
S9330: Lattice QCD with Tensor Cores

Kate Clark3, Chulwoo Jung2, Robert Mawhinney1, and
Jiqun Tu1*

1Columbia University
2Brookhaven National Labratory

3Nvidia Corporation

GPU Technology Conference, Silicon Valley, March 2019

*speaker



Some Background 2/36

What’s inside a proton?

up

up down

mu = 2.2 MeV

md = 4.7 MeV

mp = 938.3 MeV



Quantum Chromodynamics (QCD) 3/36

• QCD is an SU(3) local gauge theory with 6 flavors of dynamic
quarks.

• Shows confinement: not possible to extract individual quarks
from their bound states,

• Non-perturbative: need numerical simulations to calculate
measurable quantities from the theory to be measured in real
world laboratories.



Quantum Chromodynamics (QCD) 3/36

• QCD is an SU(3) local gauge theory with 6 flavors of dynamic
quarks.

• Shows confinement: not possible to extract individual quarks
from their bound states,

• Non-perturbative: need numerical simulations to calculate
measurable quantities from the theory to be measured in real
world laboratories.



Quantum Chromodynamics (QCD) 3/36

• QCD is an SU(3) local gauge theory with 6 flavors of dynamic
quarks.

• Shows confinement: not possible to extract individual quarks
from their bound states,

• Non-perturbative: need numerical simulations to calculate
measurable quantities from the theory to be measured in real
world laboratories.



Quantum Chromodynamics (QCD) 3/36

• QCD is an SU(3) local gauge theory with 6 flavors of dynamic
quarks.

• Shows confinement: not possible to extract individual quarks
from their bound states,

• Non-perturbative: need numerical simulations to calculate
measurable quantities from the theory to be measured in real
world laboratories.



The Standard Model of Particles 4/36

R
/G
/B

2/3

1/2

2.2 MeV

up

u
R
/G
/B

−1/3

1/2

4.7 MeV

down

d
−1

1/2

511 keV

electron

e

1/2

< 2 eV

e neutrino

νe

R
/G
/B

2/3

1/2

1.27 GeV

charm

c
R
/G
/B

−1/3

1/2

96 MeV

strange

s
−1

1/2

105.7 MeV

muon

µ

1/2

< 190 keV

µ neutrino

νµ

R
/G
/B

2/3

1/2

160 GeV

top

t
R
/G
/B

−1/3

1/2

4.18 GeV

bottom

b
−1

1/2

1.777 GeV

tau

τ

1/2

< 18.2 MeV

τ neutrino

ντ
±1

1

80.4 GeV

W±
1

91.2 GeV

Z

1

m = 0

photon

γ

color

1

m = 0

gluon

g

0

125.1 GeV

Higgs

H

graviton

stron
g
sector

(color)

E
M

sector
(E

M
ch
arge)

w
eak

sector
(w

eak
isosp

in
)

grav
itation

al
force

(m
ass)

QCD
charge
colors
mass

spin

6
q
u
ark

s
6
lep

ton
s

fermions bosons

gauge bosons
Higgs
boson

outside
standard model



The Path Integral formulation 5/36

A

B



Path Integral: Monte Carlo 6/36

• Path Integral formulation

〈O〉 =

∫
[dψ̄][dψ][dU ]O[U, ψ̄, ψ]e−S[U,ψ̄,ψ]

∫
[dψ̄][dψ][dU ]e−S[U,ψ̄,ψ]

S[U, ψ̄, ψ] = (gauge action) + ψ̄D[U ]ψ

• Monte Carlo: Draw samples of U (gauge field configurations)
according to the weight e−S and measure some observable O
on these samples.

〈O〉 ' 1

n

∑

i

Oi



Path Integral: Monte Carlo 6/36

• Path Integral formulation

〈O〉 =

∫
[dψ̄][dψ][dU ]O[U, ψ̄, ψ]e−S[U,ψ̄,ψ]

∫
[dψ̄][dψ][dU ]e−S[U,ψ̄,ψ]

S[U, ψ̄, ψ] = (gauge action) + ψ̄D[U ]ψ

• Monte Carlo: Draw samples of U (gauge field configurations)
according to the weight e−S and measure some observable O
on these samples.

