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Depth sensing is key to robotics advancement

1979, Multi-view vision and the Stanford Cart
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Depth sensing is key to robotics advancement

2007, Velodyne LiDAR and the DARPA Urban Challenge
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Depth sensing is key to robotics advancement

2010, Kinect and aggressive drone manuvers
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Impact of depth sensing beyond robotics

Face ID by Apple
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Existing depth sensors have limited effective spatial resolutions
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• Stereo Cameras 

• Structure-light sensors 

• Time-of-flight sensors (e.g., LiDARs)



Existing depth sensors have limited effective spatial resolutions
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Stereo: triangulation is accurate only at texture-rich regions



Existing depth sensors have limited effective spatial resolutions

Structure-light Sensors: short range, high power consumption
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Existing depth sensors have limited effective spatial resolutions

LiDARs: extremely sparse measurements
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Single-View Depth Image Estimation

Depth completion Depth Prediction
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Application 1: Sensor Enhancement

Kinect Velodyne LiDAR
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Application 2: Sparse Map Densification

State-of-the-art, real-time SLAM algorithms are mostly  
(semi) feature-based, resulting in a sparse map representation

LSD-SLAMPTAM
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Depth completion as a downstream, post-processing step for  
sparse SLAM algorithms, creating a dense map representation



Single-View Depth Image Estimation

• Why is the problem challenging? 

• How to solve the problem? 

• How to train a model without ground truth?  

• How fast can we run on embedded systems? 

• How to obtain performance guarantees with DL? 

• What to do if you “hate” deep learning?
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Challenges in Depth Completion
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• An ill-posed inverse problem 

• High-dimensional, continuous prediction



Challenges in Depth Completion
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• Biased / adversarial sampling 

• Varying number of measurements



Challenges in Depth Completion
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• Cross-modality fusion (RGB + Depth)



Challenges in Depth Completion
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• Lack of ground truth data (category vs. distance)
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Sparse-to-Dense: Deep Regression Neural Networks

• Direct encoding: use 0s to represent no-measurement 
• Early-fusion strategy: concatenate RGB and sparse Depth at input level  
• Network Architecture: standard convolutional neural network 
• Train end-to-end using ground truth depth
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Results on NYU Dataset
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• RGB only: RMS=51cm 
• RGB + 20 measurements: RMS=35cm 
• RGB + 50 measurements: RMS=28cm 
• RGB + 200 measurements: RMS=23cm



Scaling of Accuracy vs. Samples
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Application to Sparse Point Clouds
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Application to Sparse Point Clouds



Sparse-to-Dense:  
depth prediction from sparse depth samples and a single image 

Fangchang Ma,  Sertac Karaman 

ICRA’18 
code: github.com/fangchangma/sparse-to-dense
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Experiment 1. Supervised Training (Baseline). RMSE=0.814m (ranked 1st on KITTI).

Prediction
(point cloud)

Input  
(point cloud)

(depth image)
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Self-supervision: enforce temporal photometric consistency
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Real RGB1

Estimate pose from 
LiDAR and RGB

Inverse warping 
using both depth 

and pose

Self-supervision: enforce temporal photometric consistency

Penalize 
photometric
differences

Real RGB2

Warped RGB2



Supervised training requires ground truth depth labels, which are hard to acquire in practice

Self-supervision: temporal photometric consistency

RGB1 Warped RGB1 Photometric error
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Experiment 2. Self-Supervised Training

Prediction
(point cloud)

Input  
(point cloud)

(depth image)

Experiment 2. Self-Supervised. RMSE=1.30m
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Self-supervised Sparse-to-Dense:  
Self-supervised Depth Completion from LiDAR and Monocular Camera 

Fangchang Ma,  Guilherme Venturelli Cavalheiro, Sertac Karaman 

ICRA 2019 
code: github.com/fangchangma/self-supervised-depth-completion
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• An Efficient and lightweight encoder-decoder network architecture with 
a low-latency design incorporating depthwise separable layers and 
additive skip connections 

• Network pruning applied to whole encoder-decoder network 
• Platform-specific compilation targeting embedded systems
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FastDepth



FastDepth is the first demonstration of real-time  
depth estimation on embedded systems
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FastDepth is the first demonstration of real-time  
depth estimation on embedded systems
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Achieved fast runtime through network design,  
pruning, and hardware-specific compilation
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FastDepth performs similarly to more complex models, but 65x faster
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This Work 
(178 fps on TX2 GPU)

Baseline
ResNet-50 with UpProj
(2.7 fps on TX2 GPU)

Ground TruthRGB Input



FastDepth:  
Fast Monocular Depth Estimation on Embedded Systems 

Diana Wofk*, Fangchang Ma*, Tienju-Yang, Sertac Karaman, Vivienne Sze 

ICRA 2019 
fastdepth.mit.edu 
https://github.com/dwofk/fast-depth
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http://fastdepth.mit.edu
https://github.com/dwofk/fast-depth


Single-View Depth Image Estimation

• Why is the problem challenging? 

• How to solve the problem? 

• How to train a model without ground truth?  

• How fast can we run on embedded systems? 

• How to obtain performance guarantees with DL? 

• What to do if you “hate” deep learning?

!46



Assumption: image can be modeled by a convolutional generative neural network
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Sub-sampling Process
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Rephrasing the depth-completion/image-inpainting problems

Question: can you find x (or equivalently, z), given only y?
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If z is recovered, then we can reconstruct x as G(z) using a single forward pass
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Rephrasing the depth-completion/image-inpainting problems
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The latent code z can be computed efficiently using gradient descent



Main Theorem 
For a 2-layer network, the latent code z 
can be recovered from the 
undersampled measurements y using 
gradient descents (with high probability) 
by minimizing the empirical loss function.
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Reconstructed 
Images 

Ground 
Truth 

Experimental Results

Undersampled 
Measurements  
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Invertibility of Convolutional Generative Networks from Partial 
Measurements  

Fangchang Ma*, Ulas Ayaz*, Sertac Karaman 

NeurIPS 2018 (previously known as NIPS) 
code: github.com/fangchangma/invert-generative-networks
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Depth Completion:  
Linear model with planar assumption

Input: only sparse depth

Output: dense depth

Fangchang Ma, Luca Carlone, Ulas Ayaz, Sertac Karaman. “Sparse sensing for resource-
constrained depth reconstruction”. IROS’16 

Fangchang Ma, Luca Carlone, Ulas Ayaz, Sertac Karaman. “Sparse Depth Sensing for Resource-
Constrained Robots”. The International Journal of Robotics Research (IJRR)
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Depth Completion:  Linear model with planar assumption

Planar Assumption: a relatively structured environment  
can be well approximated by a small number of planar surfaces

Implication: 2nd derivative of a structured environment is approximately sparse 
(sparsity of 2nd derivative is a measure of scene complexity)

Observation: 2nd derivative of planar surfaces is sparse
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Depth Completion:  Linear model with planar assumption

Planar Assumption: sparse 2nd derivative in a typical depth image

Goal: find the simplest depth image (with the sparsest 2nd derivative)  
that is aligned with our measurements

Convex Relaxation (Linear Programming): 
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Depth Completion:  Linear model with planar assumption
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Sparse Depth Sensing for Resource-Constrained Robots 

Fangchang Ma*, Ulas Ayaz*, Sertac Karaman 

The International Journal of Robotics Research (IJRR) 
code: github.com/sparse-depth-sensing/sparse-depth-sensing
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