
Accelerating Distributed Deep Learning Inference
on multi-GPU with Hadoop-Spark

Hunmin Yang, Se-Yoon Oh, Ki-Jung Ryu

March 2019

GTC Silicon Valley

S9343

2/82

• Introduction

• GPU-accelerated DL Inference with Hadoop-Spark
• Fast & Scalable DL Inference

• DL System Optimization

• Use case: Intelligent Video Analytics

• Conclusions

Agenda

3/82

• AI Training & Inference

• Which one is more important for real-world applications?

Introduction

Copyright: NVIDIA

4/82

• Especially for industrial applications, large-scale AI inference is needed.

• Then, large-scale AI inference is easy?
• Not really.

• Linear scalability is not guaranteed for multiple GPUs and Servers.

• Furthermore, most works are rather focused on AI training.

Introduction

Copyright: S. Shi

5/82

Motivation

• Need for developing a large-scale production-level deep learning
inference platform for intelligent video analytics

GPU server cluster in Lab.

(52 servers & 38 GPUs)

1000Ch CCTV HD video stream analytics

6/82

• Real-world AI systems are complex big data analytics pipelines
• Only a small fraction of real-world ML systems is composed of the ML code.

• The required surrounding infrastructure is vast and complex.

Trend #1

Copyright: Sculley et al., Google, NIPS 2015

7/82

• Real-world AI systems are complex big data analytics pipelines
• Only a small fraction of real-world ML systems is composed of the ML code.

• The required surrounding infrastructure is vast and complex.

Trend #1

Copyright: Sculley et al., Google, NIPS 2015

Vast and complex

8/82

• Hadoop becoming the center of data storage (DB)

Trend #2

Copyright: Jason Dai, CVPR 2018

9/82

• Hadoop and Spark becoming the center of data processing (analytics)

Trend #3

Copyright: Jason Dai, CVPR 2018

Spark contributors(up to ‘19.2)

• Over 300 companies

• Over 1200 developers

• Over 25 organizations

(Copyright: Databricks)

New big data guy

10/82

• Develop a fast, scalable, and optimal GPU-accelerated distributed
deep learning inference platform with Hadoop-Spark

Research objective

CCTV

Drone

Control

Search

Tracking

Real-time video streams

AI application deployment at scale

11/82

• Introduction

• GPU-accelerated DL Inference with Hadoop-Spark
• Fast & Scalable DL Inference

• DL System Optimization

• Use case: Intelligent Video Analytics

• Conclusions

Outline

12/82

Part 1 - Overview

GPU-accelerated DL Inference with Hadoop-Spark

Streaming data analytics Static data analytics

13/82

• Why do we need ‘fast’ DL inference?
• Low latency for high-quality service

• Especially critical for defense industry

• Why do we need ‘scalable’ DL inference?
• Good scalability means fast computing

• ‘Scale up’ - one server with higher spec.

• ‘Scale out’ - many servers with clustering

Challenge: Fast & Scalable DL Inference

Copyright: GridGain

Copyright: NVIDIA

Multi-GPU Multi-node

Copyright: Google

Fast service

Copyright: NVIDIACopyright: NVIDIA

14/82

• SOTA distributed computing: Apache Hadoop

Challenge: Fast & Scalable DL Inference

Single-use platform

• Batch processing

General-purpose platform

• Batch processing

• Streaming / Online / Interactive processing

15/82

Challenge: Fast & Scalable DL Inference

• SOTA distributed computing: Apache Spark
• Fast & General-purpose cluster computing engine

• With Hadoop YARN, Apache Mesos, Standalone, etc.

