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SYNCHRONIZATION IS BAD, 
BUT IF YOU MUST… (S9329)
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🛑 cudaDeviceSynchronize()

🛑 __syncthreads()

🛑 __shfl_sync()

✅ Using atomics to do blocking synchronization.

WHAT THIS TALK IS ABOUT:
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PSA: DON’T RUN SERIAL CODE IN THREADS
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struct mutex { // suspend atomic<> disbelief for now

__host__ __device__ void lock() {
while(1 == l.exchange(1, memory_order_acquire))
;

}

__host__ __device__ void unlock() {
l.store(0, memory_order_release);

}

atomic<int> l = ATOMIC_VAR_INIT(0);
};

🎉 Thanks for attending my talk. 🎉

Awesome.

1.E+06

1.E+07

1.E+08

1.E+09

1 2 4 8 16 32 64 128 256 512 10242048

C
ri

ti
ca

l s
ec

ti
o

n
s 

(p
er

 s
ec

o
n

d
)

Thread Occupancy

V100 CPU

UNCONTENDED EXCHANGE LOCK
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Deadlock.

🐰🕳

Deadlock.

Deadlock.

Deadlock.



😎 Atomic result feeds branch, closes loop, Volta+

😱 Atomic result feeds branch, closes loop

😬 Atomic result feeds branch, inside loop 

🤨 Atomic result feeds branch, outside loop

🙂 Atomic result feeds arithmetic

😁 Atomic result ignored

👶 No atomics

SIMT ATOMIC CONCERN SCALE :
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SIMT FAMILY HISTORY

2007 2017

Tesla SIMT
Scalar thread programs.

Forward-progress = Nope 
☹️

Volta SIMT
Scalar thread programs.

Forward-progress = YES! 🤘

Source: Wikipedia, SIGGRAPH proceedings, IEEE Micro.

1984

Pixar CHAP
Scalar channel programs.

1966

SIMD

1970

Time zero.
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APPLICABILITY
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CONs:

1. Serialization is bad.

2. Critical path / Amdahl’s law.

3. Latency is high.

PROs

1. Algorithmic gains.

2. Latency hiding.

3. Throughput is high

TL;DR: Sometimes, it’s a win.

SYNCHRONIZATION DECISION CHECKLIST



Keep local state in registers & shared memory, with synchronization.

20x 
faster for 

RNN.

Grid0<<<>>>

Grid1<<<>>>

State Invalidation

Cooperative Grid

Global Barrier

APP #1: GPU-RESIDENT METHODS

See Greg Diamos’ GTC 2016 talk for more.



// *continue* to suspend atomic<> disbelief for now
__host__ __device__ bool lock_free_writer_version(atomic<int>& a, atomic<int>& b) {
int expected = -1;
if(a.compare_exchange_strong(expected, 1, memory_order_relaxed))
b.store(1, memory_order_relaxed);

return expected == -1;
}

// This version is a ~60% speedup at GPU application level, despite progress hazards.
__host__ __device__ bool starvation_free_writer_version(atomic<int>& a, atomic<int>& b) {
int expected_a = -1, 

expected_b = -1;
bool success_a = a.compare_exchange_strong(expected_a, 1, memory_order_relaxed),

success_b = b.compare_exchange_strong(expected_b, 1, memory_order_relaxed);
if(success_a) // Note: we almost always succeed at both.

while(!success_b) // <-- This loop makes this a deadlock-free algorithm.
success_b = b.compare_exchange_strong(expected_b = -1, 1, memory_order_relaxed);

else if(success_b)
b.store(-1, memory_order_relaxed);

return expected_a == -1;
}

Exposed dependent latency

Overlapped 

Rarely-taken loop changes this 
algorithm to a different category.

APP #2: LOCK-FREE IS NOT ALWAYS FASTER



Even if mutexes hide in every node, GPUs can build tree structures fast.
For more, see my CppCon 2018 talk on YouTube, and ‘Parallel Forall’ blog post.

Multi-threading (CPU)

Acceleration (RTX 2070)

APP #3: CONCURRENT DATA STRUCTURES

?
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PRE-REQUISITES



→ Compute_7x.Compute_6x. 

