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Outline

● explain FPGA
– hardware

● FPGA vs. GPU
– programming models (OpenCL)
– case studies

● matrix multiplication
● radio-astronomical imaging

– lessons learned
● answer the question in the title

analyze performance & energy efficiency
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What is a Field-Programmable Gate Array (FPGA)?

● configurable processor

● collection of
– multipliers / adders
– registers
– memories
– logic
– transceivers
– clocks
– interconnect
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What is an FPGA program?

● connect elements
– performs fixed function

● data-flow engine

● Hardware Description Language (HDL)
– Verilog, VHDL
– difficult
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FPGA vs GPU

• FPGA advantages
– high energy efficiency
• no instruction decoding etc.
• use/move as few bits as possible

– configurable I/O
• high bandwidth
• e.g., many times 100 GbE

• GPU advantages
– easier to program
– more flexible
– short compilation times
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New Intel (Altera) FPGA technologies

1) high-level programming language (OpenCL)

2) hard Floating-Point Units

3) tight integration with CPU cores

➔ simple tasks: less programming effort than HDL
➔ allows complex HPC applications
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FPGA ≠ GPU

• hardware
– GPU: use hardware
– FPGA: create hardware

• execution model
– GPU: instructions
– FPGA: data flow
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Common language: OpenCL

• OpenCL
– similar to CUDA
– C + explicit parallelism + synchronization + software-managed cache
– offload to GPU/FPGA

• GPU programs not suitable for FPGAs
– FPGA: data-flow engine
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FPGA: data-flow pipeline example

• create hardware for complex multiply-add
C.real +=  A.real * B.real;

C.real += -A.imag * B.imag;

C.imag +=  A.real * B.imag;

C.imag +=  A.imag * B.real;

• needs four FPUs
• new input enters every cycle
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Local memory
• GPU: use memory, FPGA: create memory

float tmp[128] __attribute__((…));
• properties:
– registers or memory blocks
– #banks
– bank width
– bank address selection bits             attributes
– #read ports
– #write ports
– single/double pumped
– with/without arbiter
– replication factor

• well designed program: few resources, stall-free
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Running multiple kernels

• GPU: consecutively
• FPGA: concurrently
– channels (OpenCL extension)

channel float2 my_channel __attribute__((depth(256)));
– requires less memory bandwidth
– all kernels resident → must fit

GPU:

FPGA: channel

device memorykernel_1

kernel_1

kernel_2

kernel_2
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Parallel constructs in OpenCL

• work groups, work items (CUDA: thread blocks, threads)
– GPU: parallel
– FPGA: default: one work item/cycle; not useful

• FPGA:
– compiler auto-parallelizes whole kernel
– #pragma unroll
• create hardware for concurrent loop iterations

– replicate kernels

0 1 2

#pragma unroll

      a[i] = i;
   for (int i = 0; i < 3; i ++)

BA ACr Cir iBr i

Cr Ci

FPU

FPU

FPU

FPU
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More GPU/FPGA differences

• code outside critical loop:
– GPU: not an issue
– FPGA: can use many resources

• Shift registers
– FPGA: single cycle
– GPU: expensive

init_once();
for (int i = 0; i < 100000; i ++)
  do_many_times();

for (int i = 256; i > 0; i --)
  a[i] = a[i – 1];
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Resource optimizations

• compiler feedback
– after minutes, not hours
– HTML-based reports

• indispensible tool
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Frequency optimization

● Compiler (place & route) determines Fmax
– Unlike GPUs

● Full FPGA: longest path limits Fmax

● HDL: fine-grained control
● OpenCL: one clock for full design

● FPGA: 450 MHz; BSP: 400 Mhz; 1 DSP: 350 Mhz
● Little compiler feedback

● Recompile with random seeds
● Compile kernels in isolation to find frequency limiters

– Tedious, but useful
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Applications

