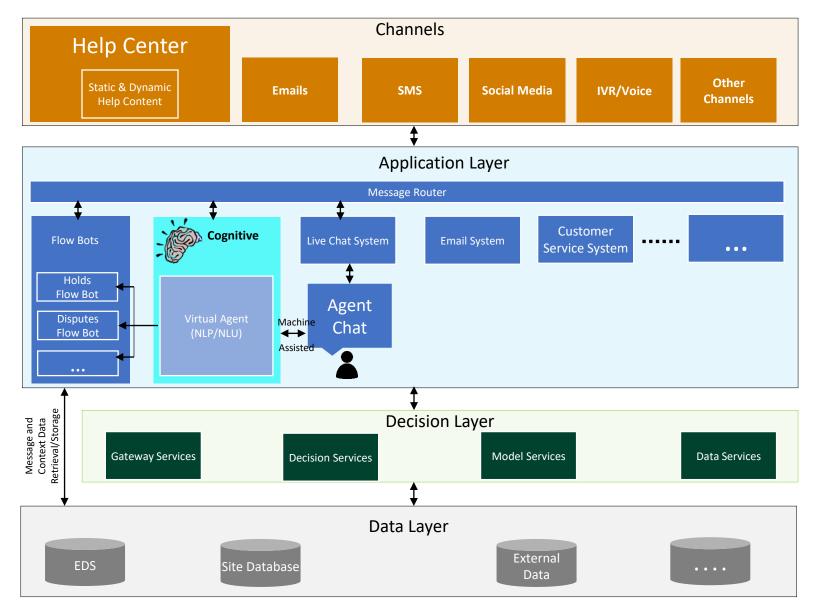
Improving Customer Service with Deep Learning Techniques in a Multi-Touchpoint System

Rajesh Munavalli PayPal Inc

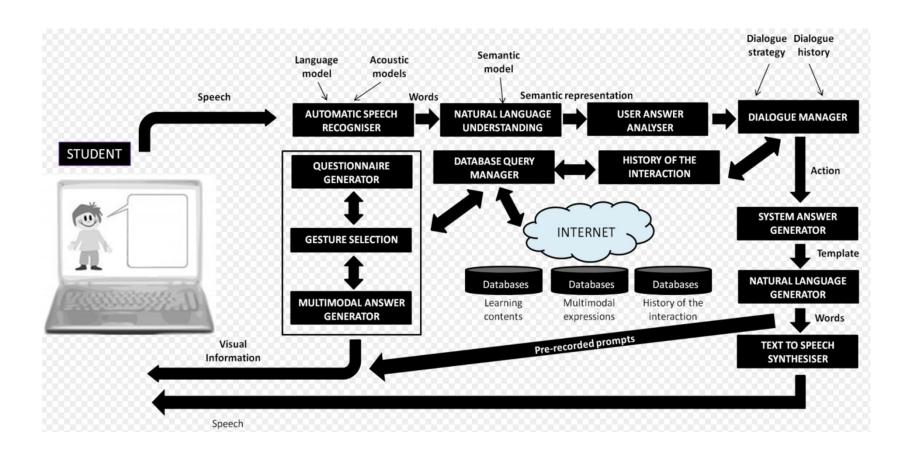
Outline

- PayPal Customer Service Architecture
- Evolution of NLP
- Help Center and Email Routing Projects
- Why Deep Learning?
- Deep Learning Architectures
 - Word Embedding
 - Unlabeled Data
- Results an Benchmarks
- Future Research