Maurice Herlihy and Nir Shavit. 2011. On the 
nature of progress. In Proceedings of the 15th 

international conference on Principles of 
Distributed Systems (OPODIS'11)

Every thread 
succeeds.

Some thread
succeeds.

No scheduling requirements.
(Any thread scheduler.)

Eventually 
run isolated.

Critical sections
eventually complete.

Concurrent
algorithm

taxomomy.

App #2.

PR #1: FORWARD-PROGRESS



ISO C++ 11 CUDA 9.0-10.2, Volta+ CUDA 10.3, Volta+

int atomic<int>::load(memory_order_seq_cst)
asm("fence.sc.sys;");

asm("ld.acquire.sys.b32 %0, [%1];":::memory);
int atomic<int>::load(memory_order_seq_cst)

int atomic<int>::load(memory_order_acquire) asm("ld.acquire.sys.b32 %0, [%1];":::memory); int atomic<int>::load(memory_order_acquire)

int atomic<int>::load(memory_order_relaxed)
asm("ld.relaxed.sys.b32 %0, [%1];":::memory);

OR : x = *(volatile int*)ptr;
int atomic<int>::load(memory_order_relaxed)

void atomic<int>::store(int, memory_order_seq_cst)
asm("fence.sc.sys;");

asm("st.relaxed.sys.b32 [%0], %1;":::memory);
void atomic<int>::store(int, memory_order_seq_cst)

void atomic<int>::store(int, memory_order_release) asm("st.release.sys.b32 [%0], %1;":::memory); void atomic<int>::store(int, memory_order_release)

void atomic<int>::store(int, memory_order_relaxed)
asm("st.relaxed.sys.b32 [%0], %1;":::memory);

OR : *(volatile int*)ptr = x;
void atomic<int>::store(int, memory_order_relaxed)

int atomic<int>::exchange(int, memory_order_seq_cst)
asm("fence.sc.sys;");

asm("atom.exch.acquire.sys.b32 %0, [%1], %2;":::memory);
int atomic<int>::exchange(int, memory_order_seq_cst)

int atomic<int>::exchange(int, memory_order_acq_rel) asm("atom.exch.acq_rel.sys.b32 %0, [%1], %2;":::memory); int atomic<int>::exchange(int, memory_order_acq_rel)

int atomic<int>::exchange(int, memory_order_release) asm("atom.exch.release.sys.b32 %0, [%1], %2;":::memory); int atomic<int>::exchange(int, memory_order_release)

int atomic<int>::exchange(int, memory_order_acquire) asm("atom.exch.acquire.sys.b32 %0, [%1], %2;":::memory); int atomic<int>::exchange(int, memory_order_acquire)

int atomic<int>::exchange(int, memory_order_relaxed)
asm("atom.exch.relaxed.sys.b32 %0, [%1], %2;":::memory);

OR: y = atomicExch_system(ptr, x);
int atomic<int>::exchange(int, memory_order_relaxed)

And so on... 

Classic CUDA C++.

🎉 Later this year! 🎉See PTX 6 chapter 8 for the asm.

PR #2: MEMORY CONSISTENCY

Our ASPLOS 2019 paper: https://github.com/NVlabs/ptxmemorymodel.

https://github.com/NVlabs/ptxmemorymodel


Platform / allocator
Load/store sharing
Atomic (low cont’n)

Atomic (high cont’n)

Any: ARM/Windows/Mac/Unmanaged Nope. Not at all.

x86 Linux (CPU/GPU) Managed Yes. Technically… but no.

x86 Linux (GPU/GPU) Managed 
YES! TRY IT!

POWER Linux (all pairs) Managed 

• Concurrent data sharing between CPU and GPU is a new possibility.

• Real usefulness has some more conditions.

PR #3: TRUE SHARING
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PRELIMINARIES



__host__ __device__ void test(int my_thread, int total_threads, int final_value) {
for(int old ; my_thread < final_value; start += total_threads)

while(!a.compare_exchange_weak(old = my_thread, my_thread + 1, 
memory_order_relaxed))

;
}
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likelihood of finding peer in pipeline.

