealistic scenes and immersive AR and VR experiences.

DATASMITH

Datasmith is the workflow toolkit in Unreal Studio that enables you to seamlessly import your data into Unreal Editor.

LEARNING

Enhance your skills and knowledge through a library of Unreal

Engine and Datasmith video tutorials.

earn more

Vizoo xTex

MDL export in the next release

"Vizoo is the number one supplier of Soft-and Hardware solutions for the physically accurate digitization of material swatches in the fashion industry."

www.vizoo3d.com

MEDULR

Online MDL editor and material library preparing for opening

Discover, create and share materials. We're building a global community to create the worlds largest material library.

www.medulr.com

Quixel Megascans

"Incredible scans and tools for creatives."

quixel.com

MDL Ecosystem

66 MVIDIA.

Focus on Material Exchange

Freely choose where to author material content

NVIDIA vMaterials 1.6 - SIGGRAPH 2019

~1700 MDL materials verified for accuracy - FREE TO USE

Become Part of the Ecosystem

Become Part of the Ecosystem

Integrate MDL enabled renderer

MDL is included

Write your own compiler

Based on the freely available MDL Specification

Use the MDL SDK

Published under the NVIDIA Designworks License and ...

Write Your Own Compiler

MDL Specification

Language specification document Free to use

http://www.nvidia.com/mdl/

DL_spec.pdf - Adobe Reader	- • ×
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp	×
Copen 📑 70 / 119 68.4% 🕶 🛃 👻 Tools Fill & Sign	Comment
	^
13.5 Materials — Encapsulating material definitions	_
argument_list : ([named_argument {, named_argument } positional_argument {, positional_argument } {, named_argument }])	
The material type can be used to define a material in a syntactic form that resembles a structur constructor including positional and named arguments. For example, to create a diffuse green materiaurface field of the material struct is defined as a material_surface struct in which the BSDF is green.	ial, the
<pre>material(surface : material_surface(</pre>	

MDL conformance test suite

Syntactic conformance tests Semantic conformance tests

Available on request

dl-conformance semantic test	t				
Matching results for iray Tests					-
0.08365853658536 %					
assed 39 out of 41 tests					-
Material	Renderer Image	Reference Image	Diff Image	Matching Result	
_brdf_complex_fint				97.970%	
_brdf_complex_thin_fim				96.652%	
_brdf_complex_directional_factor				99.000%	
brdf_complex_measured_curve_factor				98.870%	
_brdf_complex_normalised_mix_2k_s				96,750%	
_brdf_complex_normalised_mix_2x_u				99.050%	
_brdf_complex_normalised_mix_3x_o				98.520%	. 1

PHYSICS

VOXELS

GVDB Voxels

VXGI

VIDEO

GPUDirect for Video

Video Codec SDK

MANAGEMENT

NVAPI/NVWMI

DISPLAY

Multi-Display

Capture SDK

Warp and Blend

https://developer.nvidia.com/designworks

vMaterials

MDL SDK 2019 (.0.1) Features

MDL 1.4 (1.5 feature previews)

DB for MDL definitions

DAG view on materials several compilation modes

MDL editing

Code generators PTX, LLVM IR, x86, HLSL, GLSL (fcts. only)

Distiller and texture baker

Samples

Documentation and tutorials

MDL SDK 2019 - What is New Features

Preview of MDL 1.5 features:

- Localisation
- MDL encapsulated format

Improved BSDF reference implementation (libbsdf) including measured brdf and emissive distribution functions

Additional distilling mode (transmissive PBR)

HLSL backend (2019.0.1)

Automatic derivatives for texture filtering

Open source release available on Github

Includes exclusive MDL core compiler API

More samples

- Updated CUDA sample for transmissive materials
- (CPU rendering sample)?
- MDL browser sample

MDL and RTX

Materials tricky for todays game engines become feasible with RTX

- Anisotropic glossy reflections
- True refractive and volumetric materials
- Measured BRDF
- Proper translucency
- Complex glossy lobe shape and color

MDL materials make RTX shine!

MDL SDK and RTX

The MDL SDK directly generates material code for use in RTX enabled renderer

Microsoft DXR

 HLSL back-end with MDL SDK 2019.0.1 and sample path tracer in the SDK

NVIDIA OptiX

• PTX back-end since MDL SDK 2018.1 sample program available as part of Optix 5.1 & 6

Integrating MDL with an RTX based renderer is simple!

Automatic Derivatives for Texture Filtering

OptiX sample renderer integration: Derivatives off

Automatic Derivatives for Texture Filtering

OptiX sample renderer integration: Derivatives on

MDL in Realtime Rendering

Three approaches

- 1. Ubershader
- 2. Compilation: on-demand shader generation
- 3. Distillation to fixed material model

All based on MDL SDK

bsdf

>bsdf <

bsdf

fct 👌

fct

bsdf

\land fct 💠

 \diamond fct \diamond

♦ fct

👌 fct 👌

🛇 fct 🔇

normal

tex

fct

🛇 fct <

Results on vMaterials

diffuse-only

Fresnel(glossy, diffuse)

original

MDL Distilling

Released as part of Iray/MDL SDK

Multiple distilling targets (diffuse only, diffuse_glossy, UE4, new: transmissive PBR)

Original: Iray MDL

Projection: Dassault Stellar with Enterprise PBR

May the Source Be with You NVIDIA Open Sourced the MDL SDK

https://github.com/NVIDIA/MDL-SDK

BSD 3-clause license

Full MDL SDK

- 48 modules, 570 files, 310 KLOC
- Excluding MDL Distilling and texture baking GLSL compiler back-end
- Added MDL Core API
- Includes MDL Core Definitions and more
 4 releases shipped since SIGGRAPH 2018

Feature image courtesy of Adobe, created by art director Vladimir Petkovic.

MDL Core API

A Lower-level Compiler API in the MDL SDK

MDL SDK API	MDL Core API
Higher-level API for easy integration	API close to the compiler
Reference counted interfaces	Objects managed in arenas
Mutable objects	Immutable objects
In-memory store	Stateless compiler
Texture and resource importer	Callbacks

MDL Takeaways

What is MDL MDL Renderer clarative Materia Definition Rasterizer ming Lan Light loops / OIT Texture lookup Glossy reflection Raytracer Procedural Transparence Uv-transforms Translucency Trace N rays Projectors Pathtracer Noise function: Math functions Ray-marching

Declarative Material Definition

Procedural Programming Language

MDL Ecosystem

NVIDIA vMaterials

MDL Advisory Council

Starting Material

Open Source release

MDL Specification

MDL Handbook

MDL SDK

MDL Backend Examples

Conformance Test Suite

Further Information on MDL

www.nvidia.com/mdl

raytracing-docs.nvidia.com/mdl/index.html

Documents

NVIDIA Material Definition Language

• Technical Introduction

• Handbook

Language Specification

GTC On-Demand

on-demand-gtc.gputechconf.com

MDL@GTC

Mon 9 AM	Sharing Physically Based Materials
SJCC 230B	Between Renderers with MDL
Mon 10 AM	Integrating the NVIDIA Material Definition
SJCC 230B	Language MDL in Your Application
Mon 11 AM Hilton Hotel Almaden 2	A New PBR Material Serving Mobile, Web, Real-Time Engines and Ray Tracing
Tue 9 AM	Multi-Platform Photo-Real Rendering:
Hilton Hotel	Utilizing NVIDIA'S MDL and Allegorithmic's
Almaden 2	Substance Suite for Product Imaging
Thu 10 AM SJCC 230C	Real-Time Ray Tracing with MDL Materials