

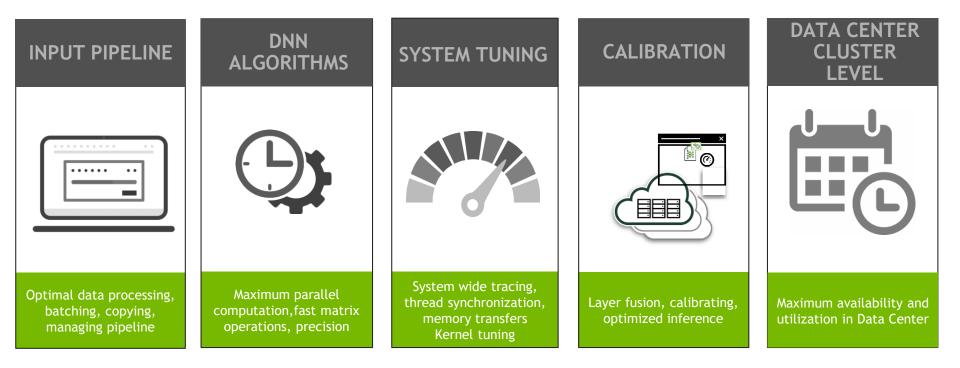
Profiling Deep Learning Networks

Poonam Chitale, David Zier NVIDIA

DEEP LEARNING OPTIMIZATION

Performance Analysis at System and DNN Level & Visualization

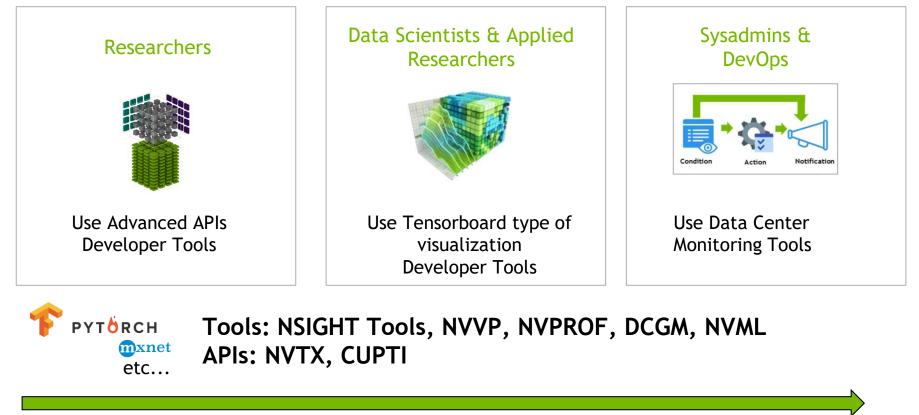
System Level Tuning


- System Tuning
 - Thread Synchronization, Multi GPU and node communication
 - Memory management & Kernel profiling
- Leveraging/Optimizing Hardware
- Input Pipeline Optimization
- Many others....

DNN Level Tuning

- Algorithm Techniques & Data Representations
- Pruning
- Calibration
- Quantization
- Many others....

Visualization


TYPICAL CHALLENGES

DL PROFILING NEEDS OF DIFFERENT PERSONAS

DL PROFILING: TOOLS & TECHNOLOGIES

INPUT DATA PIPELINE OPTIMIZATION

Highly dependent on application use cases

Training Data Preparation

Preprocessing and augmentation can become complex, learnings from a medical imaging segmentation use case:

- Cropping multiple batches from one single volume.
- Unzipping files and saving to local disk at first epoch.
- Storing foreground voxel coordinates to local disk space at first epoch.
- Caching etc...

NVIDIA DALI: DAta loading LIbrary:

A GPU-accelerated data augmentation and image loading library for optimizing data pipelines of deep learning frameworks.