• High-level APIs in Java, Scala, Python, R, and SQL

Fast General-purpose Runs-everywhere

SOTA
• DAG scheduler

• query optimizer

• physical execution engine StandaloneHadoop YARN Apache Mesos

16/82

• Our solution
• Hadoop-Spark: efficient distributed computing

• NVIDIA GPUs: accelerating DL inference

Solution: NVIDIA GPU & Hadoop-Spark

Data streaming

Data Source

Thousands of RTSP cameras

Online

D
a
ta

 s
to

ra
g
e

D
a
ta

 p
ro

ce
ss

in
g

C
o
o
rd

in
a
ti
o
n

Offline

Main benefits

 Efficient GPU resource

allocation among cluster

servers with Hadoop YARN

 Better GPU occupancy by

multi-processing in each

GPU with Spark

 Faster data access with

HDFS and HBase

GPU

17/82

• Our solution

Solution: NVIDIA GPU & Hadoop-Spark

GPU-accelerated DL Inference with Hadoop-Spark

=> Experiment #1 => Experiment #2

Streaming data analytics Static data analytics

18/82

• Introduction

• GPU-accelerated DL Inference with Hadoop-Spark
• Fast & Scalable DL Inference

• Experiment #1: Streaming data analytics

• Experiment #2: Static data analytics

• DL System Optimization

• Use case: Intelligent Video Analytics

• Conclusions

Outline

19/82

• Experiment #1: Streaming data analytics
• Purpose

• Measure the scalability for multi-GPU & multi-node

• Method
• Increasing the number of clustered servers (including 1GPU each)

Solution: NVIDIA GPU & Hadoop-Spark

Test system CPU GPU Memory Storage Network

31-node cluster

w/ 30 GPUs

Intel Xeon E5-2697 v4

18-cores @ 2.3 GHz

NVIDIA

Tesla M60

(1GPU/node)

256GB

DDR4

24TB

HDD

10Gbps

Ethernet

CentOS CUDA cuDNN Tensorflow HDP HBase Kafka Spark

7.4 8.0 6.0 1.4.0-gpu 2.6.3 1.1.2 0.10.1 2.2

∙∙∙

20/82

• Experiment #1: Streaming data analytics
• Distributed deep learning inference

Solution: NVIDIA GPU & Hadoop-Spark

[Spark]
GPU Inference

(YOLOv2)

[RTSP]
Real-time Video

streaming (H.264)

[Kafka]
Video stream router

(Topic/Message)

Visualization

DL inference

Pre-trained model

• YOLOv2
Test data

• In-house CCTV video (H.264)

Output

• Object detected results

Details

21/82

• Experiment #1: Streaming data analytics
• Distributed deep learning inference

Solution: NVIDIA GPU & Hadoop-Spark

• 30 : # of GPUs (= # of Nodes)

• 4 : # of YOLOv2 models in each GPU

(= # of Spark executors in each GPU)

• 120 : Total # of YOLOv2 models

30 X 4 = 120

∙∙∙
#1 #2 #3 #29 #30

GPU Fractional scaling

Throughput

(images/sec)

22/82

• Experiment #1: Streaming data analytics
• Distributed deep learning inference

Spark #1

Tesla M60

4 Executors

Solution: NVIDIA GPU & Hadoop-Spark

Producer

…

…

30 nodes

X

4 executor/node

X

10 (images/sec)/executor

= 1200 images/sec

exe exe exe exe

Spark #2

Tesla M60

4 Executors

exe exe exe exe

Spark #30

Tesla M60

4 Executors

exe exe exe exe

Consumer

Consumer

Consumer

exe exe exe exeexe exe exe exeexe exe exe exe
exe exe exe exe

…

Broker

servers

1000Ch

video

streams

1000Ch video analytics
- Number of channels: 1000 Ch

- Video decoding rate: 1 Hz

- Batch size: 1

23/82

• Experiment #1: Streaming data analytics
• Results

Solution: NVIDIA GPU & Hadoop-Spark

Reference

Normalize!

24/82

• Experiment #1: Streaming data analytics
• Results (normalized)

Solution: NVIDIA GPU & Hadoop-Spark

27x speedup

84% efficiency

25/82

• Experiment #1: Streaming data analytics (more details)
• Apache Kafka integration with Spark

Solution: NVIDIA GPU & Hadoop-Spark

Discretized data (micro-batch)

Kafka

Spark

Streaming

Spark

Engine

Visualization

RTSP

Continuous data

Spark

Driver Executor(s)

Query latest offsets and decide

offset ranges for batch

Launch jobs using offset ranges

Kafka

Read data using offset ranges in

jobs using simple APIDetails

RTSP

26/82

• Experiment #1: Streaming data analytics (more details)
• Apache Spark – ‘Cluster’ mode

Solution: NVIDIA GPU & Hadoop-Spark

• Hadoop YARN

• Apache Mesos

• Standalone

• Kubernetes

Term Meaning

Application
User program built on Spark

(Driver Program + Executors)

Application jar Jar containing user’s Spark Application

Driver program
Process running the main() of the application and

creating the SparkContext

Cluster manager
External service for acquiring resources on the

cluster (e.g. standalone, Mesos, YARN, etc.)

