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Deep Learning

Credit: Andrew Ng, https://www.slideshare.net/ExtractConf 

● Continues to improve accuracy 

long after older algorithms 

reach data saturation

● State of the art for vision, 

machine translation, and many 

other domains

● Capitalize on massive amount 

of research happening in the 

global community

https://www.slideshare.net/ExtractConf


Deep Learning @ Uber

● Self-Driving Vehicles

● Trip Forecasting

● Fraud Detection

● … and many more!



How does Deep Learning work?



How does Deep Learning training work?



Massive amounts of data…

…make things slow (weeks!)

Solution:
distributed training.

How much GPU memory?
AWS p3x16large: 128GB
NVIDIA DGX-2: 512GB

Most models fit in a server.
→ Use data-parallel training.



Goals

There are many ways to do data-parallel training.
Some are more confusing than others.  UX varies greatly.

Our goals:

1. Infrastructure people (like me ☺) deal with choosing servers, network 
gear, container environment, default containers, and tuning distributed 
training performance.

2. ML engineers focus on making great models that improve business using 
deep learning frameworks that they love.



Meet Horovod

● Library for distributed deep learning.
● Works with stock TensorFlow, Keras, PyTorch, 

and Apache MXNet.
● Installs on top via `pip install horovod`.
● Uses advanced algorithms & can leverage 

features of high-performance networks (RDMA, 
GPUDirect).

● Separates infrastructure from ML engineers:
○ Infra team provides container & MPI environment
○ ML engineers use DL frameworks that they love
○ Both Infra team and ML engineers have consistent 

expectations for distributed training across frameworks
horovod.ai 

http://horovod.ai/


Horovod Technique: Ring-Allreduce

Patarasuk, P., & Yuan, X. (2009). Bandwidth optimal all-reduce algorithms for clusters of workstations. 
Journal of Parallel and Distributed Computing, 69(2), 117-124. doi:10.1016/j.jpdc.2008.09.002



Horovod Stack

● Plugs into TensorFlow, Keras, PyTorch, and Apache MXNet via custom 

ops 

● Uses MPI for worker discovery and reduction coordination

● Uses NVIDIA NCCL for actual reduction on the server and across servers



Using Horovod



#1. Initialize the library

import horovod.tensorflow as hvd

hvd.init()



#2. Pin GPU to be used

config = tf.ConfigProto()

config.gpu_options.visible_device_list = str(hvd.local_rank())



#3. Adjust LR & add Distributed Optimizer

opt = tf.train.MomentumOptimizer(lr=0.01 * hvd.size())

opt = hvd.DistributedOptimizer(opt)

● Facebook paper:
○ Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour 

■ arxiv.org/abs/1706.02677 
● Recommend linear scaling of learning rate:

○ LRN = LR1 * N
○ Smooth warm-up for the first K epochs

● Use LearningRateWarmupCallback for Keras

https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677


#3. Learning Rate Adjustment Cont.

● Yang You, Igor Gitman, Boris Ginsburg in paper “Large Batch Training of 

Convolutional Networks” demonstrated scaling to batch of 32K examples 

(arxiv.org/abs/1708.03888)

○ Use per-layer adaptive learning rate scaling

● Google published a paper “Don't Decay the Learning Rate, Increase the 

Batch Size” (arxiv.org/abs/1711.00489) arguing that typical learning rate 

decay can be replaced with an increase of the batch size

https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1711.00489


#4. Synchronize initial state

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

with tf.train.MonitoredTrainingSession(hooks=hooks, …) as mon_sess:

  …

# Or

bcast_op = hvd.broadcast_global_variables(0)

sess.run(bcast_op)



#5. Use checkpoints only on first worker

ckpt_dir = "/tmp/train_logs" if hvd.rank() == 0 else None

with tf.train.MonitoredTrainingSession(checkpoint_dir=ckpt_dir, …) as mon_sess:

  …



#6. Data: Partitioning

● Shuffle the dataset

● Partition records among workers

● Train by sequentially reading the partition

● After epoch is done, reshuffle and partition again

NOTE: make sure that all 
partitions contain the 
same number of batches, 
otherwise the training will 
reach deadlock