Little’s Law 
finally kicks in.

CONTENTION IS THE ISSUE, DIFFERENTLY.
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And not log scale, 
because it’s legible in

linear scale now.
Thanks.
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CONTENDED MUTEXES
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CONTENDED MUTEXES
AS AN EXERCISE TO THINK ABOUT 

THROUGHPUT AND FAIRNESS



struct mutex {

__host__ __device__ void lock() {
while(1 == l.exchange(1, memory_order_acquire))
;

}

__host__ __device__ void unlock() {
l.store(0, memory_order_release);

}

atomic<int> l = ATOMIC_VAR_INIT(0);
}; 0
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🎉 Stay. Keep attending my talk. 🎉

Not awesome.
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CONTENDED EXCHANGE LOCK



• K bounds forecast relative error (orange line):
Latencyresponse > Kdelay * Latencyimpulse
• Pick arbitrary Kdelay; say 1.5 for 50% error.
• Some benefit to stochastic choice, avoid coupling.

• Ceiling trades bandwidth & maximum error:
tpolling / (latloaded + latbackoff) > BWpolling
• Pick arbitrary BWpolling; say 0.5 * Bwcontended

• Floor protects the fast corner (green box):
Latencyresponse > Latencyfloor
• Minimum CPU sleep (Linux) is ~= 50000ns.
• Minimum sleep on V100 is ~= 0ns.

Impulse-Response Diagram
(seconds-seconds)
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__host__ __device__ void lock() {
uint32_t history = 1<<8; // 256ns
while(1 == l.exchange(1, memory_order_acquire)) {
uint32_t delay = history >> 1; // 50%

#ifdef __CUDA_ARCH__
__nanosleep(delay);

#else
if(delay > (1<<15)) // 32us
std::this_thread::sleep_for(

std::chrono::nanoseconds(delay));
else {
std::this_thread::yield();
delay = 0;

}
#endif

history += (1<<8) + delay;
if(history > (1<<18)) // 256us
history = 1<<18;

}
}

FLOOR

CEILING

K

We seem to have fixed
the slow corner.

CONTENDED EXCHANGE LOCK + BACKOFF
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Maurice Herlihy and Nir Shavit. 2011. On the 
nature of progress. In Proceedings of the 15th 

international conference on Principles of 
Distributed Systems (OPODIS'11)

Some thread
succeeds.

Critical sections
eventually complete.

RECALL : FORWARD-PROGRESS

CONTENDED EXCHANGE 
LOCK WITH BACKOFF



Enumerated list:

1. Very low contention.

2. Top-level algorithms resilient to tail effects.

Luckily, this is still pretty common!

WHEN IS DEADLOCK-FREE SUITABLE?



struct alignas(128) ticket_mutex {
__host__ __device__ void lock() {

auto const my = in.fetch_add(1, memory_order_acquire);
while(1) {

auto const now = out.load(memory_order_acquire);
if(now == my) 
break;

auto const delta = my - now;
auto const delay = (delta << 8); // * 256

#ifdef __CUDA_ARCH__
__nanosleep(delay);

#else
if(delay > (1<<15)) // 32us

std::this_thread::sleep_for(std::chrono::nanoseconds(delay));
else

std::this_thread::yield();
#endif

}
}
__host__ __device__ void unlock() {

out.fetch_add(1, memory_order_release);
}
atomic<unsigned> in = ATOMIC_VAR_INIT(0);
atomic<unsigned> out = ATOMIC_VAR_INIT(0);

};

Don’t need either K or ceiling here, delta is an accurate forecast! ☺
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Maurice Herlihy and Nir Shavit. 2011. On the 
nature of progress. In Proceedings of the 15th 

international conference on Principles of 
Distributed Systems (OPODIS'11)

Critical sections
eventually complete.

AGAIN : FORWARD-PROGRESS

TICKET LOCK

Every thread 
succeeds.



This is your default, when deadlock-free is unsuitable.

WHEN IS STARVATION-FREE SUITABLE?

Wish we could use queue locks (e.g. MCS) but we can’t.

These use O(P) storage 😱 and local stack pointers 
(MCS).