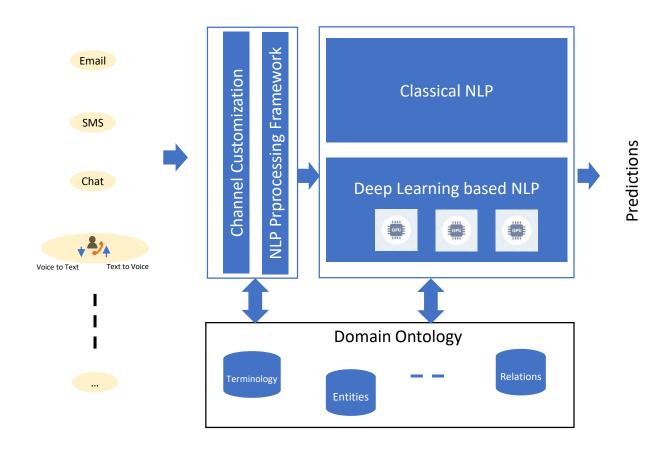
System Architecture



ChatBot Architecture



Overall NLU Architecture

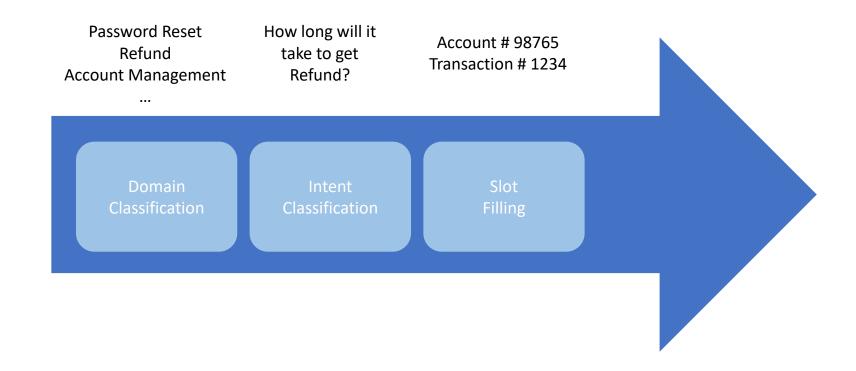


Customer Service Management Core Components

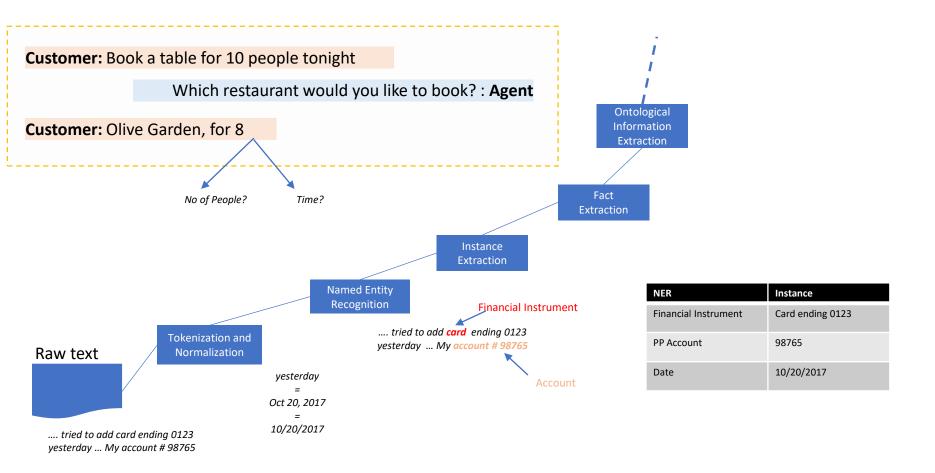
•	Matural	Language	Processing	to und	erstand	ucer i	nnut
•	Naturar	Language	Processing	to und	erstand	useri	прис

- Information Extraction
- Intent Prediction
- Dialogue and Context Management to continue conversation intelligently
- Business Logic and Intelligence
- Connectivity with the external systems to provide necessary information and take actions on behalf of the user