Deploy mode

Distinguishes where the driver process runs.

• ‘Cluster’ mode : driver inside of cluster

• ‘Client’ mode : driver outside of cluster

Worker node Any node that can run application.

Executor
A process that runs tasks and keeps data in

memory or disk. Each application has its own

executors.

Task A unit of work that will be sent to one executor

Job A parallel computation consisting of multiple tasks

Stage
Each job gets divided into smaller sets of tasks

that depend on each other

Spark

27/82

• Experiment #1: Streaming data analytics (examples)

Solution: NVIDIA GPU & Hadoop-Spark

A parallel computation consisting of multiple tasks

1 Job = 120 Tasks

28/82

• Experiment #1: Streaming data analytics (examples)

Solution: NVIDIA GPU & Hadoop-Spark

Each job gets divided into smaller sets of tasks that depend on each other

1 Stage = 120 Tasks = 1 Job (Not divided)

29/82

• Experiment #1: Streaming data analytics (examples)

Solution: NVIDIA GPU & Hadoop-Spark

A process that runs tasks and keeps data in memory or disk.

120 Executors = 120 Processes = 120 Tasks

30/82

• Experiment #1: Streaming data analytics (examples)

Solution: NVIDIA GPU & Hadoop-Spark

Input rate

= 1000 records/s

(1000 images/s)

Processing time < 1 s

Total delay < 1 s

Scheduling delay ≅ 0 s

31/82

• Experiment #1: Streaming data analytics (examples)

Solution: NVIDIA GPU & Hadoop-Spark

Active

Completed

32/82

• Introduction

• GPU-accelerated DL Inference with Hadoop-Spark
• Fast & Scalable DL Inference

• Experiment #1: Streaming data analytics

• Experiment #2: Static data analytics

• DL System Optimization

• Use case: Intelligent Video Analytics

• Conclusions

Outline

33/82

• Experiment #2: Static data analytics
• Purpose

• Measure the scalability for Spark multi-processors

• Method
• Increasing the number of Spark executors

Solution: NVIDIA GPU & Hadoop-Spark

Test system CPU GPU Memory Storage Network

4-node cluster

w/ 6 GPUs

Intel Core i7-6850K

6-cores @ 3.6 GHz

NVIDIA

Titan Xp

(2GPU/node)

32GB

DDR4

1TB

SSD

1 Gbps

Ethernet

CentOS CUDA cuDNN Tensorflow HDP HBase Kafka Spark

7.4 8.0 6.0 1.4.0-gpu 2.6.3 1.1.2 0.10.1 2.2

Multi-processing in each GPU

34/82

• Experiment #2: Static data analytics
• Distributed deep learning inference

Solution: NVIDIA GPU & Hadoop-Spark

Pre-trained model

• YOLOv2
Test data

• In-house CCTV video (H.264)

Output

• Object detected results

DL Inference

[Spark]
GPU Inference

(YOLOv2)

[HBase]
Video frame

repository (H.264)

[Kafka]
Video stream router

(Topic/Message)

Visualization

Details

35/82

• Experiment #2: Static data analytics
• Distributed deep learning inference

Solution: NVIDIA GPU & Hadoop-Spark

#1 #2 #3

Throughput

(images/sec)

Node #1 Node #2 Node #3

GPU #1 GPU #2 GPU #3 GPU #4 GPU #5 GPU #6

36/82

Solution: NVIDIA GPU & Hadoop-Spark

• Experiment #2: Static data analytics
• Results

Reference

Normalize!

37/82

Solution: NVIDIA GPU & Hadoop-Spark

• Experiment #2: Static data analytics
• Results (normalized)

7.8x speedup

130% efficiency

38/82

• We presented an efficient way to attain the scalable deep learning inference on
multi-GPU & multi-node using Hadoop-Spark.