WHAT ELSE IS THERE FOR MUTEXES?



37

BARRIERS
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BARRIERS
AS A TYPICALLY-GPU THING 

AND ALSO TO THINK ABOUT LATENCY



__host__ __device__ void arrive_and_wait() {

auto const _expected = expected;
auto const old = phase_arrived.fetch_add(1, memory_order_acq_rel);
auto current = old + 1;
if((old & phase_bit) != (current & phase_bit)) {

phase_arrived.fetch_add(phase_bit - _expected);
}
else

while(1) {
current = phase_arrived.load(memory_order_acquire);
if((old & phase_bit) != (current & phase_bit))
break;

auto const delta = phase_bit - (current & ~phase_bit);
auto const delay = (delta << 8); // * 256

#ifdef __CUDA_ARCH__
__nanosleep(delay);

#else
if(delay > (1<<15)) // 32us

std::this_thread::sleep_for(std::chrono::nanoseconds(delay));
else

std::this_thread::yield();
#endif

}
}
uint32_t const expected = 0;
atomic<uint32_t> phase_arrived = ATOMIC_VAR_INIT(0);

CENTRAL BARRIER + PROPORTIONAL BACKOFF
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CENTRAL BARRIER + PROPORTIONAL BACKOFF

• Centralized barrier is bad for the CPU.
• Coherence protocols strongly prefer

fancy barrier algorithms: tree, 
tournament, dissemination…

• Because: BWcontended = 1/LatNUMA.

• GPU just hangs-on for a while longer.
• But: fancy algorithms introduce high-

latency, levels of indirection.
• Each indirection needs 1:100x .. 1:1000x

improvement in BW to justify itself.



EASY AND EFFECTIVE GPU TREE BARRIER
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__host__ __device__ void arrive_and_wait() {
#ifdef __CUDA_ARCH__

auto const c = __syncthreads_count(1);
if(threadIdx.x == 0)

__arrive_and_wait(c);
__syncthreads();

#else
__arrive_and_wait();

#endif // __CUDA_ARCH__
}

__host__ __device__ void __arrive_and_wait(int c = 1) {

auto const _expected = expected;
auto const old = phase_arrived.fetch_add(c, memory_order_acq_rel);
auto current = old + c;

//...

}

• 2nd level of hierarchy is ~free, in blocks.

• Up to 1:1024 bandwidth reduction!
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“Remember, if you actually need 

a GPU barrier, then you should 

use cooperative groups instead.”

- My inner CUDA engineer voice.

https://devblogs.nvidia.com/cooperative-groups/

https://devblogs.nvidia.com/cooperative-groups/


WHAT ABOUT CPU-GPU BARRIERS, THOUGH?

•As you can see, a new barrier algorithm is necessary.

•Perhaps partitioned strategies, by processor type?

Seriously, I’m asking. Somebody should try it! 😅

• I don’t know what it would be for, though. So no rush.



For multi-GPU systems:
• You can replicate arrivals to trade atomics vs. polling.
•Not done by CG but it has been done at NVIDIA.

For a DGX-2 (2.6 million threads):
• You might benefit from 3rd level of barrier, barely.
• I don’t think it’s been done at NVIDIA yet.

WHAT ELSE IS THERE FOR BARRIERS?
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IN SHORT



→ Compute_7x.

Critical sections
eventually complete.

1. Contention bandwidth is a 
major issue for synchronization.
See: atomic story.

2. If you use back-offs, 
keep an eye on fairness.
See: mutex story.

3. If you use indirection, the GPU 
needs a 100..1000x saving.
See: barrier story.

USE CASES PRE-REQS KEEP IN MIND



Should come to the CUDA C++ toolkit this year, in 2019.

A preview is here:
https://github.com/ogiroux/freestanding.

My CppCon 2018 talk has more, stream it on YouTube.

CUDA::STD::ATOMIC<T> IS COMING SOON

https://github.com/ogiroux/freestanding


Concurrency at this scale has never been easier.

If you have IBM + V100 systems, try new algorithms!

We want to see what you’ll do with them.

EXTREME SHARED-MEMORY CONCURRENCY




