
Can FPGAs compete with GPUs?
John Romein, Bram Veenboer

GPU Technology Conference (GTC’19)
March 18-21, 2019

2

Outline

● explain FPGA
– hardware

● FPGA vs. GPU
– programming models (OpenCL)
– case studies

● matrix multiplication
● radio-astronomical imaging

– lessons learned
● answer the question in the title

analyze performance & energy efficiency

3

What is a Field-Programmable Gate Array (FPGA)?

● configurable processor

● collection of
– multipliers / adders
– registers
– memories
– logic
– transceivers
– clocks
– interconnect

4

What is an FPGA program?

● connect elements
– performs fixed function

● data-flow engine

● Hardware Description Language (HDL)
– Verilog, VHDL
– difficult

5

FPGA vs GPU

• FPGA advantages
– high energy efficiency
• no instruction decoding etc.
• use/move as few bits as possible

– configurable I/O
• high bandwidth
• e.g., many times 100 GbE

• GPU advantages
– easier to program
– more flexible
– short compilation times

6

New Intel (Altera) FPGA technologies

1) high-level programming language (OpenCL)

2) hard Floating-Point Units

3) tight integration with CPU cores

➔ simple tasks: less programming effort than HDL
➔ allows complex HPC applications

7

FPGA ≠ GPU

• hardware
– GPU: use hardware
– FPGA: create hardware

• execution model
– GPU: instructions
– FPGA: data flow

8

Common language: OpenCL

• OpenCL
– similar to CUDA
– C + explicit parallelism + synchronization + software-managed cache
– offload to GPU/FPGA

• GPU programs not suitable for FPGAs
– FPGA: data-flow engine

9

FPGA: data-flow pipeline example

• create hardware for complex multiply-add
C.real += A.real * B.real;

C.real += -A.imag * B.imag;

C.imag += A.real * B.imag;

C.imag += A.imag * B.real;

• needs four FPUs
• new input enters every cycle

BA ACr Cir iBr i

Cr Ci

FPU

FPU

FPU

FPU

10

Local memory
• GPU: use memory, FPGA: create memory

float tmp[128] __attribute__((…));
• properties:
– registers or memory blocks
– #banks
– bank width
– bank address selection bits attributes
– #read ports
– #write ports
– single/double pumped
– with/without arbiter
– replication factor

• well designed program: few resources, stall-free

11

Running multiple kernels

• GPU: consecutively
• FPGA: concurrently
– channels (OpenCL extension)

channel float2 my_channel __attribute__((depth(256)));
– requires less memory bandwidth
– all kernels resident → must fit

GPU:

FPGA: channel

device memorykernel_1

kernel_1

kernel_2

kernel_2

12

Parallel constructs in OpenCL

• work groups, work items (CUDA: thread blocks, threads)
– GPU: parallel
– FPGA: default: one work item/cycle; not useful

• FPGA:
– compiler auto-parallelizes whole kernel
– #pragma unroll
• create hardware for concurrent loop iterations

– replicate kernels

0 1 2

#pragma unroll

 a[i] = i;
 for (int i = 0; i < 3; i ++)

BA ACr Cir iBr i

Cr Ci

FPU

FPU

FPU

FPU

13

More GPU/FPGA differences

• code outside critical loop:
– GPU: not an issue
– FPGA: can use many resources

• Shift registers
– FPGA: single cycle
– GPU: expensive

init_once();
for (int i = 0; i < 100000; i ++)
 do_many_times();

for (int i = 256; i > 0; i --)
 a[i] = a[i – 1];

14

Resource optimizations

• compiler feedback
– after minutes, not hours
– HTML-based reports

• indispensible tool

15

Frequency optimization

● Compiler (place & route) determines Fmax
– Unlike GPUs

● Full FPGA: longest path limits Fmax

● HDL: fine-grained control
● OpenCL: one clock for full design

● FPGA: 450 MHz; BSP: 400 Mhz; 1 DSP: 350 Mhz
● Little compiler feedback

● Recompile with random seeds
● Compile kernels in isolation to find frequency limiters

– Tedious, but useful

16

Applications

● dense matrix multiplication
● radio-astronomical imager

● Signal processing (FIR filter, FFT, correlations, beam forming)