• We demonstrated the usage of Spark multi-processors (executors) on cluster
environment to exploit the GPU resources efficiently.

• We applied the suggested approaches on both streaming and static data and
achieved the high-quality scalability performance.

Part 1 - Summary (Fast & Scalable DL inference)

84% efficiency 130% efficiency

Streaming data analytics Static data analytics

39/82

Part 1 - Summary (Fast & Scalable DL inference)

[File System]
Video file repository

(.mp4)

[Shell Script]
GPU Inference

(YOLOv2)

Single

Host

[Spark]
GPU Inference

(YOLOv2)

[HBase]
Video frame

repository (H.264)

[Kafka]
Video stream router

(Topic/Message)

Hadoop-Spark

cluster

(Static)

Visualization

[Spark]
GPU Inference

(YOLOv2)

[RTSP]
Real-time Video

streaming (H.264)

[Kafka]
Video stream router

(Topic/Message)

VisualizationHadoop-Spark

cluster

(Streaming)

Visualization

40/82

• Introduction

• GPU-accelerated DL Inference with Hadoop-Spark
• Fast & Scalable DL Inference

• DL System Optimization

• Use case: Intelligent Video Analytics

• Conclusions

Outline

41/82

Part 2 - Overview

DL system optimization with statistical approach

Throughput(image/sec)

Processing Time(sec)

Throughput(image/sec)

Processing Time(sec)

Effective Region

Effective Region

42/82

• Good Design

Challenge: DL System Optimization

Female Male

Male

Time: 6 min

Cost: $33

Female

Time: 3 Hrs 26 min

Cost: $876

Mission: Go to Gap, Buy a Pair of Pants

New Approach Traditional Approach

Dennis Lin @ PSU

How to collect useful information ?

43/82

• How can we optimize the DL system?
• Reduce design costs by speeding up the design process and reducing labor

complexity.

Development of Efficient R&D Methodology

Utilizing Statistical Design of Experiments (DOE)

Challenge: DL System Optimization

Deep
Learning

Other
T&E

Big
Data

Artificial
Intelligence

44/82

• DL Parameter
• DL Model Parameter

• Labeled Data + DL Model = weight(βn), bias(β0)

• Hyper-Parameter (Algorithm Design)
• Different Learning Structure(DNN)

Challenge: DL System Optimization

45/82

• Hyper-Parameters
• Learning rates

• Cost function

• Regularization parameter

• Batch size

• Training epochs

• No. of layers

• Convolutional filters

• Convolutional kernel size

• Weight initialization

• Dropout fractions

• …

Challenge: DL System Optimization

Hyper-Parameter Optimization

(1) Grid Search

(2) Random Search

(3) Bayesian Optimization

(4) Gradient-based Optimization

(5) Statistical DOE Search

46/82

• Experiments
• As a test or series of tests

• Purposeful changes are made to the input variables of system

• Identify the reasons for the changes in the output response

Challenge: DL System Optimization

Types of experiments

47/82

• Strategy of Experimentation
1. “Best-guess” experiments

• Used a lot / Non-optimal solution with poor initial guess

2. One-Factor-At-a Time (OFAT) experiments
• Fail to consider any possible interaction

• Always less efficient than statistics-based methods

3. Statistically designed experiments
• Design of Experiments (DOE)

• Based on Fisher’s factorial concept

Challenge: DL System Optimization

• Designed Experiments

• Experimental Design

48/82

• Design of Experiments (DOE)
• Maximum information with minimum resources

• Develop mathematical models (factors-responses)

• Optimize the responses

• Mathematical response models helps in output maximization

Challenge: DL System Optimization

New ApproachTraditional Approach

49/82

• Response Surface Methodologies (RSM/DOE)

Challenge: DL System Optimization

2nd-order model

1st-order model

j

ji

iij

k

i

iii

k

i

ii xxxxy
1

2

1

0

50/82

• Case study 1: Space Filling Design
• Cifar-100 Dataset Subset

• 20 categories

• 50,000 color images

• Factors as design variables
• No. Epoch(X1)

• Batch Size(X2)

• Learning Rate(X3)