〈O〉 ' 1

n

∑

i

Oi



From theory to simulation 7/36

discretize the theory and put it onto a 4 dimensional lattice

quark (fermion) fields ψ

gauge fields U



From theory to simulation 8/36

Quarks cause (at least) two problems. :(

1 They are anti-commutating fermion fields/numbers,

ψ(x)ψ(y) = −ψ(y)ψ(x),

how to simulate anti-commutating numbers on a traditional
computer?

2 Upon discretization they break chiral symmetry (the doubler
problem): this symmetry says the nature uses left and right
hand equally frequently.



From theory to simulation 8/36

Quarks cause (at least) two problems. :(

1 They are anti-commutating fermion fields/numbers,

ψ(x)ψ(y) = −ψ(y)ψ(x),

how to simulate anti-commutating numbers on a traditional
computer?

2 Upon discretization they break chiral symmetry (the doubler
problem): this symmetry says the nature uses left and right
hand equally frequently.



From theory to simulation 9/36

Solution to the first problem:

∫
[dψ̄][dψ]e−ψ̄D[U ]ψ = detD[U ] =

∫
[dφ†][dφ]e−φ

†D[U ]−1φ

The anti-commuting grassmann variables ψ’s are replaced with the
usual commuting complex number φ’s, at the expense of inverting
the Dirac matrix D[U ]. Typically we want to solve Dirac equations
of the form

Dx = y, x = D−1y



From theory to simulation 10/36

One solution to the second problem: we use the formulation of
domain wall fermion (DWF) and add a 5th dimension

s = 1

s = 0, left handed quarks

s = Ls − 1, right handed quarks

th
e
5t
h
d
im

en
si
on



From theory to simulation 11/36

• Our numerical problem is as the following: Need to solve for a
large sparse matrix of size ∼ 1010 by ∼ 1010 that spans over
several different dimensions:

• 4d-spatial dimensions (∼ 108) entangled with spin(4) and
color(3)

• the 5th dimension (∼ 101) entangled with spin(4)



From theory to simulation 11/36

• Our numerical problem is as the following: Need to solve for a
large sparse matrix of size ∼ 1010 by ∼ 1010 that spans over
several different dimensions:

• 4d-spatial dimensions (∼ 108) entangled with spin(4) and
color(3)

• the 5th dimension (∼ 101) entangled with spin(4)



From theory to simulation 11/36

• Our numerical problem is as the following: Need to solve for a
large sparse matrix of size ∼ 1010 by ∼ 1010 that spans over
several different dimensions:

• 4d-spatial dimensions (∼ 108) entangled with spin(4) and
color(3)

• the 5th dimension (∼ 101) entangled with spin(4)



The Matrix 12/36

• The Dirac matrix,

D = 1− κ2
bM

−1
5 DwMφM

−1
5 DwMφ

5th dimension

4d-spatial

• The 4d-spatial operation (Dw) involves only the nearest
neighbor with the same 5th dimension index, i.e. only
operates horizontally.

• The 5th dimension operations (M−1
5 and Mφ) involves only

elements with the same 4d-spatial index, i.e. only operates
vertically.



The Matrix 12/36

• The Dirac matrix,

D = 1− κ2
bM

−1
5 DwMφM

−1
5 DwMφ

5th dimension

4d-spatial

• The 4d-spatial operation (Dw) involves only the nearest
neighbor with the same 5th dimension index, i.e. only
operates horizontally.

• The 5th dimension operations (M−1
5 and Mφ) involves only

elements with the same 4d-spatial index, i.e. only operates
vertically.



The Matrix 12/36

• The Dirac matrix,

D = 1− κ2
bM

−1
5 DwMφM

−1
5 DwMφ

5th dimension

4d-spatial

• The 4d-spatial operation (Dw) involves only the nearest
neighbor with the same 5th dimension index, i.e. only
operates horizontally.

• The 5th dimension operations (M−1
5 and Mφ) involves only

elements with the same 4d-spatial index, i.e. only operates
vertically.



The Matrix Inversion 13/36

• Conjugate gradient (CG): a Krylov space iterative algorithm
that minimizes the residual in each iteration.

• Each iteration applies the normal operator dslash once.

• Use CG to solve the normal operator problem instead of the
original one, († = transpose + complex conjugate)

Dx = y → D†Dx = D†y.

• The convergence rate decreases as the condition number κ
(=max eigenvalue/min eigenvalue) of the matrix D†D
increases.