TENSORBOARD

Data Visualization

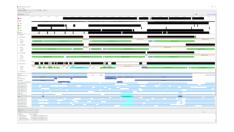
- Tensorboard is the most popular visualization tools used by data scientists and applied researchers using Tensorflow.
- Useful to understand network graph topology, training etc
- PyTorch users seem to use TensorboardX (also Visdom)
- MXBoard is a similar tool for mxnet

_		Q Filter tags (regular expressions supp	sorrea
	tliers in chart scaling	accuracy	1
Tooltip sorting method:	g default 👻	cross entropy	1
Smoothing		cross entropy	
	0.6	0.0550	
Horizontal /	Fit to screen	dropout +	Attributes (1) T {"type":"DT_FLOAT"} Device /job:localhost/replica:0/ta
STEP	End End <td>layer1</td> <td>0/cpu:0 Inputs (1) Iayer1/Wx_plus_b/add 2×50</td>	layer1	0/cpu:0 Inputs (1) Iayer1/Wx_plus_b/add 2×50
_	Session step999 - runs (10)		Outputs (6) dropout/dropout/Shape 7×50 dropout/dropout/mul 7×50
Runs	Upload Choose File	activation International	 train/gradients/dropout/dropout/n 2×50 train/gradients/dropout/dropout/n
Write a rege	Device Compute time	Wx_plus_b	 train/gradients/layer1/activation 2×50 2×50 layer1/HistogramSummary
			4

NVIDIA NSIGHT TOOLS

NSIGHT PRODUCT FAMILY

Standalone Performance Tools, IDE Plugins


Standalone Performance Tools

Nsight Systems System wide tracing, application algorithm tuning Nsight Compute Debug/Optimize specific CUDA kernels Nsight Graphics Debug/Optimize specific graphics API and Shaders

IDE Plugins

Nsight Visual Studio/Eclipse Edition editor, debugger, performance analysis

NSIGHT PRODUCT FAMILY

* GPU Speed OF Light									
\$ 205 EM							709,854.0		
\$ 505. TEX	17.06 Elegend Spring 5.765,066								
% SOE E2	16.00 BE Frequency (0a) 3,040,307,0						3,842,387,945.5		
\$ 205. FB				87.34 Beauty	Trequency (Ba)				2,499,503,545.3
				Recommedation					
Bottleneck Strike @Ubstitereck.delect	n								Apply
				GPU Etiliadon					
% Di Bilay									
Sufference Date	_	_	_	_	_	_	_		Carrent
1.0 10.1	26.0	30.0	41.0	State of the second sec	66.0	80	MLO	90.0	101.0
* Compute Workhad Analysis									
Instant of Soc Elegent				a to be set to					
Resourced loc Active				0.72 * 1.000					
Denied Der Behöre				0.72	store stay				
* Humory Workland Analysis									
Henery Throughput (hytes/s)			78,885,8	10,000.00 N Here B					87.5
* 11 XIX Bala				0.00 9 204 2	100100				17.3
% 12 Hit Bate	33.34 v Hen Fejner Bary					17.8			
 Schoduler Statistics 									
Active Margo Der Schodular					tions for Arti-	re Lesus dion			
Eligible Warps For Scheduler						82.7			
Innied Marge Der Scheduller							17.2		
* Warp State Statistics									
Cycles For Lessed Instruction					tive Threads in				80.0
CULLAS PAR ISSNA BLOS					T POINT CALLS IN	TT TREAMS PAG	85.02		80.8

Nsight Systems

System-wide application algorithm tuning

Nsight Compute

CUDA API Debugging & Kernel Profiling

Nsight Graphics

Graphics Debugging & Profiling

IDE Plugins

Nsight Eclipse Edition/Visual Studio (Editor, Debugger)

NSIGHT SYSTEMS

System-wide Performance Analysis

Observe Application Behavior: CPU threads, GPU traces, Memory Bandwidth and more

Locate Optimization Opportunities: CUDA & OpenGL APIs, Unified Memory transfers, User Annotations using NVTX

Ready for Big Data: Fast GUI capable of visualizing in excess of 10 million events on laptops, Container support, Minimum user privileges



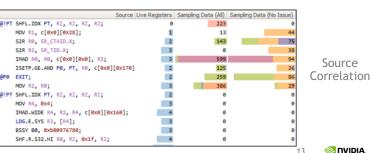
https://developer.nvidia.com/nsight-systems

Select device for profiling


Project 2 13 DOVERA ACEL OF CO. lawa DGN 1/F synthetis, BanketSb with base backbaces, advep 🔄 🛛 base DGN 1/F synthetis, DenketSb with base backbaces-ad system base Josefier Sawa Jin spice 🔂 🛛 trace. DGN 1/C synthetis, BenketSb with base backbaces. advep

