-

D’
<
am
2
2
O
-
<
i
Z
O
oZ
L
O
Z
p
Ve

e
42
Y
©
| -
(]
(a
bo)
>
©)
c
]
-
>
O
=
@)
O
Y—
o
A
(o]
i e
O
+
+
O
o
2™
-
O
)
=
e
O
| -
<
o
]
i e
'z
-]
on
.n
-
3
()
X,
>
o
=
O
| -
=
2
@)

o~
N
o~
@)
R
=
Vo)
-
=
-
O
Y
W ;
T
-
a @)

-
g
=
>
° -
&

My coordinates

Memory Model

Community WG21

ogiroux@nvidia.com

Architects
ISO C++ Users

NVIDIA GPU Engineers

2 <ANVIDIA.

WHAT THIS TALK IS ABOUT:

@ cudaDeviceSynchronize()

@ syncthreads()
@ shfl sync()

Using atomics to do blocking synchronization.

PSA: DON’T RUN SERIAL CODE IN THREADS

Blocked - Blocked Blocked Blocked Dammit

Blocked

| N

\
I\ Blocked SIGHY /’ \ Blocked {4
/7 \ \\ /
' & ’

\
1 Blocked \ / A \ J
J \ - Blocked %]
l' \ \
1

Blocked

/

Blocked .
- Blocked Blocked - Still blocked

Blocked All blocked and
BlOCked no play makes t6 | k d
Blocke
a dull thread...

PSA: RARE CONTENTION IS FINE

Blocked

-Blocked

Blocked

UNCONTENDED EXCHANGE LOCK

mutex { __1.E+09
©
C -
S -
__host____device__ lock() { Q T
while(1 == l.exchange(1, memory_order_acquire)) g 1.E+08 e _ - T
: — s
’ . 7~
} .E ;'{.
D 1.E+07 e
© -
: =z s
__host___device___ unlock() { 3 -
|.store(0, memory_order_release); :c: 1.E+06
} 1 2 4 8 16 32 64 128 256 51210242048

Thread Occupancy

atomic<int>| = ATOMIC_VAR_INIT(0);
I

— — V100 eeeeee CPU

Awesome.
&» Thanks for attending my talk. &

o000 up (El| (O) & google.com @] (4]]]

About Store Gmail Images

Go g e e <> @ © sweeten 00

stackoverflow cuda mutex

34 results Relevance
Home
cuda mutex|
Q: CUDA, mutex and atomicCAS()

cuda mutex block Dead loc k Remove Recently | started to develop on CUDA and faced with the p! Dead loc k .
. some manipulations with memeory in device code | have to crea

cuda mutex thread could work ... solution for critical section on cuda. This is 2 E € angd

mutex mechanisms. Here is working code. Used it to impelment atoi
cuda mutex example sers array. // *mutex should be 0 before ...
cuda kernel mutex ‘ ct+ cuda m
cuda thread mutex

Q: CUDA mutex synchronization

Deadlock
Google Search I'm Feeling Lucky QaAforwork L~ I am currently working on a homeworl U

synchronize all threads in my kernel. | have implemented simpl

as described in this ... , dev, sizeof(int), cudaMemcpyDevice ToHos!
Report inapp 1 Learn - return 0; } | would expect that this application should never terminate §

ever reach the value of 1000 ..

cuda lization

Q: a Mutex, why deadlock?
s~ Deadlock.

Advertising Business

| am trying to implement a atom
warps / deadlock. This code works well. bool blocked = true; whi
atomicCAS ...

asked Jul

SIMT ATOMIC CONCERN SCALE :

@ Atomic result feeds branch, closes loop, Volta+
@ Atomic result feeds branch, closes loop
Atomic result feeds branch, inside loop

@ Atomic result feeds branch, outside loop

@ Atomic result feeds arithmetic

Atomic result ignored

No atomics

-

SIMT FAMILY HISTORY |

Time zero.

SIMD - . .
® @ o @
1966 1970 1984 2007 2017

Source: Wikipedia, SIGGRAPH proceedings, IEEE Micro.

APPLICABILITY

SYNCHRONIZATION DECISION CHECKLIST

CONs: PROs

1. Serialization is bad. 1. Algorithmic gains.
/. Critical path / Amdahl’s law. /. Latency hiding.

3. Latency is high. 3. Throughput is high

TL;DR: Sometimes, it’s a win.

APP #1: GPU-RESIDENT METHODS

Keep local state in registers & shared memory, with synchronization.