#6. Data: Random Sampling

● Shuffle the dataset

● Train by randomly reading data from whole dataset

● After epoch is done, reshuffle



#6. Data Review

● Random sampling may cause some records to be read multiple times in a 

single epoch, while others not read at all

● In practice, both approaches typically yield same results

● Conclusion: use the most convenient option for your case

● Remember: validation can also be distributed, but need to make sure to 

average validation results from all the workers when using learning rate 

schedules that depend on validation

○ Horovod comes with MetricAverageCallback for Keras



Full example

import tensorflow as tf
import horovod.tensorflow as hvd

# Initialize Horovod
hvd.init()

# Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list =
  str(hvd.local_rank())

# Build model...
loss = ...
opt = tf.train.MomentumOptimizer(
  lr=0.01 * hvd.size())

# Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

# Add hook to synchronize initial state
hooks =[hvd.BroadcastGlobalVariablesHook(0)]

# Only checkpoint on rank 0
ckpt_dir = "/tmp/train_logs" \
  if hvd.rank() == 0 else None

# Make training operation
train_op = opt.minimize(loss)

# The MonitoredTrainingSession takes care of
# session initialization, restoring from a 
# checkpoint, saving to a checkpoint, and 
# closing when done or an error occurs.
with 
tf.train.MonitoredTrainingSession(checkpoint_dir=ckpt_
dir, config=config, hooks=hooks) as mon_sess:
  while not mon_sess.should_stop():
    # Perform synchronous training.
    mon_sess.run(train_op)



There’s more...



Horovod for TensorFlow

import horovod.tensorflow as hvd



Horovod for All

import horovod.tensorflow as hvd
import horovod.keras as hvd
import horovod.tensorflow.keras as hvd
import horovod.torch as hvd
import horovod.mxnet as hvd
# more frameworks coming



Keras

import keras
from keras import backend as K
import tensorflow as tf
import horovod.keras as hvd

# Initialize Horovod. 
hvd.init()

# Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list =
  str(hvd.local_rank())
K.set_session(tf.Session(config=config))

# Build model…
model = ...
opt = keras.optimizers.Adadelta(
  lr=1.0 * hvd.size())

# Add Horovod Distributed Optimizer.
opt = hvd.DistributedOptimizer(opt)

model.compile(
  loss='categorical_crossentropy',
  optimizer=opt, 
  metrics=['accuracy'])

# Broadcast initial variable state.
callbacks = 
[hvd.callbacks.BroadcastGlobalVariablesCallback(0)]

model.fit(
  x_train, 
  y_train,
  callbacks=callbacks,
  epochs=10,
  validation_data=(x_test, y_test))



TensorFlow Eager Mode

import tensorflow as tf
import horovod.tensorflow as hvd

# Initialize Horovod
hvd.init()

# Pin GPU to be used
config = tf.ConfigProto()
config.gpu_options.visible_device_list = 
  str(hvd.local_rank())

tf.enable_eager_execution(config=config)

# Adjust learning rate based on number of GPUs.
opt = tf.train.RMSPropOptimizer(0.001 * hvd.size())

for batch, (images, labels) in enumerate(dataset):
  with tf.GradientTape() as tape:
    loss = …

    # Broadcast model variables
    if batch == 0:
      hvd.broadcast_variables(0, model.variables)

    # Add DistributedGradientTape
    tape = hvd.DistributedGradientTape(tape)

    grads = tape.gradient(loss_value, model.variables)
    opt.apply_gradients(zip(grads, model.variables))



import torch
import horovod.torch as hvd

# Initialize Horovod
hvd.init()

# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())

# Build model.
model = Net()
model.cuda()
optimizer = optim.SGD(model.parameters())

# Wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
  optimizer,
  named_parameters=model.named_parameters())

PyTorch

# Horovod: broadcast parameters.
hvd.broadcast_parameters(
  model.state_dict(), 
  root_rank=0)

for epoch in range(100):
  for batch_idx, (data, target) in …:
    optimizer.zero_grad()
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()



import torch
import horovod.mxnet as hvd

# Initialize Horovod
hvd.init()

# Horovod: pin GPU to local rank.
context = mx.gpu(hvd.local_rank())

# Build model.
net = …
loss = ...
model = mx.mod.Module(symbol=loss, context=context)

# Wrap optimizer with DistributedOptimizer.
opt = hvd.DistributedOptimizer(opt)

Apache MXNet

# Horovod: broadcast parameters.
hvd.broadcast_parameters(model.get_params(), 
root_rank=0)

model.fit(...)