17

• complex<float>
• horizontal & vertical memory accesses (→ coalesce)
• reuse of data (→ cache)

Dense matrix multiplication

18

Matrix multiplication
on FPGA

• hierarchical approach
– systolic array of

Processing Elements (PE)
– each PE computes 32x32

submatrix

repeat

repeatreorder

repeatreorder

repeatreorder

re
ad

 A
 m

at
rix

reorder PE

PE

PE PE

PE PE

PE PE

PE PE PE

PE PE

PE

PE PE

read B matrix

repeat

reorder

repeat

reorder

repeat

reorder

repeat

reorder

collect

collect

collect

write C matrix

collect

19

Matrix multiplication performance

• Arria 10:
– uses 89% of the DSPs, 40% on-chip memory
– clock (288 MHz) at 64% of peak (450 Mhz)
– nearly stall free

Type Device Performance
(TFlop/s)

Power (W) Efficiency
(GFlop/W)

FPGA Intel Arria 10 0.774 37 20.9

GPU NVIDIA Titan X
(Pascal)

10.1 263 38.4

GPU AMD Vega FE 9.73 265 36.7

20

Image-Domain Gridding for Radio-Astronomical Imaging

● see talk S9306 (Astronomical Imaging on GPUs)

21

Image-Domain Gridding algorithm

#pragma parallel
for s = 1...S :
 complex<float> subgrid[P][N ×N];
 for i = 1...N ×N :
 float offset = compute_offset(s, i);
 for t = 1...T :
 float index = compute_index(s, i, t);
 for c = 1...C :
 float scale = scales[c];
 float phase = offset - (index × scale);
 complex<float> phasor = {cos(phase), sin(phase)};
 #pragma unroll
 for p = 1...P : // 4 polarizations
 complex<float> visibility = visibilities[t][c][p];
 subgrid[p][i] += cmul(phasor, visibility);

 apply_aterm(subgrid);
 apply_taper(subgrid);
 apply_ifft(subgrid);
 store(subgrid);

22

FPGA gridding design ● Create a dataflow network:
– Use all available DSPs
– Every DSP performs a useful

computation every cycle
– no device memory use

(except kernel args)

23

FPGA OpenCL gridder kernel__attribute__((max_global_work_dim(0)))
__attribute__((autorun))
__attribute__((num_compute_units(NR_GRIDDERS)))
__kernel void gridder()
{
 int gridder = get_compute_id(0);
 float8 subgrid[NR_PIXELS];

 for (unsigned short pixel = 0; pixel < NR_PIXELS; pixel ++) {
 | subgrid[pixel] = 0;
 }

 #pragma ivdep
 for (unsigned short vis_major = 0; vis_major < NR_VISIBILITIES; vis_major += UNROLL_FACTOR) {
 | float8 visibilities[UNROLL_FACTOR] __attribute__((register));
 |
 | for (unsigned short vis_minor = 0; vis_minor < UNROLL_FACTOR; vis_minor++) {
 | | visibilities[vis_minor] = read_channel_intel(visibilities_channel[gridder]);
 | }
 |
 | for (unsigned short pixel = 0; pixel < NR_PIXELS; pixel++) {
 | | float8 pixel_value = subgrid[pixel];
 | | float8 phasors = read_channel_intel(phasors_channel[gridder]); // { cos(phase), sin(phase) }
 | |
 | | #pragma unroll
 | | for (unsigned short vis_minor = 0; vis_minor < UNROLL_FACTOR; vis_minor++) {
 | | | pixel_value.even += phasors[vis_minor] * visibilities[vis_minor].even + -phasors[vis_minor] * visibilities[vis_minor].odd;
 | | | pixel_value.odd += phasors[vis_minor] * visibilities[vis_minor].odd + phasors[vis_minor] * visibilities[vis_minor].even;
 | | }
 | |
 | | subgrid[pixel] = pixel_value;
 | }
 }

 for (unsigned short pixel = 0; pixel < NR_PIXELS; pixel ++) {
 | write_channel_intel(pixel_channel[gridder], subgrid[pixel]);
 }
}