Information Extraction

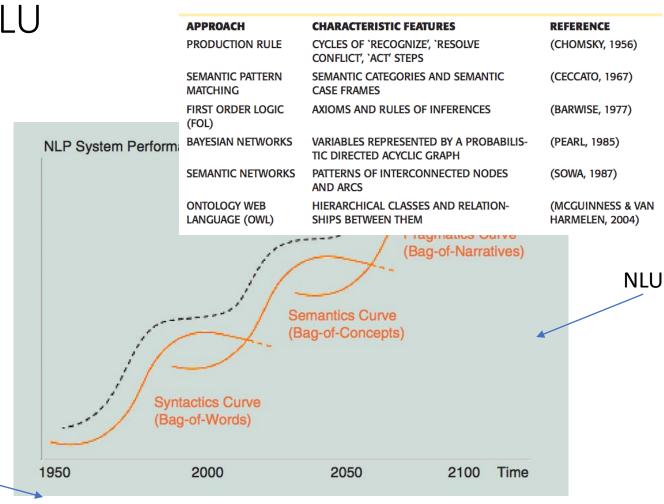


Information Extraction



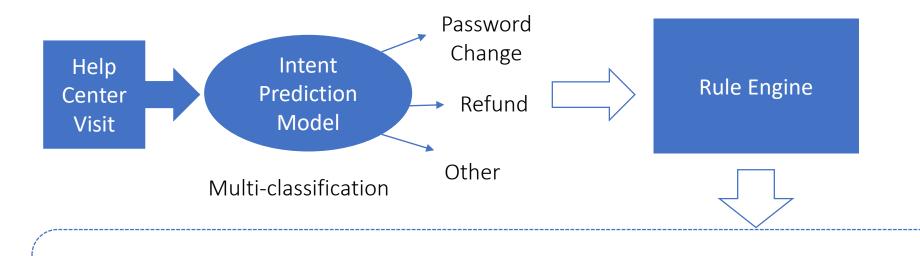
Evolution of NLP/NLU

NLP



NLP Tasks Input Sentence Morphological processing Lexicon Syntax analysis (parsing) Grammar Semantic analysis Semantic Rules Pragmatic analysis Contextual Information Target representation

Help Center: Intent Prediction Solution Architecture



Rank high likelihood intent as #1 on FAQ

Pre-populate high likelihood intent on 'Contact Us' page

BNA Use Case

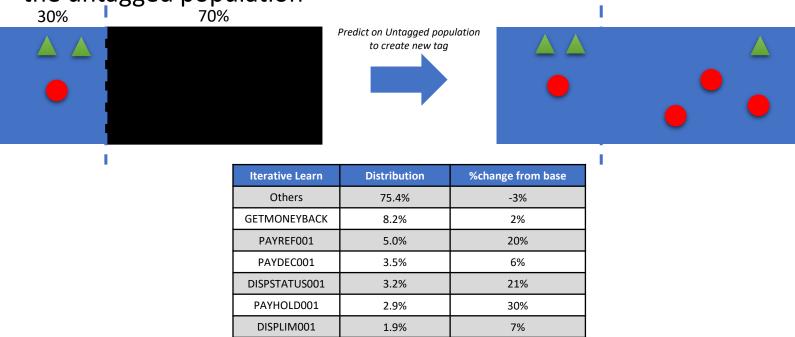
Channel Steering Use Case

11

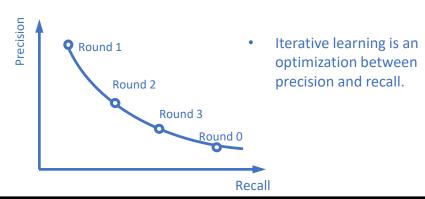
Where do we get the tags?

Iterative learning to fill gap between tagged and untagged population

 We use the tagged population to identify "look alike" population in the untagged population



Iterative learning boosts precision overall from 65% baseline to 79%



	Training Data	Precision on Tagged Population	Recall on Tagged Population	Manual Review Precision on tagged + untagged population	Manual Review Precision on untagged population
Round 0 (Baseline)	Tagged population	51%	69%	65%	45%
Round 1	Tagged population + untagged population as 'Other'	81%	29%	81%	68%
Round 2	Tagged population + round 1 prediction for untagged population	77%	33%	79%	70%
Round 3	Tagged population + round 2 prediction for untagged population	75%	36%	76%	67%

Taxonomy of Models

Retrieval based vs Generative based

- Retrieval (Easier):
 - No new text is generated
 - Repository of predefined responses with some heuristic to pick the best response
 - Heuristic could be as simple as rule-based expression or as complex as ensemble of classifiers
 - Wont be able to handle unseen cases and context
- Generative (Harder):
 - Generate new text
 - Based on MT Techniques but generalized to input sequence to output sequence
 - Quite likely to make grammatical mistakes but smarter

Challenges

- Short vs Long Conversations
 - Shorter conversations (Easier)
 - Easier and goal is usually to create single response to a single input
 - Ex: Specific question resulting in a very specific answer
 - Longer conversations (Harder)
 - Harder and often ambiguous on the intent of the user
 - Need to keep track of what has been already said and sometimes need to forget what has been already discussed

