
Single-View Depth Image Estimation

Fangchang Ma
PhD Candidate at MIT (Sertac Karaman Group)

• homepage: www.mit.edu/~fcma/
• code: github.com/fangchangma

Depth sensing is key to robotics advancement

1979, Multi-view vision and the Stanford Cart
!2

Depth sensing is key to robotics advancement

2007, Velodyne LiDAR and the DARPA Urban Challenge
!3

Depth sensing is key to robotics advancement

2010, Kinect and aggressive drone manuvers
!4

Impact of depth sensing beyond robotics

Face ID by Apple
!5

Existing depth sensors have limited effective spatial resolutions

!6

• Stereo Cameras

• Structure-light sensors

• Time-of-flight sensors (e.g., LiDARs)

Existing depth sensors have limited effective spatial resolutions

!7

Stereo: triangulation is accurate only at texture-rich regions

Existing depth sensors have limited effective spatial resolutions

Structure-light Sensors: short range, high power consumption
!8

Existing depth sensors have limited effective spatial resolutions

LiDARs: extremely sparse measurements
!9

Single-View Depth Image Estimation

Depth completion Depth Prediction

!10

Application 1: Sensor Enhancement

Kinect Velodyne LiDAR

!11

Application 2: Sparse Map Densification

State-of-the-art, real-time SLAM algorithms are mostly
(semi) feature-based, resulting in a sparse map representation

LSD-SLAMPTAM

!12

Depth completion as a downstream, post-processing step for
sparse SLAM algorithms, creating a dense map representation

Single-View Depth Image Estimation

• Why is the problem challenging?

• How to solve the problem?

• How to train a model without ground truth?

• How fast can we run on embedded systems?

• How to obtain performance guarantees with DL?

• What to do if you “hate” deep learning?

!13

Single-View Depth Image Estimation

• Why is the problem challenging?

• How to solve the problem?

• How to train a model without ground truth?

• How fast can we run on embedded systems?

• How to obtain performance guarantees with DL?

• What to do if you “hate” deep learning?

!14

Challenges in Depth Completion

!15

• An ill-posed inverse problem

• High-dimensional, continuous prediction

Challenges in Depth Completion

!16

• Biased / adversarial sampling

• Varying number of measurements

Challenges in Depth Completion

!17

• Cross-modality fusion (RGB + Depth)

Challenges in Depth Completion

!18

• Lack of ground truth data (category vs. distance)

Single-View Depth Image Estimation

• Why is the problem challenging?

• How to solve the problem?

• How to train a model without ground truth?

• How fast can we run on embedded systems?

• How to obtain performance guarantees with DL?

• What to do if you “hate” deep learning?

!19

Sparse-to-Dense: Deep Regression Neural Networks

• Direct encoding: use 0s to represent no-measurement
• Early-fusion strategy: concatenate RGB and sparse Depth at input level
• Network Architecture: standard convolutional neural network
• Train end-to-end using ground truth depth

!20

Results on NYU Dataset

!21

• RGB only: RMS=51cm
• RGB + 20 measurements: RMS=35cm
• RGB + 50 measurements: RMS=28cm
• RGB + 200 measurements: RMS=23cm

Scaling of Accuracy vs. Samples

!22

100 101 102 103 104

number of depth samples

0.00

0.05

0.10

0.15

0.20

0.25 REL

RGBd
sparse depth
RGB

!23

Application to Sparse Point Clouds

!24

Application to Sparse Point Clouds

Sparse-to-Dense:
depth prediction from sparse depth samples and a single image

Fangchang Ma, Sertac Karaman

ICRA’18
code: github.com/fangchangma/sparse-to-dense

!25

Single-View Depth Image Estimation

• Why is the problem challenging?

• How to solve the problem?

• How to train a model without ground truth?

• How fast can we run on embedded systems?

• How to obtain performance guarantees with DL?

• What to do if you “hate” deep learning?

!26

Experiment 1. Supervised Training (Baseline). RMSE=0.814m (ranked 1st on KITTI).

Prediction
(point cloud)

Input
(point cloud)

(depth image)

!27

Self-supervision: enforce temporal photometric consistency

Self-supervision: enforce temporal photometric consistency

Real RGB1

Self-supervision: enforce temporal photometric consistency

Real RGB1

Self-supervision: enforce temporal photometric consistency

Real RGB1

Real RGB2

Self-supervision: enforce temporal photometric consistency

Real RGB1

Estimate pose from
LiDAR and RGB

Real RGB2

Self-supervision: enforce temporal photometric consistency

Real RGB1

Estimate pose from
LiDAR and RGB

Real RGB2

Inverse warping
using both depth

and pose

Self-supervision: enforce temporal photometric consistency

Real RGB1

Estimate pose from
LiDAR and RGB

Real RGB2

Inverse warping
using both depth

and pose

Warped RGB2

Real RGB1

Estimate pose from
LiDAR and RGB

Inverse warping
using both depth

and pose

Self-supervision: enforce temporal photometric consistency

Penalize
photometric
differences

Real RGB2

Warped RGB2

Supervised training requires ground truth depth labels, which are hard to acquire in practice

Self-supervision: temporal photometric consistency

RGB1 Warped RGB1 Photometric error

!36

Experiment 2. Self-Supervised Training

Prediction
(point cloud)

Input
(point cloud)

(depth image)

Experiment 2. Self-Supervised. RMSE=1.30m

!37

Self-supervised Sparse-to-Dense:
Self-supervised Depth Completion from LiDAR and Monocular Camera

Fangchang Ma, Guilherme Venturelli Cavalheiro, Sertac Karaman

ICRA 2019
code: github.com/fangchangma/self-supervised-depth-completion

!38

Single-View Depth Image Estimation

• Why is the problem challenging?

