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Search for Extraterrestrial Intelligence (SETI)

Technological signals from space.
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e Radio band of transparency.

e Main challenges:
o Unknownsignal of interest —_ T
o Unlabeled data % % ik it
o Unbalanced data with radio =hx

frequency interference (RFI)
e Need algorithm with minimal human

supervision
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Where does RF data come from?
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Breakthrough Listen

Telescopes: Green Bank Telescope, Parkes

Telescope, MeerKat Array
Mission: 1 million stars, 100 galaxies

narrowband search.
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Breakthrough LISTEN

e Datarate: 1PB/day 1Q, 10 GHz bandwidth
e Need massively parallel hardware for data

processing

Source: [1]



GPU essential from observation to science

Compute Servers:
64 NVIDIA GPUs

~1 PB disks

Storage Servers: |

Spectrogram

Observation

Analysis




Outline

Goals of Al and 1. Core topics
Machine Learning a. Fast radio bursts

b. Blind detection
c. Representation learning
d. Predictive anomaly

2. Other topics

Detect known signal a. 1Q signal processing and
Detect unknown signal modulation classification

Characterize the data domain b. Narrowband a|gorithm

Classification
Regression/Clustering
Understanding



Preliminaries I:
Spatial Filtering

e Simultaneous or sequential
observations of multiple
areas of the sky.

e Signal in multiple areas:

o local RFI

e Signalinone area:

o potential candidate
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Preliminaries Il:
How spectrograms differ from camera images?

e Resolutions: Deep learning architecture considerations
o  (0.3ms,0.35MHz), (1s,0.3kHz), (18s,2.8Hz)
e Datashapes (5 mins, S-band): e Known signals:
o (leé, 1e4), (273, 3e5), (16, 3e8) o  Fixed size sliding window with targeted
e Information sparsity resolutions
e Large variations in signal support e Unknownsignals:

o Use energy detection to reduce sparsity
e Image pyramid
e Attention mechanisms






Fast Radio Bursts

Millisecond-duration signals of
unknown origin.

Quadratic dispersion with large
dispersion measure, suggesting
extra-galactic source.

One has been observed to repeat
(FRB121102), leading to localization
in a dwarf galaxy 3 billion light years
away.

Source: [3]
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Deep Learning
Detection

e Observation on August
26,2017

e 21 burstsoriginally
reported

e 72DLdiscovered
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Fast radio bursts are some of the most mysterious high-energy
astrophysical phenomena in the entire universe. They are intense blasts of

radio emissions that last just milliseconds in duration and are thought to
originate from distant galaxies. The exact nature of the objects is
uncertain, but they could point to extraterrestrial intelligence.
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Challenges and Solutions

e Highlyimbalanced data and few positive examples
o  Solution: Simulate positive examples and inject on infinite supply of negative examples
o Model: binary classifier on fixed size input

® Largeinputsize and information sparsity.

o  Chopinto fixed size window frame

o  Concatenation with pooling only tower (image pyramid)

o Initial datarate reduction through large filters and strides
e Reasonwhy deep learning can be effective

o High modulations and local 2-dimensional detection



Model and performance

e Residual Network (27 layers).

e Inference speed:
o  70times faster than real time on single
GTX 1080
o Depends on frequency and time
resolution of input

e Evaluation

o Ambiguous ground truth
o 93 believable out of ~300 (chosen
threshold)

e Dataand code available from:

o https://seti.berkeley.edu/frb-machine/
e Paper:arXiv 1802.03137
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https://seti.berkeley.edu/frb-machine/




Dedispersion as Convolution




Problem formulation:
1. Inject 4 types of signals on Gaussian noise with

varying signal to noise (SNR) and occurrence rates.

2. Recover the 4 signals with high fidelity.



#
#
#
#

Approach

e Map: Energy detection

e Reduce:
o  Clustering.
o Dimensionality reduction.



Map: Energy detection

e Energy detection = threshold
pixel values

e Finding patterns that do not
match noise distribution
(pixel-joint).

e Entropy computationally
forbidding

o  curse of dimensionality.