Closed vs Open Domain:

- Closed Domain (Easier):
 - Most of the customer support systems fall into this criteria
 - How do we handle new use case? Product?
- Open Domain (Harder):
 - Not relevant to our use cases

Challenges

Incorporating Context

- Longer conversations (Harder)
 - Harder and often ambiguous on the intent of the user
 - Need to keep track of what has been already said and sometimes need to forget what has been already discussed

Coherent Personality

- Closed Domain (Easier):
 - Most of the customer support systems fall into this criteria

Evaluation of models

- Subjective
- BLEU score Extensively used in MT systems

Intention and Diversity

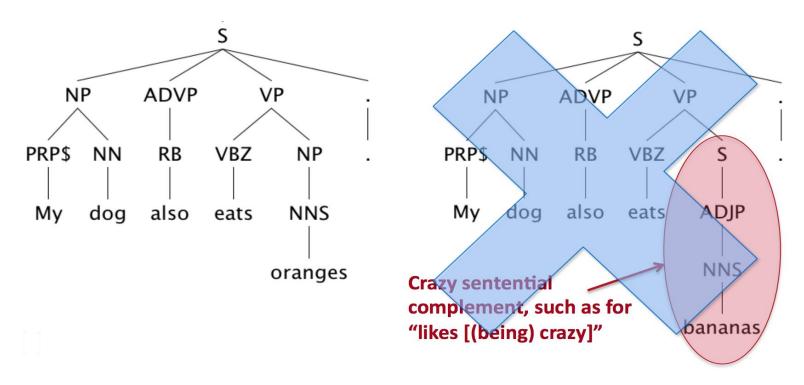
 Most common problem with Generative models is providing a generic canned response like "Great", "I don't know"..etc

Why Deep Learning? Automatic learning of features

Traditional Feature Engineering

- Time Consuming
- Most of the time over-specified (repetitive)
- Incomplete and not-exhaustive
- Domain Specific and needs to be repeated for other domains

Why Deep Learning? Generalized/Distributed Representations



- Distributed representations help NLP by representing more dimensions of similarity
 - Tackles Curse of dimensionality

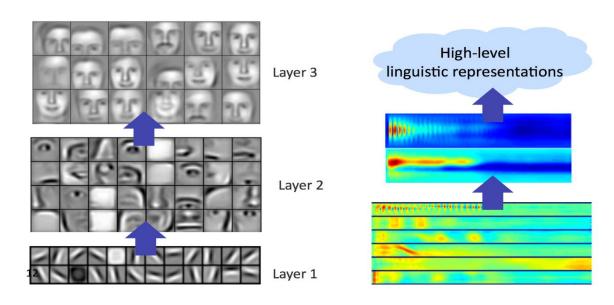
Why Deep Learning? Unsupervised feature and weight learning

 Almost all good NLP & ML methods need labeled data. But in reality most data is unlabeled

Most information must be acquired unsupervised

Why Deep Learning? Hierarchical Feature Representation

- Hierarchical feature representation
 - Biologically inspired
 - Brain has deep architecture
 - Need good intermediate representations shared across tasks
 - Human language is inherently recursive

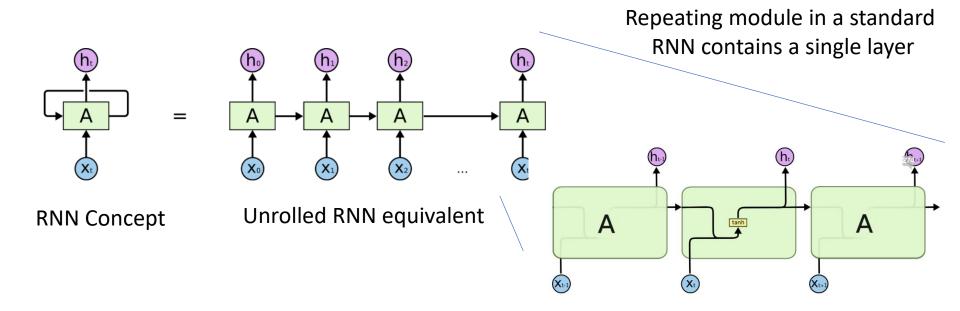


Why Deep Learning? Why now?