• LR Step(X4)

• Responses
• Accuracy(Y1)

• Learning Time(Y2)

Challenge: DL System Optimization

51/82

• Case study 2: D-Optimal Design
• Cifar-100 Dataset Subset

• 20 categories

• 50,000 color images

• Factors as design variables
• No. Epoch(X1)

• Dataset Size(X2)

• Responses
• Accuracy(Y1)

• Learning Time(Y2)

• Optimum Results
• Active learning to help in dataset selection

• Accuracy : 50 % @ min. Learning Time

Challenge: DL System Optimization

52/82

• System design parameters
• X1 : Number of Spark executors per GPU

• X2 : Video decoding rate (Hz)

• X3 : Batch size for DL model inference

• Responses (Performance metrics)
• Y1 : Throughput in processed images per second (images/sec)

• Y2 : Processing time (sec)

Solution: the statistical DOE based system optimization

In-house CCTV

video dataset
Object detection model

53/82

• FCCD experiments in our solution
• Special case of ordinary CCD

• Second-order regression model
• very flexible / wide variety function form

• easy estimation / work well in real problems

Solution: the statistical DOE based system optimization

variables random euncorrelat are }{

)(

0)(where

2

2

1

11

2

1

0

Var

E

xxxxy j

k

j

iij

k

i

k

i

iii

k

i

ii

2 variable FCCD

3 variable factorial design 3 variable FCCD

54/82

• DOE/RSM approach for system optimization
• Factor levels for the FCCD experiments

Solution: the statistical DOE based system optimization

Design No. Remark

Central Composite Design (FCCD)

Total Runs 20 pts

Factorial 8 pts

Center 6 pts

Axial 6 pts

Factors Factorial values

X1 : Executer/GPU 1~3

X2 : Batch Size 1~15

X3 : Decoding Rate 1~9 Hz

Response

Y1 : Throughput 1,800≤ Y1 ≤ 2,500 Images/sec

Y2 : Processing Time 0.5 ≤ Y2 ≤ 1.0 sec

X
3

:
D

e
co

d
in

g
R
a
te

55/82

• FCCD matrix and measured results

Solution: the statistical DOE based system optimization

RUN No Executor(x1) Bach Size(x2) Decoding Rate(x3) Throughput(y1)

[images/sec]

Processing Time(y2)

[sec]

1 1 8 5 1315 4.00

2 3 8 5 2640 2.00

3 2 8 5 2565 2.07

4 2 8 1 1396 0.75

5 2 8 5 2490 2.10

6 2 8 9 2430 3.90

7 3 1 9 3168 3.00

8 2 8 5 2600 2.03

9 2 15 5 2545 2.07

10 3 15 9 3114 3.03

11 3 15 1 1325 0.80

12 3 1 1 1832 0.58

13 1 15 9 1530 6.20

14 2 8 5 2605 2.03

15 1 1 9 1422 6.67

16 2 8 5 2565 2.07

17 1 15 1 1052 1.00

18 2 1 5 2645 2.00

19 1 1 1 1062 1.00

20 2 8 5 2645 2.00

X1 X2 X3 Y1 Y2

56/82

• Optimization results: overlaid response surface plot

Solution: the statistical DOE based system optimization

Minitab

X1

X3

X2

Y1

Y2

Throughput

Processing Time
(sec)

(images/sec)

57/82

• Optimization results for other design requirements

Solution: the statistical DOE based system optimization

Throughput(image/sec)

Processing Time(sec)

Throughput(image/sec)

Processing Time(sec)

Effective Region
Effective Region

X1

X3

58/82

Part 2 - Summary (DL system optimization)

• We presented an efficient way to attain the optimal design parameters for
distributed deep learning system with a statistical DOE method

• We applied the suggested approaches through various experiments according to
the DOE/RSM based configurations.

• We demonstrated the effect of design parameters such as the number of Spark
executors per GPU, batch size and video decoding rate for deep learning inference
system in regards of performance metrics such as throughput and processing time.