NVIDIA NSIGHT COMPUTE

Next Generation Kernel Profiler


- Interactive CUDA API debugging and kernel profiling
- Fast Data Collection
- Improved Workflow and Fully Customizable (Baselining, Programmable UI/Rules)
- Command Line, Standalone, IDE Integration
- Platform Support
 - ▶ OS: Linux (x86, ARM), Windows
 - GPUs: Pascal, Volta, Turing

Kernel Profile Comparisons with Baseline

inst_executed [inst]	16,528.00; 16,528.00; _	13,476.00; 13,476.00; _
litex_sol_pct [%]	14.33	n/a
launchblock_size	128.00	128.00
launchfunction_pcs	47,611,587,968.00	12,273,728.00
launchgrid_size	4,132.00	3,369.00
launch_occupancy_limit_blocks [block]	32.00	32.00
launch occupancy limit registers [register]	21.00	21.00
launch occupancy limit shared mem [bytes]	384.00	384.00
launch_occupancy_limit_warps [warps]	16.00	16.00
launch occupancy per block size	3,638.00	3,638.00
launch_occupancy_per_register_count	5,792.00	5,792.00
launch_occupancy_per_shared_mem_size	2,260.00	2,260.00
launch registers per thread [register/thread]	17.00	17.00
launchshared_mem_config_size [bytes]	49,152.00	49,152.00
launch shared mem per block dynamic [bytes/block]	0.00	0.00
launch shared mem per block static [bytes/block]	20.00	20.00
launch_thread_count [thread]	528,896.00	431,232.00
launch waves per multiprocessor	3.23	42.11
Itc_sol_pct [%]	6.93	7.18
memory_access_size_type [bytes]	2.00; 32.00; 32.00; 32.	2.00; 32.00; 32.00; 32.
	2 001 4 001 2 001 2 00	2 001 4 001 2 001 2 00

Metric Data

APIs & Libraries : NVTX and CUPTI

NVIDIA TOOLS EXTENSION LIBRARY (NVTX)

- NVTX is a platform agnostic, tools agnostic API
- Allows developers to annotate(mark) source code, events, code ranges etc

- NVIDIA optimized Tensorflow, PyTorch, MXnet have NVTX annotations built in!
- Enables a better more effective user experience with Nsight Tools, NVVP, NVPROF

		E	:poch 3 [7.649 s]			
			Train [6.692 s]			
NVTX ([Default])	Batch 299 [Batch 30	0 [4.981 ms]	Batch 301 [4.645 ms]			
	Backward p Forward pass [1.939 ms]	Backward pass [2.829 ms]	C Forward pass [1.845	Backward pass [2.472 ms]		
CUDA API	tare deard - to brut I the Alfana bian demoder (kit a fizialistat	👃 Milishlasshin sa ta <mark>l</mark> asta s	-mitrituted		

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvtx

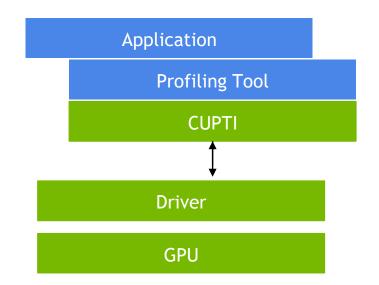
PREVIEW: TENSORFLOW WITH NVTX ANNOTATION

Coming soon

- Library developed specifically for annotating Tensorflow to help visualize network better in Nsight Systems
- Workflow:
 - Import nvtx_tf library
 - Annotate python code
 - Run tensorflow
 - Get data through a profiler such as Nsight Systems

```
import tensorflow as tf
    import nvtx.plugins.tf as nvtx tf
     @nvtx_tf.layers.trace(message="Dense Block", domain name="Forward",
                           grad domain name="Gradient")
 8 		 def dense block(net):
        net = tf.layers.dense(net, 1, activation=tf.nn.relu, name='dense 1')
        net = tf.layers.dense(net, 64, activation=tf.nn.relu, name='dense 2')
        net = tf.layers.dense(net, 128, activation=tf.nn.relu, name='dense 3')
        net = tf.layers.dense(net, 256, activation=tf.nn.relu, name='dense 4')
        net = tf.lavers.dense(net, 512, activation=tf.nn.relu, name='dense 5')
        return net
17 v def build model(inputs)
        x = dense block(inputs)
        x, nvtx context = nvtx_tf.layers.start(x, message="logits-softmax")
        x = tf.layers.dense(x, 512, activation=None, name='logits')
        x = tf.nn.softmax(x, name='probs')
        x = nvtx tf.layers.end(x, nvtx context)
        return x
```