Why methods failed prior to 2006?

- Efficient parameter estimation methods
- Better understanding of model regularization
- New methods for unsupervised training: RBMs (Restricted Boltzmann Machines), Autoencoders..etc

RNNs

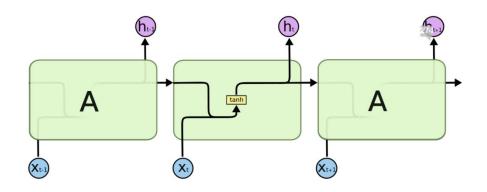


Context Matters

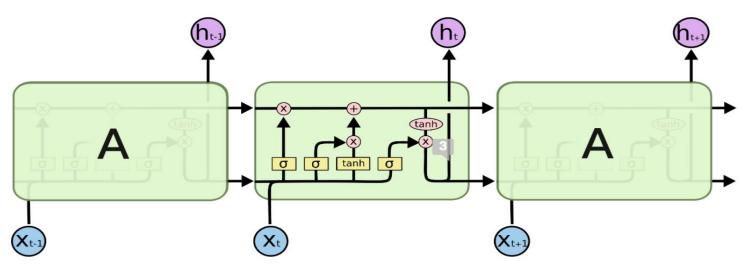
Tackle with Distributed similarity CFPB today sued the River Bank over consumer allegations

We walked along the river bank

LSTMs and GRUs

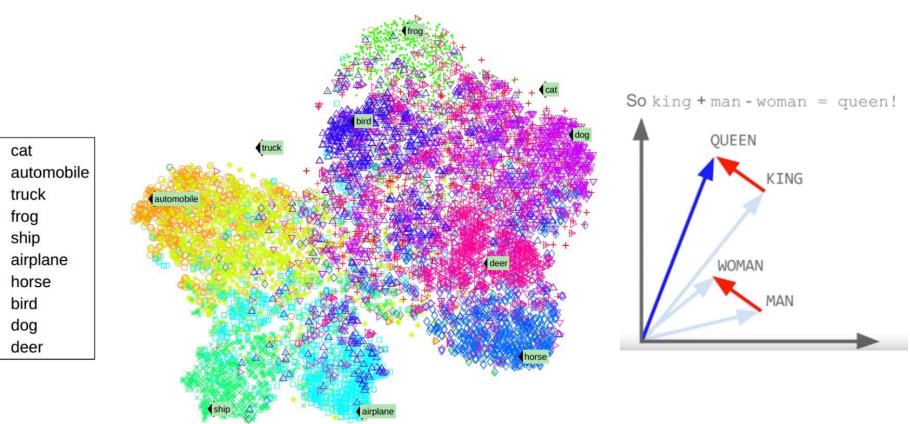


Repeating module in a standard RNN contains a single layer



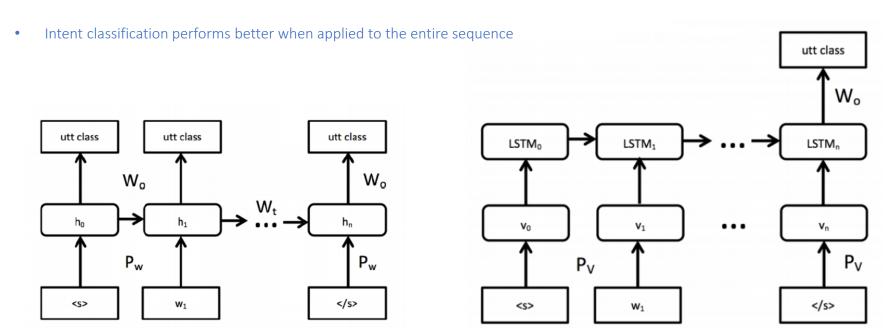
LSTM repeating module has 4 interacting layers