59/82

• Introduction

• GPU-accelerated DL Inference with Hadoop-Spark
• Fast & Scalable DL Inference

• DL System Optimization

• Use case: Intelligent Video Analytics

• Conclusions

Outline

60/82

• ‘D-NET’: GPU-accelerated big data analytics platform

Use case: Intelligent Video Analytics

61/82

• Big data server room

Use case: Intelligent Video Analytics

Condition Panel

62/82

• Integrated control room

Use case: Intelligent Video Analytics

Server Controller

Video Wall

Video Wall Controller

63/82

• Main functions
• Video stream simulator

• Real-time video streaming

• DL-based object detection

• Heterogeneous model deployment

• GIS-based object tracking

• Object tracking by face recognition

• DB-based object search

• Cluster resource monitoring

• Integrated multi-video control

Use case: Intelligent Video Analytics

Real-time

Video

Streaming

Heterogeneous

Integrated

multi-video

Control

Search Engine
Monitor

Camera

DB

Feature

DB

GIS

Tracking System

Manage

ment

Web

User Interface

DL Inference
(Object detection,

Face recognition)

Multi-

tenancy

Video

Stream

Simulator

Real-time Intelligent Video Analytics for 1000Ch CCTV streams
NVIDIA Tesla M60 GPU-accelerated DL Inference on 31-node & 30-GPU Hadoop-Spark Cluster

64/82

• Video stream simulator

Use case: Intelligent Video Analytics

Recorded Videos

Cameras CameraDB

Simulator Server

Route_Info

IP Camera

Video File

D-Net Client

Analysis Server

Transcording Server

RTSP

Stream

Vodioe File

Camera Info Route, Layout

Info

Message

RTSP Stream

+

Metadata

①데이터입력 ②데이터출력

③설정정보로드

④시뮬레이터제어

User

Camera DB

1000Ch

video

stream

Video

Stream

Simulator

65/82

• Video stream simulator

Use case: Intelligent Video Analytics

66/82

• Real-time video streaming

Use case: Intelligent Video Analytics

cluster

s

…

Real-time

video streaming

Producer

…

Consumer

Consumer

Consumer

Broker

servers

1000Ch

video

streams

67/82

• Deep learning based object detection (CCTV)

Use case: Intelligent Video Analytics

68/82

• Deep learning based object detection (aerial view)

Use case: Intelligent Video Analytics

69/82

• Heterogeneous model deployment

Use case: Intelligent Video Analytics

70/82

• GIS-based object tracking

Use case: Intelligent Video Analytics

71/82

• Object tracking by face recognition

Use case: Intelligent Video Analytics

72/82

• Database based object search for cropped image

Use case: Intelligent Video Analytics

73/82

• Cluster resource monitoring

Use case: Intelligent Video Analytics

74/82

• Cluster resource monitoring

Use case: Intelligent Video Analytics

75/82

• Integrated multi-video control

Use case: Intelligent Video Analytics

76/82

• Integrated multi-video control

Use case: Intelligent Video Analytics

77/82

• Integrated multi-video control

Use case: Intelligent Video Analytics

78/82

• Integrated multi-video control

Use case: Intelligent Video Analytics

79/82

• Large-scale Intelligent Video Analytics

Use case: Intelligent Video Analytics

80/82

Real-time Intelligent Video Analytics

for 1000Ch CCTV streams

NVIDIA Tesla M60 GPU-accelerated DL Inference

on 31-node & 30-GPU Hadoop-Spark Cluster

81/82

• Introduction

• GPU-accelerated DL Inference with Hadoop-Spark
• Fast & Scalable DL Inference

• DL System Optimization

• Use case: Intelligent Video Analytics

• Conclusions

Outline

82/82

• Hadoop-Spark DL Inference works

• DOE gives significant efficiency gains

• Exciting IVA works more to come!

Conclusions

+

Thanks!

Hunmin Yang

hmyang@add.re.kr

Agency for Defense Development

Se-Yoon Oh

syoh@add.re.kr

Agency for Defense Development

Ki-Jung Ryu

taurus@add.re.kr

Agency for Defense Development

mailto:hmyang@add.re.kr
mailto:syoh@add.re.kr
mailto:taurus@add.re.kr

Acknowledgements

www.xiilab.com

Inception Startup

www.goodmit.co.kr

http://www.xiilab.com/
http://www.goodmit.co.kr/