• For our matrix κ ∼ 108, i.e. extremely ill-conditioned.

• This matrix inversion accounts for over 90% of the simulation
time.



The Matrix Inversion 13/36

• Conjugate gradient (CG): a Krylov space iterative algorithm
that minimizes the residual in each iteration.

• Each iteration applies the normal operator dslash once.

• Use CG to solve the normal operator problem instead of the
original one, († = transpose + complex conjugate)

Dx = y → D†Dx = D†y.

• The convergence rate decreases as the condition number κ
(=max eigenvalue/min eigenvalue) of the matrix D†D
increases.

• For our matrix κ ∼ 108, i.e. extremely ill-conditioned.

• This matrix inversion accounts for over 90% of the simulation
time.



The Matrix Inversion 13/36

• Conjugate gradient (CG): a Krylov space iterative algorithm
that minimizes the residual in each iteration.

• Each iteration applies the normal operator dslash once.

• Use CG to solve the normal operator problem instead of the
original one, († = transpose + complex conjugate)

Dx = y → D†Dx = D†y.

• The convergence rate decreases as the condition number κ
(=max eigenvalue/min eigenvalue) of the matrix D†D
increases.

• For our matrix κ ∼ 108, i.e. extremely ill-conditioned.

• This matrix inversion accounts for over 90% of the simulation
time.



The Matrix Inversion 13/36

• Conjugate gradient (CG): a Krylov space iterative algorithm
that minimizes the residual in each iteration.

• Each iteration applies the normal operator dslash once.

• Use CG to solve the normal operator problem instead of the
original one, († = transpose + complex conjugate)

Dx = y → D†Dx = D†y.

• The convergence rate decreases as the condition number κ
(=max eigenvalue/min eigenvalue) of the matrix D†D
increases.

• For our matrix κ ∼ 108, i.e. extremely ill-conditioned.

• This matrix inversion accounts for over 90% of the simulation
time.



The Matrix Inversion 13/36

• Conjugate gradient (CG): a Krylov space iterative algorithm
that minimizes the residual in each iteration.

• Each iteration applies the normal operator dslash once.

• Use CG to solve the normal operator problem instead of the
original one, († = transpose + complex conjugate)

Dx = y → D†Dx = D†y.

• The convergence rate decreases as the condition number κ
(=max eigenvalue/min eigenvalue) of the matrix D†D
increases.

• For our matrix κ ∼ 108, i.e. extremely ill-conditioned.

• This matrix inversion accounts for over 90% of the simulation
time.



The Matrix Inversion 13/36

• Conjugate gradient (CG): a Krylov space iterative algorithm
that minimizes the residual in each iteration.

• Each iteration applies the normal operator dslash once.

• Use CG to solve the normal operator problem instead of the
original one, († = transpose + complex conjugate)

Dx = y → D†Dx = D†y.

• The convergence rate decreases as the condition number κ
(=max eigenvalue/min eigenvalue) of the matrix D†D
increases.

• For our matrix κ ∼ 108, i.e. extremely ill-conditioned.

• This matrix inversion accounts for over 90% of the simulation
time.



The Matrix Inversion 14/36

• In the measurement phase of the Monte Carlo for one gauge
field configuration typically a large number of Dirac equations
with the same Dirac matrix but different RHS are solved.

D†Dx = D†y.

• Several eigen-space methods, including the implicitly restarted
Lanczos algorithm with Chebyshev polynomial [Y. Saad, SIAM
J. Numer. Anal. 17, 687 (1980)], have been developed.
Low-lying eigenvectors of the matrix are computed to deflate
the inversions, the cost of which is amortized by the large
number of RHS.

• Sheer size of the eigenvectors poses challenge to both the
generation (not enough memory) and the storage (not enough
disk space, easily reaching peta-byte scale).



The Matrix Inversion 14/36

• In the measurement phase of the Monte Carlo for one gauge
field configuration typically a large number of Dirac equations
with the same Dirac matrix but different RHS are solved.

D†Dx = D†y.

• Several eigen-space methods, including the implicitly restarted
Lanczos algorithm with Chebyshev polynomial [Y. Saad, SIAM
J. Numer. Anal. 17, 687 (1980)], have been developed.
Low-lying eigenvectors of the matrix are computed to deflate
the inversions, the cost of which is amortized by the large
number of RHS.