Leveraging Unlabeled Data Word Embedding - Word2Vec



Domain/Intent Classification

• Sequences can be either a single chat message or an entire email

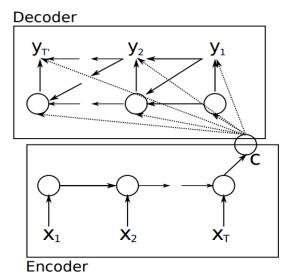


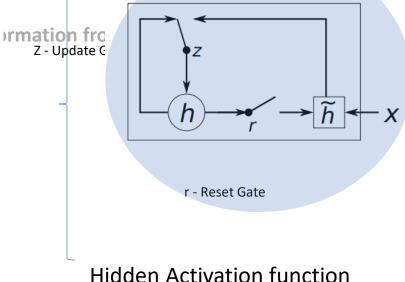
Example: Sequence to Sequence Modeling

- Learns to encode a variable length sequence into a fixed length vector representation
- Decode a given fixed-length vector representation back into a variable length sequence
- Gate functionality

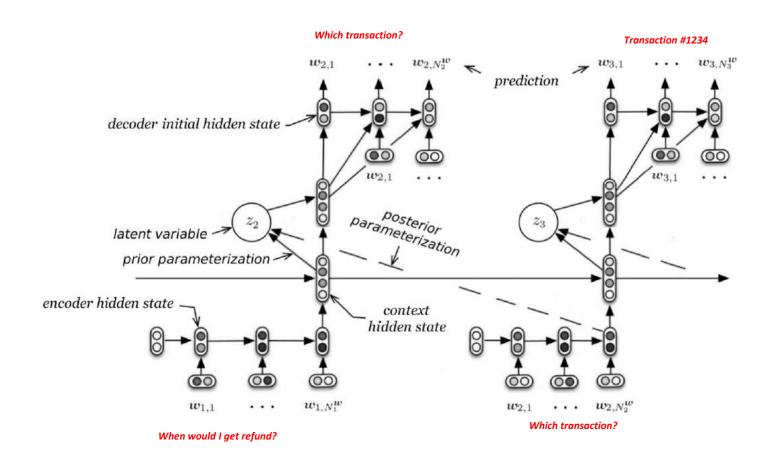
R (short term) - when reset gate is close to 0, the hidden state is forced to ignore the
previous hidden state thus dropping any information that is irrelevant and keep only
the current