Running Horovod

Single-node:

$ horovodrun -np 4 -H localhost:4 python train.py

Multi-node:

$ horovodrun -np 16 -H server1:4,server2:4,server3:4,server4:4 python train.py



Running Horovod: Under the Hood

● MPI takes care of launching processes on all machines

● Run on a 4 GPU machine:
$ mpirun -np 4 \
    -H localhost:4 \
    -bind-to none -map-by slot \
    -mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include eth0 \
    -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=eth0 -x LD_LIBRARY_PATH -x ... \
    python train.py

● Run on 4 machines with 4 GPUs:
$ mpirun -np 16 \
    -H server1:4,server2:4,server3:4,server4:4 \
    -bind-to none -map-by slot \
    -mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include eth0 \
    -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=eth0 -x LD_LIBRARY_PATH -x ... \
    python train.py



Horovod on Spark



Why Spark?

● Allows users to leverage existing Spark infrastructure

○ Including Jupyter and IPython!

● Data preparation & model training in the same environment

● Save to Parquet and use Petastorm for data ingestion

○ Takes care of random shuffling, fault tolerance, etc

○ https://github.com/uber/petastorm 

https://github.com/uber/petastorm


Horovod Performance

Horovod scales well beyond 128 GPUs. RDMA helps at a large scale, especially to small 
models with fully-connected layers like VGG-16, which are very hard to scale.



Horovod Knobs: Hierarchical Algorithms

 $ HOROVOD_HIERARCHICAL_ALLREDUCE=1 horovodrun ...

 $ HOROVOD_HIERARCHICAL_ALLGATHER=1 horovodrun ...

● Contributed by NVIDIA & Amazon

● First allreduce locally, then allreduce across nodes in parallel

○ Each worker responsible for a different chunk of the buffer

● Speeds up training for very large cluster setups

○ Homogenous nodes (same # GPUs)

○ Many GPUs per node



Hierarchical Allreduce: Example



Horovod Knobs: Tensor Fusion

 $ HOROVOD_FUSION_THRESHOLD=67108864 HOROVOD_CYCLE_TIME=5 horovodrun ...

● Batch tensors together during allreduce

● Fusion Threshold: size of batching buffer (in bytes)

● Cycle Time: wait time between sending batches (in milliseconds)



Horovod Knobs: Auto Tuning with Bayesian Optimization

Use HOROVOD_AUTOTUNE=1 to find the best Horovod parameters



Horovod Knobs: Gradient Compression

● FP16 allreduce
○ hvd.DistributedOptimizer(..., compression=hvd.Compression.fp16)

○ Reduces arithmetic computation on GPU

○ Reduces network utilization

● Not auto-selected by Auto-tuning since it may affect model convergence

● More techniques coming - contribution welcome!



Practical Results at Uber and beyond

● Horovod is accepted as the only way Uber does distributed deep learning 

● We train both convolutional networks and LSTMs in hours instead of days 

or weeks with the same final accuracy - game changer

● Horovod is widely used by various companies including NVIDIA, Amazon 

and Alibaba and various research institutions

● Horovod is included in various deep learning distributions:

AWS Deep Learning AMI, GCP Deep Learning VM, Azure Data Science VM, 

NVIDIA GPU Cloud, IBM FfDL, Databricks Runtime, IBM Watson Studio



Thank you!
http://horovod.ai 

Horovod on our Eng Blog: https://eng.uber.com/horovod
Michelangelo on our Eng Blog: https://eng.uber.com/michelangelo
ML at Uber on YouTube: http://t.uber.com/ml-meetup

http://horovod.ai
https://eng.uber.com/horovod/
https://eng.uber.com/michelangelo/
http://t.uber.com/ml-meetup