• Sheer size of the eigenvectors poses challenge to both the
generation (not enough memory) and the storage (not enough
disk space, easily reaching peta-byte scale).



The Matrix Inversion 14/36

• In the measurement phase of the Monte Carlo for one gauge
field configuration typically a large number of Dirac equations
with the same Dirac matrix but different RHS are solved.

D†Dx = D†y.

• Several eigen-space methods, including the implicitly restarted
Lanczos algorithm with Chebyshev polynomial [Y. Saad, SIAM
J. Numer. Anal. 17, 687 (1980)], have been developed.
Low-lying eigenvectors of the matrix are computed to deflate
the inversions, the cost of which is amortized by the large
number of RHS.

• Sheer size of the eigenvectors poses challenge to both the
generation (not enough memory) and the storage (not enough
disk space, easily reaching peta-byte scale).



Compression 15/36

A compression algorithm, which exploits the physical correlation
between the eigenvecors, has been developed and applied. For the
gauge configurations generated in this work the memory and disk
space usage is expected to be reduced by a factor of 30.
[arXiV:1710.06884]



The Matrix Inversion 16/36

The eigen-space methods does NOT work in the sample generation
phase of lattice QCD since during this phase for the same Dirac
matrix we only solve very few (typically one) Dirac equations.



Simulation on GPUs 17/36

Now finally let’s put this problem onto the GPUs

• Code in this work is developed under the framework of QUDA
(https://github.com/lattice/quda), a library for
performing calculations in lattice QCD on GPUs.

• Matrix: Even though a sparse matrix, calculating the entries
on the fly from the gauge field beats directly loading the
whole matrix.

• Vector: storage strategy that meets GPUs’ global memory
coalescing requirement.

• Solver: Lower precisions (half/single) are used to improve the
performance and higher precisions (double) are used to
systematically correct the inaccuracy.

https://github.com/lattice/quda


Simulation on GPUs 17/36

Now finally let’s put this problem onto the GPUs

• Code in this work is developed under the framework of QUDA
(https://github.com/lattice/quda), a library for
performing calculations in lattice QCD on GPUs.

• Matrix: Even though a sparse matrix, calculating the entries
on the fly from the gauge field beats directly loading the
whole matrix.

• Vector: storage strategy that meets GPUs’ global memory
coalescing requirement.

• Solver: Lower precisions (half/single) are used to improve the
performance and higher precisions (double) are used to
systematically correct the inaccuracy.

https://github.com/lattice/quda


Simulation on GPUs 17/36

Now finally let’s put this problem onto the GPUs

• Code in this work is developed under the framework of QUDA
(https://github.com/lattice/quda), a library for
performing calculations in lattice QCD on GPUs.

• Matrix: Even though a sparse matrix, calculating the entries
on the fly from the gauge field beats directly loading the
whole matrix.

• Vector: storage strategy that meets GPUs’ global memory
coalescing requirement.

• Solver: Lower precisions (half/single) are used to improve the
performance and higher precisions (double) are used to
systematically correct the inaccuracy.

https://github.com/lattice/quda


Simulation on GPUs 17/36

Now finally let’s put this problem onto the GPUs

• Code in this work is developed under the framework of QUDA
(https://github.com/lattice/quda), a library for
performing calculations in lattice QCD on GPUs.

• Matrix: Even though a sparse matrix, calculating the entries
on the fly from the gauge field beats directly loading the
whole matrix.

• Vector: storage strategy that meets GPUs’ global memory
coalescing requirement.

• Solver: Lower precisions (half/single) are used to improve the
performance and higher precisions (double) are used to
systematically correct the inaccuracy.

https://github.com/lattice/quda


SUMMIT 18/36



SUMMIT at ORNL 19/36

• The SUMMIT machine at Oak Ridge National Laboratory
(ORNL) is currently the fastest supercomputer in the world. 6
Tesla V100 GPUs per node with a total of 4608 nodes. Our
proposed jobs run on 1024 nodes (6096 GPUs) at a time.

• Distribute our 4d-spatial lattice to the GPUs. Consequence:
need to communicate between the nodes; network bandwidth
largely determines the scaling.

we have ... for one iter. we need

memory bandwidth 850 GB/s 69 GB

network bandwidth 8.3 GB/s 21 GB

network/memory 0.010 0.304



SUMMIT at ORNL 19/36

• The SUMMIT machine at Oak Ridge National Laboratory
(ORNL) is currently the fastest supercomputer in the world. 6
Tesla V100 GPUs per node with a total of 4608 nodes. Our
proposed jobs run on 1024 nodes (6096 GPUs) at a time.