• Z (long ter over acting

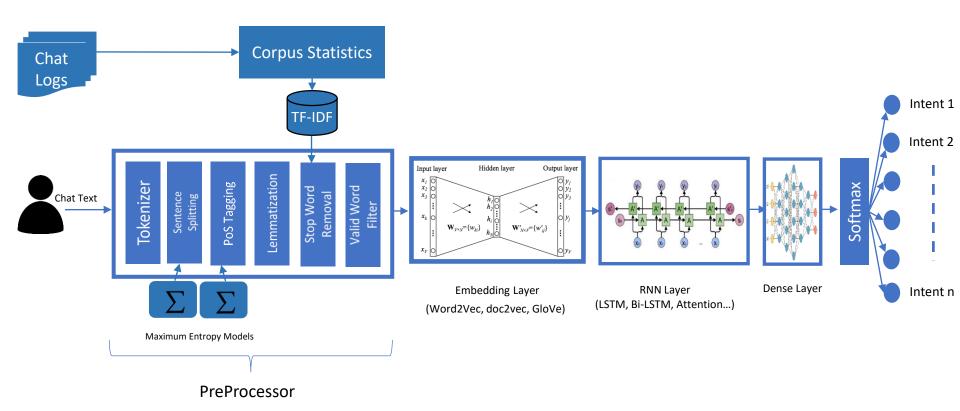




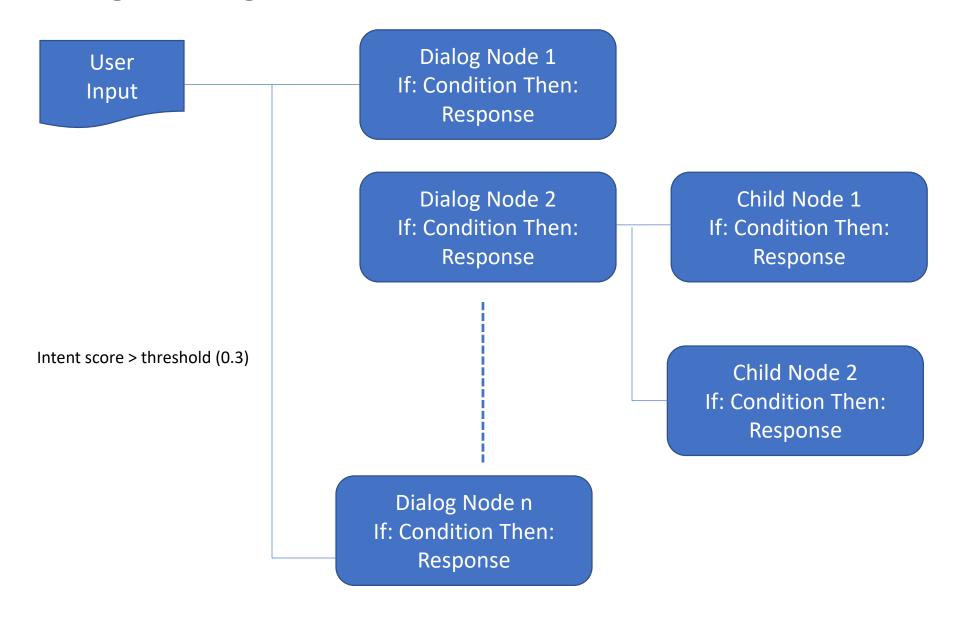
End-to-End Deep Learning



Intent Prediction Model



Dialog Management



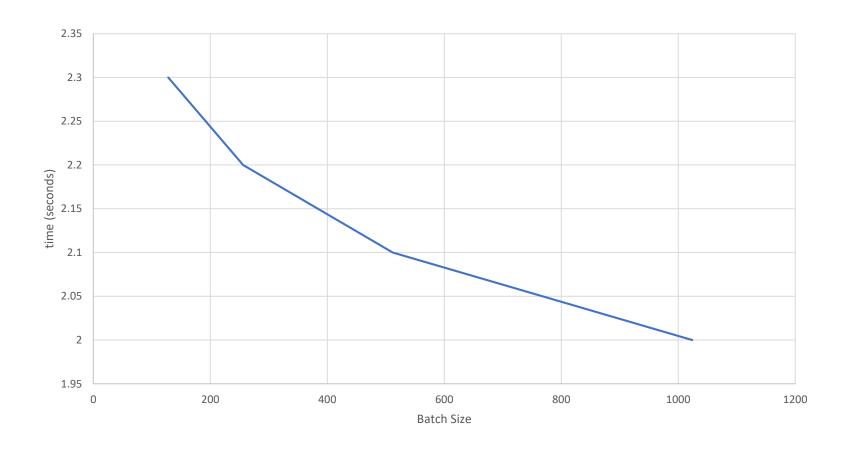
Results and Benchmarking

(NVIDIA DGX V100)