24

Sine/cosine optimization

● compiler-generated: 8 DSPs
● limited-precision lookup-table: 1 DSP

– more DSPs available → replicate Φ 14 20x

25

FPGA resource usage + Fmax

ALUTs FFs RAMs DSPs MLABs ɸ Fmax

gridding-ip 43% 31% 64% 1439 (95%) 71% 14 258
degridding-ip 47% 35% 72% 1441 (95%) 78% 14 254

gridding-lu 27% 32% 61% 1498 (99%) 57% 20 256
degridding-lu 33% 38% 73% 1503 (99%) 69% 20 253

● almost all of 1518 DSPs available used
● Fmax < 350 Mhz

26

Experimental setup

● compare Intel Arria 10 FPGA to comparable CPU and GPU
● CPU and GPU implementations are both optimized

Type Device #FPUs Peak Bandwidth TDP Process

CPU Intel Xeon
E5-2697v3

224 1.39 TFlop/s 68 GB/s 145W 28nm
(TSMC)

FPGA Nallatech 385A 1518 1.37 TFlop/s 34 GB/s 75W 20nm
(TSMC)

GPU NVIDIA GTX 750 Ti 640 1.39 TFlop/s 88 GB/s 60W 28nm
(TSMC)

27

Throughput and energy-efficiency comparison

● throughput: number of visibilities processed per second (Mvisibilities/s)
● energy-efficiency: number of visibilities processed per Joule (MVisibilities/J)

● similar peak performance, what causes the performance differences?

28

Performance analysis

● CPU: sin/cos in software takes 80% of total runtime
● GPU: sin/cos overlapped with other computations
● FPGA: sin/cos overlapped, but cannot use all DSPs for FMAs

29

FPGAs vs GPUs: lessons learned (1/3)

● dataflow vs. imperative
– rethink your algorithm
– different program code

● on FPGAs:
– frequent use of OpenCL extensions
– think about resource usage, occupancy, timing
– less use of off-chip memory

● parallelism:
– both: kernel replication and vectorization
– FPGA: pipelining and loop unrolling

30

FPGAs vs GPUs: lessons learned (2/3)

● FPGA ≠ GPU, yet: same optimizations …
– exploit parallelism
– maximize FPU utilization

● hide latency
– optimize memory performance

● hide latency → prefetch
● maximize bandwidth → avoid bank conflicts, unit-stride access (coalescing)
● reuse data (caching)

● … but achieved in very different ways!
● + architecture-specific optimizations

31

FPGAs vs GPUs: lessons learned (3/3)

● much simpler than HDL
– FPGAs accessible to wider audience

● long learning curve
– small performance penalty

● yet not as easy as GPUs
– distribute resources in complex dataflow
– optimize for high clock

● tools still maturing

32

Current/future work

• Stratix 10 versus Volta/Turing
– Stratix 10 imager port not trivial ← different optimizations for new routing

architecture
• 100 GbE FPGA support
– send/receive UDP packets in OpenCL
– BSP firmware development

• streaming data applications
– signal processing (filtering, correlations, beam forming, ...)

• OpenCL FFT library

33

Conclusions

• complex applications on FPGAs now possible
– high-level language
– hard FPUs
– tight integration with CPUs

• GPUs vs FPGAs
– 1 language; no (performance) portability
– very different architectures
– yet many optimizations similar

34

So can FPGAs compete with GPUs?

• depends on application
– compute → GPUs
– energy efficiency → GPUs
– I/O → FPGA
– flexibility → CPU/GPU
– programming ease → CPU, then GPU, then FPGA

FPGA not far behind; CPU way behind

35

Acknowledgements

• This work was funded by
– Netherlands eScience Center (Triple-A 2)
– EU H2020 FETHPC (DEEP-EST, Grant Agreement nr. 754304)
– NWO Netherlands Foundation for Scientific Research (DAS-5)

• Other people
– Suleyman Demirsoy (Intel), Johan Hiddink (NLeSC), Atze v.d. Ploeg (NLeSC),

Daniël v.d. Schuur (ASTRON), Merijn Verstraaten (NLeSC), Ben v. Werkhoven
(NLeSC)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