● dense matrix multiplication
● radio-astronomical imager

● Signal processing (FIR filter, FFT, correlations, beam forming)
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• complex<float>
• horizontal & vertical memory accesses (→ coalesce)
• reuse of data (→ cache)

Dense matrix multiplication
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Matrix multiplication 
on FPGA

• hierarchical approach
– systolic array of 

Processing Elements (PE)
– each PE computes 32x32 

submatrix

repeat

repeatreorder

repeatreorder

repeatreorder

re
ad

 A
 m

at
rix

reorder PE

PE

PE PE

PE PE

PE PE

PE PE PE

PE PE

PE

PE PE

read B matrix

repeat

reorder

repeat

reorder

repeat

reorder

repeat

reorder

collect

collect

collect

write C matrix

collect
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Matrix multiplication performance

• Arria 10:
– uses 89% of the DSPs, 40% on-chip memory
– clock (288 MHz) at 64% of peak (450 Mhz)
– nearly stall free

Type Device Performance 
(TFlop/s)

Power (W) Efficiency 
(GFlop/W)

FPGA Intel Arria 10 0.774 37 20.9

GPU NVIDIA Titan X 
(Pascal)

10.1 263 38.4

GPU AMD Vega FE 9.73 265 36.7
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Image-Domain Gridding for Radio-Astronomical Imaging

● see talk S9306 (Astronomical Imaging on GPUs)
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Image-Domain Gridding algorithm

#pragma parallel
for s = 1...S :
   complex<float> subgrid[P ][N ×N ];
   for i = 1...N ×N :
      float offset = compute_offset(s, i);
      for t = 1...T :
         float index = compute_index(s, i, t);
         for c = 1...C :
            float scale = scales[c];
            float phase = offset - (index × scale);
            complex<float> phasor = {cos(phase), sin(phase)};
            #pragma unroll
            for p = 1...P : // 4 polarizations
               complex<float> visibility = visibilities[t][c][p];
               subgrid[p][i] += cmul(phasor, visibility);

   apply_aterm(subgrid);
   apply_taper(subgrid);
   apply_ifft(subgrid);
   store(subgrid);
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FPGA gridding design ● Create a dataflow network:
– Use all available DSPs
– Every DSP performs a useful 

computation every cycle
– no device memory use 

(except kernel args)
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FPGA OpenCL gridder kernel__attribute__((max_global_work_dim(0)))
__attribute__((autorun))
__attribute__((num_compute_units(NR_GRIDDERS)))
__kernel void gridder()
{
  int    gridder = get_compute_id(0);
  float8 subgrid[NR_PIXELS];

  for (unsigned short pixel = 0; pixel < NR_PIXELS; pixel ++) {
  | subgrid[pixel] = 0;
  }

  #pragma ivdep
  for (unsigned short vis_major = 0; vis_major < NR_VISIBILITIES; vis_major += UNROLL_FACTOR) {
  | float8 visibilities[UNROLL_FACTOR] __attribute__((register));
  |
  | for (unsigned short vis_minor = 0; vis_minor < UNROLL_FACTOR; vis_minor++) {
  | | visibilities[vis_minor] = read_channel_intel(visibilities_channel[gridder]);
  | } 
  |
  | for (unsigned short pixel = 0; pixel < NR_PIXELS; pixel++) {
  | | float8 pixel_value = subgrid[pixel];
  | | float8 phasors     = read_channel_intel(phasors_channel[gridder]);   // { cos(phase), sin(phase) }
  | | 
  | | #pragma unroll
  | | for (unsigned short vis_minor = 0; vis_minor < UNROLL_FACTOR; vis_minor++) {
  | | | pixel_value.even += phasors[vis_minor] * visibilities[vis_minor].even + -phasors[vis_minor] * visibilities[vis_minor].odd;
  | | | pixel_value.odd  += phasors[vis_minor] * visibilities[vis_minor].odd  +  phasors[vis_minor] * visibilities[vis_minor].even;
  | | } 
  | | 
  | | subgrid[pixel] = pixel_value;
  | } 
  }

  for (unsigned short pixel = 0; pixel < NR_PIXELS; pixel ++) {
  | write_channel_intel(pixel_channel[gridder], subgrid[pixel]);
  }
}
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Sine/cosine optimization