• Distribute our 4d-spatial lattice to the GPUs. Consequence:
need to communicate between the nodes; network bandwidth
largely determines the scaling.

we have ... for one iter. we need

memory bandwidth 850 GB/s 69 GB

network bandwidth 8.3 GB/s 21 GB

network/memory 0.010 0.304



Preconditioned CG 20/36

• Precondition the original matrix A to reduce the condition
number κ.

• Solve (AP−1)(Px) = y instead of Ax = y. Choose some
preconditioner P that requires no communication.

• Consequence: Less iterations, less communication needed;
Needs more local computation on each GPU.

with preconditioning we have ... for one iter. we need

memory bandwidth 850 GB/s 69×12.2 GB

network bandwidth 8.3 GB/s 21 GB

network/memory 0.010 0.025



Preconditioned CG 20/36

• Precondition the original matrix A to reduce the condition
number κ.

• Solve (AP−1)(Px) = y instead of Ax = y. Choose some
preconditioner P that requires no communication.

• Consequence: Less iterations, less communication needed;
Needs more local computation on each GPU.

with preconditioning we have ... for one iter. we need

memory bandwidth 850 GB/s 69×12.2 GB

network bandwidth 8.3 GB/s 21 GB

network/memory 0.010 0.025



Preconditioned CG 20/36

• Precondition the original matrix A to reduce the condition
number κ.

• Solve (AP−1)(Px) = y instead of Ax = y. Choose some
preconditioner P that requires no communication.

• Consequence: Less iterations, less communication needed;
Needs more local computation on each GPU.

with preconditioning we have ... for one iter. we need

memory bandwidth 850 GB/s 69×12.2 GB

network bandwidth 8.3 GB/s 21 GB

network/memory 0.010 0.025



Preconditioned CG 21/36

Choose the predicontioner with the correct boundary condition.
[arXiv:1811.08488]

A P =


s
As



Preconditioned CG 22/36

The preconditioner inversion P−1 does not need to be solved to
arbitrarily high precision for the algorithm to work.

10−10

10−09

10−08

10−07

10−06

10−05

10−04

0 5000 10000 15000 20000 25000 30000 35000

re
si

du
al

%
=

√
r2
/s

2

outer iteration

2 inner iterations
3 inner iterations
4 inner iterations
5 inner iterations
6 inner iterations
7 inner iterations
8 inner iterations

unpreconditioned CG



More Problems 23/36

• Without preconditioning network bandwidth is the bottleneck
due to large communication demand.

• With preconditioning the balance is shifted. In order to
achieve a speed up in terms of time to solution we need to do
better on utilizing the memory bandwidth and compute flops
available.

• Memory bandwidth: kernel fusion;
• Compute flops: tensor core for the 5th dimension operations.



More Problems 23/36

• Without preconditioning network bandwidth is the bottleneck
due to large communication demand.
• With preconditioning the balance is shifted. In order to

achieve a speed up in terms of time to solution we need to do
better on utilizing the memory bandwidth and compute flops
available.

• Memory bandwidth: kernel fusion;
• Compute flops: tensor core for the 5th dimension operations.



More Problems 23/36

• Without preconditioning network bandwidth is the bottleneck
due to large communication demand.
• With preconditioning the balance is shifted. In order to

achieve a speed up in terms of time to solution we need to do
better on utilizing the memory bandwidth and compute flops
available.
• Memory bandwidth: kernel fusion;

• Compute flops: tensor core for the 5th dimension operations.



More Problems 23/36

• Without preconditioning network bandwidth is the bottleneck
due to large communication demand.
• With preconditioning the balance is shifted. In order to

achieve a speed up in terms of time to solution we need to do
better on utilizing the memory bandwidth and compute flops
available.
• Memory bandwidth: kernel fusion;
• Compute flops: tensor core for the 5th dimension operations.



Kernel Fusion 24/36

The 4d-volume (∼ 108) is much larger than the size of the 5th
dimension (∼ 101). Fusing the 4d-spatial operations with the 5th
dimension operations right after reduces global memory traffic.