PREVIEW: PyTorch WITH NVTX ANNOTATION


Coming soon

 Library for effectively using NVTX marker for PyTorch Custom NVTX marker as a python dictionary with module name, function name, arguments (tensor shapes & type, scalar type & value). 	<pre>import torch.cuda.profiler as profiler import nvtx_py nvtx_py.nvtx.init()</pre>
Workflow: Import library Annotate python code Run with profiler 	<pre>with torch.autograd.profiler.emit_nvtx(): for epoch in range(100): for iteration in range(100): </pre>

CUDA PROFILING TOOLS INTERFACE (CUPTI)

Build your own GPU performance tuning tools

- C APIs to enable creation of profiling and tracing tools that target CUDA applications
- Supports multiple APIs CUDA API trace, GPU activity trace, GPU performance counters and metrics, PC sampling, Profiling (Unified Memory, OpenACC)
- Available as a dynamic library on all CUDA supported platforms

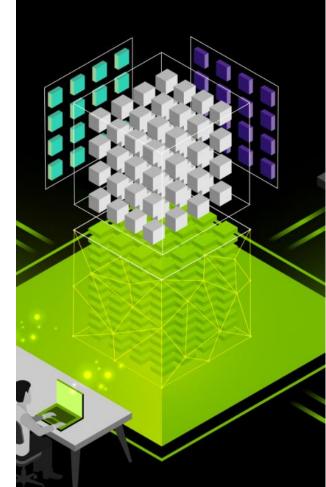
Tensor Cores for Deep Learning

ALGORITHM OPTIMIZATION

Mixed Precision implementation using Tensor Cores on Turing and Volta GPUs

Tensor Cores

- A revolutionary technology that accelerates AI performance by enabling efficient mixed-precision implementation
- Accelerate large matrix multiply and accumulate operations in a single operation


Mixed Precision Technique

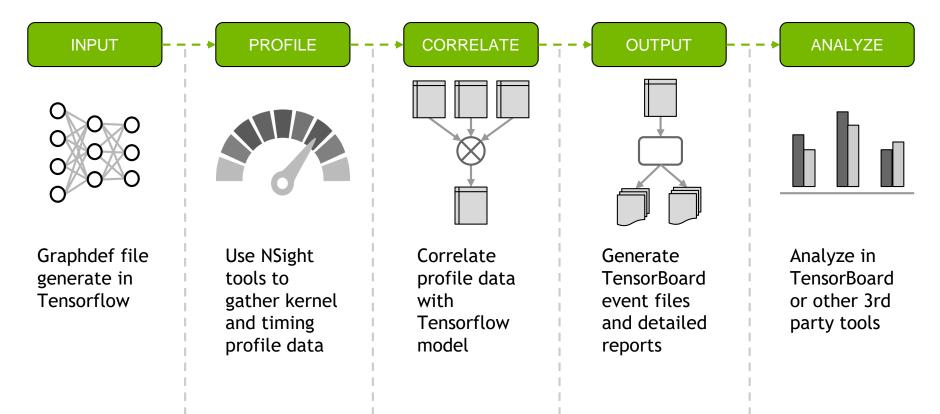
Combined use of different numerical precisions in a computational method; focus is on FP16 and FP32 combination.

Benefits

 Decreases the required amount of memory enabling training of larger models or training with larger mini-batches

Shortens the training or inference time by lowering the required resources by using lower-precision arithmetic

PREVIEW: NVIDIA DEEP LEARNING PROFILER


Deep Learning Profiler

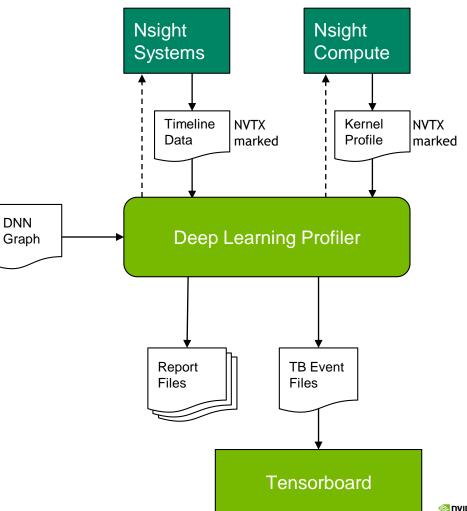
Core Purpose

Who: A data scientist/deep learning researcher What: Able to

- Easily profile a DNN
- Understand GPU usage in terms of the model
- Present results in familiar tools, such as TensorBoard
- Leverage existing NVIDIA tools