• How to solve the problem?

• How to train a model without ground truth?

• How fast can we run on embedded systems?

• How to obtain performance guarantees with DL?

• What to do if you “hate” deep learning?

!39

• An Efficient and lightweight encoder-decoder network architecture with
a low-latency design incorporating depthwise separable layers and
additive skip connections

• Network pruning applied to whole encoder-decoder network
• Platform-specific compilation targeting embedded systems

!40

FastDepth

FastDepth is the first demonstration of real-time
depth estimation on embedded systems

!41

FastDepth is the first demonstration of real-time
depth estimation on embedded systems

!42

Achieved fast runtime through network design,
pruning, and hardware-specific compilation

!43

FastDepth performs similarly to more complex models, but 65x faster

!44

This Work
(178 fps on TX2 GPU)

Baseline
ResNet-50 with UpProj
(2.7 fps on TX2 GPU)

Ground TruthRGB Input

FastDepth:
Fast Monocular Depth Estimation on Embedded Systems

Diana Wofk*, Fangchang Ma*, Tienju-Yang, Sertac Karaman, Vivienne Sze

ICRA 2019
fastdepth.mit.edu
https://github.com/dwofk/fast-depth

!45

http://fastdepth.mit.edu
https://github.com/dwofk/fast-depth

Single-View Depth Image Estimation

• Why is the problem challenging?

• How to solve the problem?

• How to train a model without ground truth?

• How fast can we run on embedded systems?

• How to obtain performance guarantees with DL?

• What to do if you “hate” deep learning?

!46

Assumption: image can be modeled by a convolutional generative neural network

!47

Sub-sampling Process

!48

Rephrasing the depth-completion/image-inpainting problems

Question: can you find x (or equivalently, z), given only y?
!49

If z is recovered, then we can reconstruct x as G(z) using a single forward pass
!50

Rephrasing the depth-completion/image-inpainting problems

!51

The latent code z can be computed efficiently using gradient descent

Main Theorem
For a 2-layer network, the latent code z
can be recovered from the
undersampled measurements y using
gradient descents (with high probability)
by minimizing the empirical loss function.

-0.5

0

0.5-1.5

-1

1
-0.5

0
1.5

!52

Reconstructed
Images

Ground
Truth

Experimental Results

Undersampled
Measurements

!53

Invertibility of Convolutional Generative Networks from Partial
Measurements

Fangchang Ma*, Ulas Ayaz*, Sertac Karaman

NeurIPS 2018 (previously known as NIPS)
code: github.com/fangchangma/invert-generative-networks

!54

Single-View Depth Image Estimation

• Why is the problem challenging?

• How to solve the problem?

• How to train a model without ground truth?

• How fast can we run on embedded systems?

• How to obtain performance guarantees with DL?

• What to do if you “hate” deep learning?

!55

Depth Completion:
Linear model with planar assumption

Input: only sparse depth

Output: dense depth

Fangchang Ma, Luca Carlone, Ulas Ayaz, Sertac Karaman. “Sparse sensing for resource-
constrained depth reconstruction”. IROS’16

Fangchang Ma, Luca Carlone, Ulas Ayaz, Sertac Karaman. “Sparse Depth Sensing for Resource-
Constrained Robots”. The International Journal of Robotics Research (IJRR)

!56

Depth Completion: Linear model with planar assumption

Planar Assumption: a relatively structured environment
can be well approximated by a small number of planar surfaces

Implication: 2nd derivative of a structured environment is approximately sparse
(sparsity of 2nd derivative is a measure of scene complexity)

Observation: 2nd derivative of planar surfaces is sparse

!57

Depth Completion: Linear model with planar assumption

Planar Assumption: sparse 2nd derivative in a typical depth image

Goal: find the simplest depth image (with the sparsest 2nd derivative)
that is aligned with our measurements

Convex Relaxation (Linear Programming):

!58

Depth Completion: Linear model with planar assumption

!59

Sparse Depth Sensing for Resource-Constrained Robots

Fangchang Ma*, Ulas Ayaz*, Sertac Karaman

The International Journal of Robotics Research (IJRR)
code: github.com/sparse-depth-sensing/sparse-depth-sensing

!60

Single-View Depth Image Estimation

Fangchang Ma

homepage: www.mit.edu/~fcma/
code: github.com/fangchangma

• Why is the problem challenging?
• How to solve the problem?
• How to train a model without ground truth?
• How fast can we run on embedded systems?
• How to obtain performance guarantees with DL?
• What to do if you “hate” deep learning?