[
1− κ2

bM
†
φD
†
w︸ ︷︷ ︸

fuse

M−†5 M †φD
†
w︸ ︷︷ ︸

fuse

M−†5

][
1− κ2

bM
−1
5 Dw︸ ︷︷ ︸

fuse

MφM
−1
5 Dw︸ ︷︷ ︸

fuse

Mφ

]



Kernel Fusion 25/36

This goes as the following:

• For each block apply the 4d-spatial operation Dw. Here we
rely on the GPU cache system to achieve data reuse. The
theoretical limit is 8-way (nearest neighbors in 4 directions)
and we are getting around 50-60% of that.

• The results are stored in the shared memory.

• the 5th dimension operators are applied on the shared
memory. We are not at the mercy of the cache system here:
100% data reuse.



Kernel Fusion 25/36

This goes as the following:

• For each block apply the 4d-spatial operation Dw. Here we
rely on the GPU cache system to achieve data reuse. The
theoretical limit is 8-way (nearest neighbors in 4 directions)
and we are getting around 50-60% of that.

• The results are stored in the shared memory.

• the 5th dimension operators are applied on the shared
memory. We are not at the mercy of the cache system here:
100% data reuse.



Kernel Fusion 25/36

This goes as the following:

• For each block apply the 4d-spatial operation Dw. Here we
rely on the GPU cache system to achieve data reuse. The
theoretical limit is 8-way (nearest neighbors in 4 directions)
and we are getting around 50-60% of that.

• The results are stored in the shared memory.

• the 5th dimension operators are applied on the shared
memory. We are not at the mercy of the cache system here:
100% data reuse.



Kernel Fusion 26/36

s = 1

s = 0, left handed quarks

s = Ls − 1, right handed quarksone block

th
e
5t
h
d
im

en
si
on



Kernel Fusion: Shared Memory 27/36

Take a vertical slice ...
t
h
r
e
a
d
I
d
x
.
y
×

sp
in
(4
)

pack all 5th dimension sites on threadIdx.x to this block (blockDim.y = Ls)

Distribute the 4d-spatial indices into blocks (blockDim.x)

threadIdx.x × color(3) × complex(2)

4d store

5d op.



Tensor Cores 28/36

“Tensor cores provide a huge boost to convolutions and matrix
operations.”

• Half precision? No problem, we are already using half
precision.

• Memory bandwidth? No problem, the numbers are already in
shared memroy.



Tensor Cores 28/36

“Tensor cores provide a huge boost to convolutions and matrix
operations.”

• Half precision? No problem, we are already using half
precision.

• Memory bandwidth? No problem, the numbers are already in
shared memroy.



Memory Layout for Tensor Cores 29/36

=

M−1
5 , column major input vector, row major output vector, row major

pad to reduce bank conflict

Ls × spin

Ls × spin 4d-spatial × color × complex 4d-spatial × color × complex

×

tensor core: ×16

16

+ × + × =

• Due to the way the wmma functions are called it is not
necessary to have two separate pieces of memory for the input
and output vector. We load from and store into the same
shared memory location in each block.



#include <mma.h>

using namespace nvcuda ::wmma;

__global__ void wmma_ker(half *a, half *b, float *c) {

// Declare the fragments

fragment <matrix_a , 16, 16, 16, half , col_major > a_frag;

fragment <matrix_b , 16, 16, 16, half , row_major > b_frag;

fragment <accumulator , 16, 16, 16, float > c_frag;

// Initialize the output to zero

fill_fragment(c_frag , 0.0f);

// Load the inputs

load_matrix_sync(a_frag , a, 16);

load_matrix_sync(b_frag , b, 16);

// Perform the matrix multiplication

mma_sync(c_frag , a_frag , b_frag , c_frag );

// Store the output

store_matrix_sync(c, c_frag , 16, wmma:: mem_row_major );

}



Further optimizations: Template Everything 31/36

• Template everything: maximize compile time optimization.