Deep Learning Profiler Workflow

Architecture


Automates workflow

Nsight Systems

- Gather timeline information •
- Determines Tensor Core usage from • name of kernels

Nsight Compute

- Detailed kernel level profiling •
- Determines Tensor Core usage from • **GPU** program counters
- Use NVTX markers to correlate kernels with DNN graph nodes
- Any number of reports can be generated
 - TB Event Files, CSV, JSON •
 - Analyze with tool of your choice •

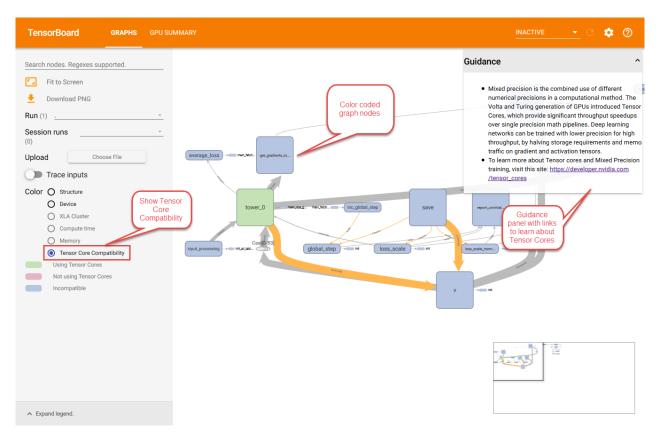
Deep Learning Profiler

Command Line Example

Example command to profile MobileNet V2 and generate a graphdef

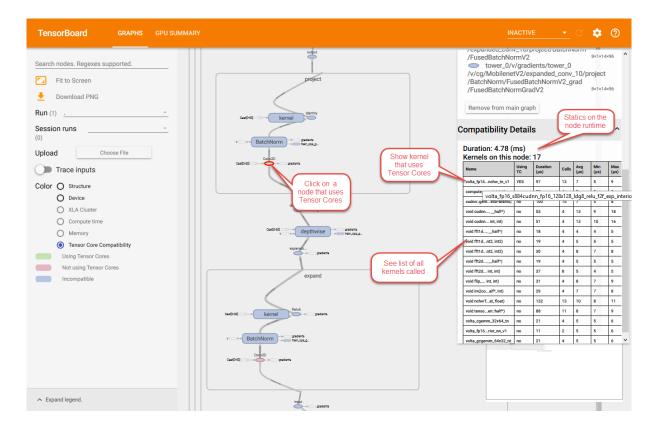
\$ /usr/bin/python tf_cnn_benchmarks.py --num_gpus=1 --batch_size=8 --model=mobilenet --device=gpu -gpu_indices=1 --data_name=imagenet --data_dir=/data/train-val-tfrecord-480 --num_batches=1 --use_fp16 --fp16_enable_auto_loss_scale --graph_file=/results/mobilenet_graph.pb

Example Deep Learning Profiler command


\$ dlprof --in_graphdef=/results/mobilenet_graph.pb /usr/bin/python tf_cnn_benchmarks.py --num_gpus=1
--batch_size=8 --model=mobilenet --device=gpu --gpu_indices=1 --data_name=imagenet -data_dir=/data/train-val-tfrecord-480 --num_batches=1 --use_fp16 --fp16_enable_auto_loss_scale