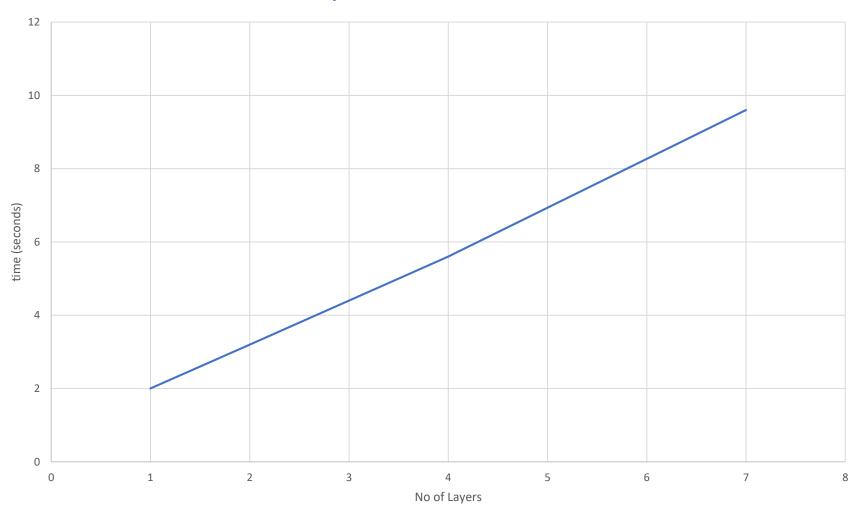
PayPal Bot vs IBM Watson

Intent	IBM Watson	LSTM	LSTM with Attention Network	Bi-Directional LSTM	Bi-Directional LSTM with Attention Network
Ask for an Agent	80.82%	91.80%	91.80%	92.50%	93.20%
End of Chat	27.27%	18.20%	9.10%	9.10%	0.00%
Greetings	88.10%	90.50%	90.50%	90.50%	90.50%
Negative Feedback	32.69%	28.80%	26.90%	32.70%	23.10%
Other	50.55%	57.10%	62.60%	62.10%	56.60%
Positive Feedback	57.14%	14.30%	28.60%	28.60%	14.30%
Refund Status	74.92%	86.10%	86.50%	84.80%	81.80%
Thank You	60.00%	90.00%	90.00%	90.00%	90.00%
Transaction/Account Details	48.68%	46.10%	40.80%	47.40%	47.40%
Overall	65.19%	71.90%	72.70%	73.00%	70.10%

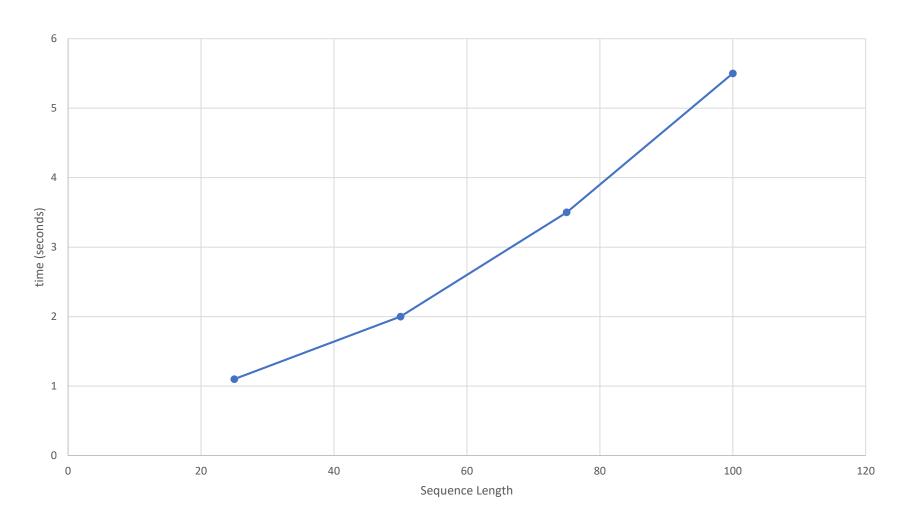
Effect of Batch Size



Effect of No of Layers

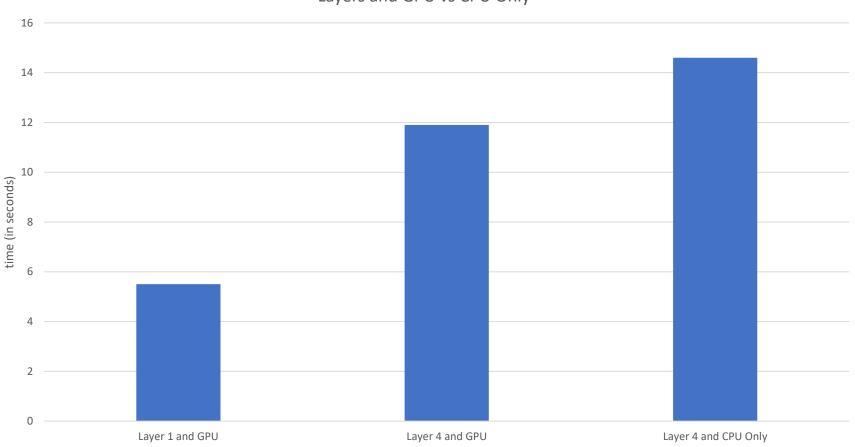


Effect of Sequence Length



Effect of Layers, CPU vs GPU

Layers and GPU vs CPU Only



Future Research

Unlabeled data augmentation

Zero Shot/One Shot/Few Shot Learning

Sequence to Sequence Modeling

Averting Social Engineering/Fraud