Grido<<<>>>

State Invalidation
Gridl1l<<<>>>

__X____X__

See Greg Diamos’ GTC 2016 talk for more.

20x

faster for
RNN.

Cooperative Grid

Global Barrier

}

}

APP #2: LOCK-FREE IS NOT ALWAYS FASTER

host _ device___ lock_free writer_version(atomic<int>& a, atomic<int>& b) {
expected =-1;

if(a.compare_exchange_strong(expected, 1, memory_order_relaxed))
b.store(1, memory_order_relaxed);

return expected == -1;

host device starvation_free writer_version(atomic<int>& a, atomic<int>& b) {

expected a=-1,

expected b =-1;

success_a = a.compare_exchange_strong(expected_a, 1, memory_order_relaxed),

success_b = b.compare_exchange_strong(expected_b, 1, memory_order_relaxed);
if(success_a)

while(!success_b)

success_b = b.compare_exchange_strong(expected b =-1, 1, memory_order_relaxed);

Exposed dependent latency

Overlapped

else if(success_b)
b.store(-1, memory_order_relaxed);
return expected a ==-1;

Rarely-taken loop changes this
algorithm to a different category.

APP #3: CONCURRENT DATA STRUCTURES

Even if mutexes hide in every node, GPUs can build tree structures fast.

For more, see my CppCon 2018 talk on YouTube, and ‘Parallel Forall’ blog post.

Time to trie
t .
/ A \ 1 thread 68
CV \? @ 11\” a0threads Y] W (CPU)

A 12 9 m Time (ms)

PRE-REQUISITES

PR #1: FORWARD-PROGRESS

No limitations
on thread delays

helping
benevolent scheduler

no helping

No scheduling requirements.
(Any thread scheduler.)

Compute_6x. €& -2 Compute 7x.

threads delayed
infinitely often

uniformly
isolating
scheduler

Eventually
run isolated.

thread delays
limited

fair
scheduler

Critical sections

eventually complete.

Concurrent
algorithm
. taxomomy.

Every thread
succeeds.

Some thread
succeeds.

Maurice Herlihy and Nir Shavit. 2011. On the
nature of progress. In Proceedings of the 15th

international conference on Principles of
Distributed Systems (OPODIS'11)

PR #2: MEMORY CONSISTENCY

Our ASPLOS 2019 paper: https://github.com/NVlabs/ptxmemorymodel.

https://github.com/NVlabs/ptxmemorymodel

PR #3: TRUE SHARING

* Concurrent data sharing between CPU and GPU is a new possibility.

 Real usefulness has some more conditions.

Load/store sharing D :
Platform / allocator Atomic (low cont’n) Atomic (high cont’n)

Any: ARM/Windows/Mac/Unmanaged

x86 Linux (CPU/GPU) Managed

x86 Linux (GPU/GPU) Managed
POWER Linux (all pairs) Managed

PRELIMINARIES

CONTENTION IS THE ISSUE, DIFFERENTLY.

BW=1/Latyyua is @ punishing
depressor of CPU pel

Little’s Law

Bathtub curve is due to the statistical finally kicks in.
likelihood of finding peer in pipeline.

Latency (seconds)

1 2 4 8 16 32 64 128 256 512 1024 2048
Contending threads (count)

POWER ——X86

__host____device__ test(int my_thread, int total_threads, int final_value) {
(int old ; my_thread < final_value; start += total_threads)

(la.compare_exchange_weak(old = my_thread, my_thread + 1,
memory_order_relaxed))

CONTENDING PROCESSORS ARE CRUSHED...

1LE- L eeeeeeeeeeenas

1.E-Oc 512

£ 1E06 =
faeor ST T 4 e
E .E- ‘ (GPU XCPU)

1 2 4 816326412856102048
Thread Occupancy :

Latency (seconds)

——-V100 ——X86

ds)

Latency (secon

...UNLESS THE PROCESSORS ARE NVLINK’ED.

1.E-03
1.E-03
X 3
2T TE06.. 4
1.E-06 2 2048
= 256
Threads
(GPU x CPU)
1.E-09 1.£-09

POWER + V100 (NVLINK)

x86 + V100 (PCIE)

Threads
(GPU x CPU)

ALL OF THE
FOLLOWING 105
SLIDES ARE
NVLINK’ED.