=

M−1
5 , column major input vector, row major output vector, row major

pad to reduce bank conflict

Ls × spin

Ls × spin 4d-spatial × color × complex 4d-spatial × color × complex

×

tensor core: ×16

16

+ × + × =



Further optimizations: Reload or Not? 32/36

=

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1 1 2 2

3 3 4 4

5 5 6 6

1, 2 1, 2 1, 2

3, 4 3, 4 3, 4

5, 6 5, 6 5, 6

M−1
5 , column major input vector, row major output vector, row major

pad to reduce bank conflict

Ls(12) × spin

Ls(12) × spin 4d-spatial(16) × color × complex 4d-spatial(16) × color × complex

×

• 12× 16 = 192 threads in the block; 192/32 = 6 virtual warps.

• The numbers in each tile shows the warps that need to load it.

• We can reload the matrix when ever needed, or preload them
at the beginning.



Further optimizations: Reload or Not? 32/36

=

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1 1 2 2

3 3 4 4

5 5 6 6

1, 2 1, 2 1, 2

3, 4 3, 4 3, 4

5, 6 5, 6 5, 6

M−1
5 , column major input vector, row major output vector, row major

pad to reduce bank conflict

Ls(12) × spin

Ls(12) × spin 4d-spatial(16) × color × complex 4d-spatial(16) × color × complex

×

• 12× 16 = 192 threads in the block; 192/32 = 6 virtual warps.

• The numbers in each tile shows the warps that need to load it.

• We can reload the matrix when ever needed, or preload them
at the beginning.



Further optimizations: Reload or Not? 32/36

=

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1, 3, 5 1, 3, 5 2, 4, 6 2, 4, 6

1 1 2 2

3 3 4 4

5 5 6 6

1, 2 1, 2 1, 2

3, 4 3, 4 3, 4

5, 6 5, 6 5, 6

M−1
5 , column major input vector, row major output vector, row major

pad to reduce bank conflict

Ls(12) × spin

Ls(12) × spin 4d-spatial(16) × color × complex 4d-spatial(16) × color × complex

×

• 12× 16 = 192 threads in the block; 192/32 = 6 virtual warps.

• The numbers in each tile shows the warps that need to load it.

• We can reload the matrix when ever needed, or preload them
at the beginning.



Further optimizations: Reload or Not? 33/36

• “To reload, or not to reload, that is the question.” – William
Shakespeare

• Preloading naturally saves the loading time. Reloading saves
register usage: need only one wmma:fragment object.

• We use QUDA’s intrinsic autotuning feature to decide which
strategy wins: just try both and pick the faster one.



Further optimizations: Spill or Not? 34/36

• Since register usage is a problem, we also tune register usage
using __launch_bounds__(maxThreadsPerBlock,

minBlocksPerMultiprocessor).

• Kernel variables could spill into device memory, potentially
leads to latency.

• But why worry? It won’t do any harm since we can also use
autotuning to do the dirty work for us ... :)



Further optimizations: Spill or Not? 34/36

• Since register usage is a problem, we also tune register usage
using __launch_bounds__(maxThreadsPerBlock,

minBlocksPerMultiprocessor).

• Kernel variables could spill into device memory, potentially
leads to latency.

• But why worry? It won’t do any harm since we can also use
autotuning to do the dirty work for us ... :)



Further optimizations: Spill or Not? 34/36

• Since register usage is a problem, we also tune register usage
using __launch_bounds__(maxThreadsPerBlock,

minBlocksPerMultiprocessor).

• Kernel variables could spill into device memory, potentially
leads to latency.

• But why worry? It won’t do any harm since we can also use
autotuning to do the dirty work for us ... :)



Results 35/36

0

50

100

150

200

CG preconditioned CG

1.4x speed upti
m

e[
se

co
nd

s]

matrix multiplication and linear algebra
preconditioning inversion



Conclusion 36/36

• With a carefully chosen preconditioner we are able to shift the
balance between network bandwidth, GPU memory bandwidth
and compute flops when solving a large sparse ill-conditioned
matrix on a large scale supercomputer. The scaling is
improved and we are able to achieve a speed up.

• Tensor cores are used, possibly for the first time, to speed up
the 5th dimension operations of domain wall fermion in lattice
QCD simulations.



Conclusion 36/36

• With a carefully chosen preconditioner we are able to shift the
balance between network bandwidth, GPU memory bandwidth
and compute flops when solving a large sparse ill-conditioned
matrix on a large scale supercomputer. The scaling is
improved and we are able to achieve a speed up.

• Tensor cores are used, possibly for the first time, to speed up
the 5th dimension operations of domain wall fermion in lattice
QCD simulations.