● compiler-generated: 8 DSPs
● limited-precision lookup-table: 1 DSP

– more DSPs available → replicate Φ 14 20x
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FPGA resource usage + Fmax

ALUTs FFs RAMs DSPs MLABs ɸ Fmax

gridding-ip 43% 31% 64% 1439 (95%) 71% 14 258
degridding-ip 47% 35% 72% 1441 (95%) 78% 14 254

gridding-lu 27% 32% 61% 1498 (99%) 57% 20 256
degridding-lu 33% 38% 73% 1503 (99%) 69% 20 253

● almost all of 1518 DSPs available used
● Fmax < 350 Mhz
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Experimental setup

● compare Intel Arria 10 FPGA to comparable CPU and GPU
● CPU and GPU implementations are both optimized

Type Device #FPUs Peak Bandwidth TDP Process

CPU Intel Xeon
E5-2697v3

224 1.39 TFlop/s 68 GB/s 145W 28nm 
(TSMC)

FPGA Nallatech 385A 1518 1.37 TFlop/s 34 GB/s 75W 20nm 
(TSMC)

GPU NVIDIA GTX 750 Ti 640 1.39 TFlop/s 88 GB/s 60W 28nm 
(TSMC)
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Throughput and energy-efficiency comparison

● throughput: number of visibilities processed per second (Mvisibilities/s)
● energy-efficiency:  number of visibilities processed per Joule (MVisibilities/J)

● similar peak performance, what causes the performance differences? 
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Performance analysis

● CPU: sin/cos in software takes 80% of total runtime
● GPU: sin/cos overlapped with other computations
● FPGA: sin/cos overlapped, but cannot use all DSPs for FMAs
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FPGAs vs GPUs: lessons learned (1/3)

● dataflow vs. imperative
– rethink your algorithm
– different program code

● on FPGAs:
– frequent use of OpenCL extensions
– think about resource usage, occupancy, timing
– less use of off-chip memory

● parallelism:
– both: kernel replication and vectorization
– FPGA: pipelining and loop unrolling
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FPGAs vs GPUs: lessons learned (2/3)

● FPGA ≠ GPU, yet: same optimizations … 
– exploit parallelism
– maximize FPU utilization

● hide latency
– optimize memory performance

● hide latency → prefetch
● maximize bandwidth → avoid bank conflicts, unit-stride access (coalescing)
● reuse data (caching)

● … but achieved in very different ways!
● + architecture-specific optimizations
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FPGAs vs GPUs: lessons learned (3/3)

● much simpler than HDL
– FPGAs accessible to wider audience

● long learning curve
– small performance penalty

● yet not as easy as GPUs
– distribute resources in complex dataflow
– optimize for high clock

● tools still maturing
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Current/future work

• Stratix 10 versus Volta/Turing
– Stratix 10 imager port not trivial ← different optimizations for new routing 

architecture
• 100 GbE FPGA support
– send/receive UDP packets in OpenCL
– BSP firmware development

• streaming data applications
– signal processing (filtering, correlations, beam forming, ...)

• OpenCL FFT library
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Conclusions

• complex applications on FPGAs now possible
– high-level language
– hard FPUs
– tight integration with CPUs

• GPUs vs FPGAs
– 1 language; no (performance) portability
– very different architectures
– yet many optimizations similar
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So can FPGAs compete with GPUs?

• depends on application
– compute → GPUs
– energy efficiency → GPUs
– I/O → FPGA
– flexibility → CPU/GPU
– programming ease → CPU, then GPU, then FPGA

FPGA not far behind; CPU way behind
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