And not log scale,
because it’s legible in
linear scale now.
Thanks.

nds)

1.E-06
2048

256

Latency (seco

Threads

1.E-07 (GPU x CPU)

CONTENDED MUTEXES

CONTENDED MUTEXES

AS AN EXERCISE TO THINK ABOUT
THROUGHPUT AND FAIRNESS

CONTENDED EXCHANGE LOCK

mutex {
__host____device__ lock() {
while(1 == l.exchange(1, memory_order_acquire)) 1.E-05
} E
<~ 1.E-06
__host____ device unlock() { 9 2048
|.store(0, memory_order_release); D 128 Threads
J 1.E-07 8 (GPU x CPU)
: _ : 32 0
atomic<int> | = ATOMIC_VAR_INIT(0); 8
. 0

}I

Not awesome.
& Stay. Keep attending my talk. &

CONTENDED EXCHANGE LOCK

Heavy system pressure:
* A lot of requests
* Each request is slow

Threads
(GPU x CPU)

BACKOFF : LESS PRESSURE VIA FORECASTING

LE04 Impulse-Response Diagram

bounds forecast relative error (orange line): (seconds-seconds)
Lat_encyr:esponse > |<delay * I-atencyimpulse
* Pick arbitrary Ky,,; say 1.5 for 50% error.

* Some benefit to stochastic choice, avoid coupling. LE05
* Ceiling trades bandwidth & maximum error: eoe
tpo}ling / (latloaded T latbackoff) > Bwpolling |
* Pick arbitrary BW,.,; say 0.5 * BW_,tended
1.E-07

protects the fast corner (green box):
Latency esponse > Latencye oo
* Minimum CPU sleep (Linux) is ~= 50000ns. /
1.E-08

* Minimum sleep on V100 is ~= Ons.
1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

— Instantaneous response

CONTENDED EXCHANGE LOCK + BACKOFF

__host____device___ lock() {
uint32_t history = 1<<8; We seem to have fixed -

nnnnnn

while(1 == l.exchange(1, memory_order_acquire)) {
uint32_t delay = history >> 1; 4—. the slow corner. °

#ifdef CUDA_ARCH__ LE.O5
__nanosleep(delay);
#else
if(delay > (1<<15))
std::this_thread::sleep_for(
std::chrono::nanoseconds(delay));

else { 1.E-06

std::this_thread::yield();
delay = 0;
}
#endif
history += (1<<8) + delay; 1.E-07
if(history > (1<<18)) CEILING
history = 1<<18;

}

Latency (seconds)

2048
128

Threads
(GPU x CPU)

}

Sections

FAST LOCKS, SLOW APPLICATIONS @)

* Fast because: lock disproportionally granted to some threads.
* Slow because: top-level performance often depends on fairness.

1.E+06 1.E-05

1.E+05 N\

1.E+04

1.E+03 1.E-06

Latency (seconds)

1.E+02 2048

1.E+01 128 Threads

1.E-07 (GPU x CPU)

1.E+00

Threads
Single-thread rate is a strong attractor.

RECALL : FORWARD-PROGRESS

No limitations threads delayed thread delays CONTENDED EXCHANGE
on thread delays infinitely often limited
LOCK WITH BACKOFF
I
helping Wait-free Obstruction-free Starvation-free |
I
r =orcws|aat s6hed e e S -
I
I I
no helping Lock-free Clash-free Deadlo@-free	
I Some thread	
I J succeeds.	
1 uniformly fhir : I	
I isolating schduler I	
scheduler	I
e o = = e e .'.____________I ________ |
I
I Critical sections | Maurice Herlihy and Nir Shavit. 2011. On the
I I nature of progress. In Proceedings of the 15th

1 eventua”y complete. I international conference on Principles of
—_—mEmEEmEEmEEmEEmEEmEEmEEm Distributed Systems (OPODIS'11)

WHEN IS DEADLOCK-FREE SUITABLE?

Enumerated list:
1. Very low contention.
2. Top-level algorithms resilient to tail effects.

Luckily, this is still pretty common!