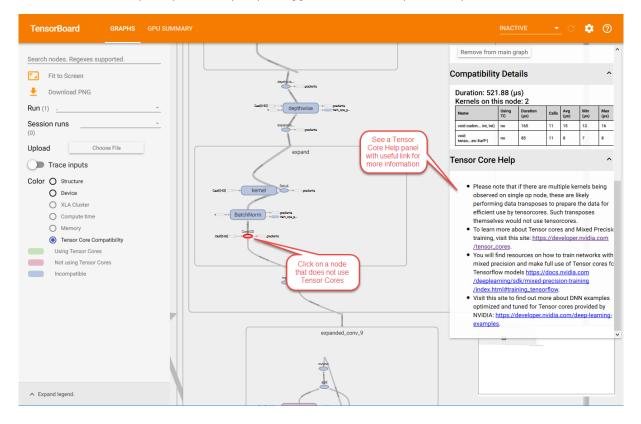
Launching TensorBoard

\$ tensorboard --logdir ./event_files


Tensorboard Modifications

Start TensorBoard with NVIDIA modifications

Compatibility Details


Select Compatible using Tensor Cores

Compatibility Details

Select Compatible node not using Tensor Cores

Compatibility details and panel providing guidance and links to help with mixed precision

OpNodes Summary Tab

GPU Summary tab showing all the Nodes, compatible and using Tensor Cores

TensorBoard GRAPHS GPU SU	MMARY						INA	CTIVE	<u> </u>	*	*	0
Search	● OpNodes ○ G	oupNodes OModel Sumr	nary									
New GPU									▼			^
Summary Lab	1 tower_0/v/cg/M	bilenetV2/Conv/Conv2D				С	onv2D		1,848,897	1	13	1
<u>∎</u> ()		bilenetV2/Logits/Conv2d_1c_1x					onv2D		50,851	1	17	1
Run .	3 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/Lo	gits/Conv2d_1c_1x1/Conv2D_grad/0	Conv2DBack	proplnp	ut C	onv2DB	ackproplnpu	t 39,125	1	15	1
(1)	4 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/Lo	gits/Conv2d_1c_1x1/Conv2D_grad/0	Conv2DBack	propFilt	er C	onv2DB	ackpropFilte	r 23,300	1	17	1
Session	5 tower_0/v/cg/M	bilenetV2/Conv_1/Conv2D				С	onv2D		20,476	i 🖌	17	1
	6 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/C	onv_1/Conv2D_grad/Conv2DBackpro	pInput		C	onv2DB	ackproplnpu	t 17,510	1	15	1
See a Soliable	7 tower_0/v/cg/M	bilenetV2/expanded_conv_16/pr	oject/Conv2D			С	onv2D		17,311	-	17	1
Upload Choose File in the model	8 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/ex	panded_conv_12/project/Conv2D_gr	ad/Conv2DB	Backprop	pFilter C	onv2DB	r 17,109	11	16	1	
	9 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/ex	panded_conv_11/project/Conv2D_gr	ad/Conv2DB	ackprop	Filter C	onv2DB	ackpropFilte	r 13,610	1 🗸	16	1
	10 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/ex	panded_conv_16/project/Conv2D_gr	ad/Conv2DB	Backprop	plnput C	onv2DB	ackproplnpu	t 12,851	1	15	1
	11 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/C	onv_1/Conv2D_grad/Conv2DBackpro	pFilter		С	onv2DB	ackpropFilte	r 9,536	i 🗸	16	1
	12 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/expanded_conv_1/expand/Conv2D grad/Conv2DBackpropFilter Conv2DBackpropFilter								r 8,342	2 🗸	16	1
	13 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/ex	panded_conv_12/expand/Conv2D_g	rad/Conv2DE	Backpro	pFilter C	onv2DB	ackpropFilte	r 8,267	′ √	16	1
	14 tower_0/v/cg/M	bilenetV2/expanded_conv_13/pr	oject/Conv2D			С	onv2D		7,875	1	17	1
	15 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/ex	panded_conv_16/project/Conv2D_gr	ad/Conv2DB	Backprop	Filter C	onv2DB	ackpropFilte	r 7,749	1	16	1
	16 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/ex	panded_conv_13/expand/Conv2D_g	rad/Conv2DE	Backpro	pFilter C	onv2DB	ackpropFilte	r 7,604	1	16	1
	17 tower_0/v/gradi	nts/tower_0/v/cg/MobilenetV2/ex	panded_conv_1/expand/Conv2D_gra	ad/Conv2DBa	ackprop	Input C	onv2DB	ackproplnpu	t 6,903	1	16	1
	18 tower_0/v/cg/M	bilenetV2/expanded_conv_1/exp	and/Conv2D			С	onv2D		6,779	1	16	1
	19 tower_0/v/cg/M	bilenetV2/expanded_conv_15/pr	oject/Conv2D			С	onv2D		6,337	1	17	1
	20 tower_0/v/cg/MobilenetV2/expanded_conv_14/project/Conv2D Conv2D						6,316	v	17	1		
	21 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/expanded_conv_11/expand/Conv2D_grad/Conv2DBackpropFilter Conv2DBackpropFilter						r 5,461	1	16	1		
See a list of all	00 · 0// P	6.6 ALL BLUE 0.001	1.1. 407 1/0 00	1/0 000		E16 0	000	1. 199	C 110		40	. ×
kernels for a selected node	Counter	Kern	el Name		Using TC	Duration (µs)	Calls	Average (µs)	Minimum (µs)	Maxi (µ		n ^
	1 volta_s88	cudnn_fp16_128x128_ldg8_relu	exp_interior_nhwc_tn_v1		1	14	2	7	7			7
	2 cudnn::ge	nm::computeOffsetsKernel(cudr	n::gemm::ComputeOffsetsParams)		X	122	15	8	4		1	0
	3 int, int,		m <half, 0,="" 3,="" 5,="" 512,="" 6,="" 8,="" int,="" tr<br="">,half*, kernel_conv_params, int, i</half,>		x	51	4	13	9		1	17
	4 false, true		m <half,half, 3,="" 5,<br="" 512,="" 6,="" 8,="">_half*,half*, kernel_conv_params</half,half,>		×	54	4	14	10		1	18

Group Node Summary Tab

Roll up timing metrics and Tensor Core utilization per group node

ensorBoard	GRAPHS GPU SUN	IMARY				¢ (
Gearch nodes. Regexes sup.		○OpNodes				
Fit to screen		1 input_processing/batch_processing		6,179,353	0	0 0
Download PNG		2 input_processing	Sort by total	6,179,353	0	0 0
un .	~	3 input_processing/batch_processing/list_files	time	6,140,401	0	0 0
)		4 tower_0/v	unic	2,585,470	111	97 87.387
		5 tower_0		2,585,470	111	97 87.387
ession	*	6 tower_0/v/cg		2,097,763	37	83.784
INS (0)		7 tower_0/v/cg/MobilenetV2		2,097,182	36	86.111
pload Choose File		tower_0/v/cg/MobilenetV2/Conv		1,850,516	1	1 100
		9 tower_0/v/gradients		420,913	74	66 89.189
List Group		10 tower_0/v/gradients/tower_0/v		394,305	74	66 89.189
	odes in model	11 tower_0/v/gradients/tower_0		394,305	74	66 89.189
<u> </u>		12 tower_0/v/gradients/tower_0/v/cg		371,357	74	66 89.189
		13 tower_0/v/gradients/tower_0/v/cg/MobilenetV2		369 520	72	66 91.667
		14 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/Logits		63,684	2	2 100
		15 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/Logits/Conv2d_1c_1x1	Use statistics to	2,865	2	2 100
		16 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/Logits/Conv2d_1c_1x1/Conv2D_grad	drill down into	2,425	2	2 100
		17 tower_0/v/cg/MobilenetV2/Logits	bottlenecks	8,134	1	1 100
		18 tower_0/v/cg/MobilenetV2/Logits/Conv2d_1c_1x1		1,063	1	1 100
		19 get_gradients_to_apply		45,687	0	0 0
		20 tower_0/v/l2_loss		44,596	0	0 0
		21 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/expanded_conv_16		36,684	4	4 100
		22 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/expanded_conv_12		32,883	4	4 100
		23 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/Conv_1		27,752	2	2 100
		24 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/Conv_1/Conv2D_grad		27,046	2	2 100
		25 tower_0/v/gradients/tower_0/v/cg/MobilenetV2/expanded_conv_11		24,602	4	4 100
		26 v/cg		24,131	0	0 0

Model Summary Table

Model Summary shows concise information on Tensor core usage

TensorBoard	GRAPHS	GPU SUMMARY
Search nodes. Regexes su	p	○ OpNodes ○ GroupNodes
Fit to screen		Nodes in Graph 6158
		Compatible Nodes 112
Download PNG		Compatible Nodes using Tensor Cores 97
Run(1)	Ŧ	Total GPU Time 15.10 (s)
Session	Ŧ	% of time in TC compatible nodes 15.62%
Upload Choose File		

THANK YOU