TICKET LOCK + PROPORTIONAL BACKOFF

alignas(128) ticket_mutex {

__host___ device__ lock() {
my = in.fetch_add(1, memory_order_acquire);

while(1) {
now = out.load(memory_order_acquire);
if(now == my)
break; 1.E-05
delta = my - now;
delay = (delta << 8);

#ifdef CUDA_ARCH__
__nanosleep(delay);)
#else S
if(delay > (1<<15)) o
std::this_thread::sleep_for(std::chrono::nanoseconds(delay)); E 1.E-06
else S
std::this_thread::yield(); I
#endif 2043
}} 256 Threads
__host____device unlock() { 1.E-07 32 (GPU x
out.fetch_add(1, memory_order_release); | 4 CPU)
b | 32
atomic< > in = ATOMIC_VAR_INIT(0); 8 2 0
0

atomic< > out = ATOMIC_VAR_INIT(0);

%
Don’t need either K or ceiling here, delta is an accurate forecast! ©

Sections

TICKET LOCK + PROPORTIONAL BACKOFF

1.E+06
1.E-05
1.E+05

1.E+04

1.E+03 1.E-06

Latency (seconds)

1.E+02
2048

256 Threads
32 (GPU x
4 CPU)

1.E+01

1.E+00 1.8-07

Threads

AGAIN : FORWARD-PROGRESS

|
|
o |
No limitations threads delayed thread delays I
on thread delays infinitely often limited I Eve ry thread
I succeeds.
|
helping |
|
benevolent scheduler I
no helping TICKET LOCK

uniformly fair
isolating schgduler
scheduler |

Maurice Herlihy and Nir Shavit. 2011. On the
nature of progress. In Proceedings of the 15th

Critical sections

eventua”y complete. I international conference on Principles of
___________ Distributed Systems (OPODIS'11)

WHEN IS STARVATION-FREE SUITABLE?

This is your default, when deadlock-free is unsuitable.

WHAT ELSE IS THERE FOR MUTEXES?

Wish we could use queue locks (e.g. MCS) but we can’t.

These use O(P) storage @ and local stack pointers
(MCS).

BARRIERS

¢

BARRIERS

AS A TYPICALLY-GPU THING
AND ALSO TO THINK ABOUT LATENCY

CENTRAL BARRIER + PROPORTIONAL BACKOFF

1.E-05

2
> 1.E-06
—l

CENTRAL BARRIER + PROPORTIONAL BACKOFF

e Centralized barrier is bad for the CPU.

* Coherence protocols strongly prefer
fancy barrier algorithms: tree,
tournament, dissemination...

* Because: BW = 1/Laty ma-

contended —

* GPU just hangs-on for a while longer.

* But: fancy algorithms introduce high-
latency, levels of indirection.

* Each indirection needs 1:100x .. 1:1000x
improvement in BW to justify itself.

1.E-07

B
e
.
.
.

2048

128 Threads
(GPU x
CPU)

EASY AND EFFECTIVE GPU TREE BARRIER

 2"d Jevel of hierarchy is ~free, in blocks.
* Up to 1:1024 bandwidth reduction!

o
a
.....
.
e
of

-
e,
.
u
.
a
.
L
'-

Latency (seconds)

2048

128 Threads
(GPU x

1.E-07 CPU)

“Remember, if you actually need
a GPU barrier, then you should
use cooperative groups instead.”

https://devblogs.nvidia.com/cooperative-groups/

- My inner CUDA engineer voice.

https://devblogs.nvidia.com/cooperative-groups/

WHAT ABOUT CPU-GPU BARRIERS, THOUGH?

* As you can see, a new barrier algorithm is necessary.

* Perhaps partitioned strategies, by processor type?

Seriously, I’'m asking. Somebody should try it! @

*| don’t know what it would be for, though. So no rush.

WHAT ELSE IS THERE FOR BARRIERS?

For multi-GPU systems:
* You can replicate arrivals to trade atomics vs. polling.
* Not done by CG but it has been done at NVIDIA.

For a DGX-2 (2.6 million threads):
* You might benefit from 3™ level of barrier, barely.
* | don’t think it’s been done at NVIDIA vyet.

IN SHORT

USE CASES PRE-REQS KEEP IN MIND

- Compute_7x. 1. Contention bandwidth is a

major issue for synchronization.
See: atomic story.

2. If you use back-offs,
keep an eye on fairness.
See: mutex story.

3. If you use indirection, the GPU
Critical sections needs a 100..1000x saving.
eventually complete. See: barrier story.

CUDA::STD::ATOMIC<T> IS COMING SOON

Should come to the CUDA C++ toolkit this year, in 2019.

A preview is here:
https://github.com/ogiroux/freestanding.

My CppCon 2018 talk has more, stream it on YouTube.

https://github.com/ogiroux/freestanding

EXTREME SHARED-MEMORY CONCURRENCY

Concurrency at this scale has never been easier.

If you have IBM + V100 systems, try new algorithms!

We want to see what you’ll do with them.

.
L)
7 :
A
| 1=
| l ! z
\ 4)\ | i f
‘ X : =

4

R

<SINVIDIA