Hierarchical Clustering Dendrogram

Phase 1. i
Hierarchical i
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PCA to reduce dimensionality
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Phase 1

e Initialization
o  Map: High threshold energy detection
o  Reduce: Hierarchical clustering and PCA
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Phase 2

e Continued Learning
o Map: Energy detection
o Reduce 1: For existing templates, variance helps identify new examples
(GMM)
o  Reduce 2: DBSCAN to locate any new clusters.
e Afterinitial clustering, inject new signal, a circle of lower radius.




Are these similar?
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What does it mean to understand?

e Know the data comes from Fourier transforms of polyphase filterbank of complex voltage
captured with receiver that........

Or...

e |earndatadistribution
o  Predict masked samples
o Retrieve similar samples
o Point out anomalies
o Reduce noise on data
o  Generate new data

e Goal: develop core module usable in various scenarios



Learning Data Distribution

e Autoregressive model (e.g. PixelCNN)
o Learns likelihood of data sample P(x)=p(x1)p(x2|x1)P(x3|x1,x2)...

e Latent Variable models
o  Compress datainto compact representation.
o  Auto-encoder and its many variants.
o  Auxiliary tasks: rotation prediction, jigsaw puzzle solving, adversarial discrimination etc.
o  Latentvariable + clustering objective



Reconstruction

Convolutional encoder, fully
connected decoder.

2048 input — 64 hidden vector
length.
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Latent Space
Interpolation

Convolutional encoder, fully
connected decoder.

GMM clustering (10 clusters).




How to improve the representation?

Negative

e Clustering objectives Anehay LEARNING s
o  Potential risk of mis-clustering egative

.. . Anchor .
e Translationinvariant auto-encoder Positive Positive

o  Partial view of signals

e Semi-supervised learning

Human labels

Coarse channel (noisy labels)

Permutation of multi-frame observations Source: [6]
o  Robustness to perturbations (translation, scale etc.)

e More expressive architecture

o O O



With triplet-loss and coarse channel

Loss function Tensorboard demo Evaluation

L= Ozreconstruct-i-Bgetriplet
e Noisydata:

o lowa
e Noisy label:

o lowp




Top 5 accuracy

Evaluate top 5 candidates with 500 queries in test set of 10000

Model \ Experiment 0 added noise -10 dB (no -10 dB training
retraining)

Coarse channel 79.0%

FC (3=0) 95.6% 86%

FC (a=3B) 98.8% 86% 97.7%

Conv (a=3p) 99.8% 78% 98.9%



Data Query

Database searching and anomaly
detection { z: (img, meta)}

Dot product distance (|z|=1):

o d=1-z-z

Webapp: http://35.192.106.72/
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http://35.192.106.72/

High level
applications

e SETI search pipeline: beam comparison
e Outlier detection
e RFl environment characterization

ML/astronomy paradigm separation!

Stay tuned for publication, blog post, data and code release!
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Predictives Anomaly Detection on Spectrograms

e Detect anomalies by predicting future
observations

RFI filtering in same framework.

Time series prediction: RNN and LSTM
Spatial/frequency dimension: convolution
Challenge: noise is not predictable
Solution: introduce discriminator

Lg — log(l'D(Gfuturc))
Ld o= log(D(Gfulurc))+ log(l'D(-Tfulurc))-

Past observation

Prediction Observation

Discriminator

Real or generated?



Architecture

e Convolutional LSTM baseline

e Dual decoder
o Better representation
o  Learndatadistribution
Multiple frames at a time
Generative Adversarial Loss
o  Regulated training to counter instability

Lg = o Lgp-tuture+ L o2-past)+B Lor-feature+Lig,

Encoder

Input

x

Convolution

Conv-LSTM
Conv-LSTM

Conv-LSTM

Source: [7]
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Prediction Results

Time
Dataset:

20000 instances of 256 X 16 candidate
spectrograms.

Advantages:

High fidelity prediction

Understands discontinuity of signals
Agnostic to signal type

Self-supervised learning needs no human
labels

Source: [7]



Anomaly Detection Evaluation

Pair correspondence with top pixel coverage:
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False positives due to selection criterion, not
prediction model.
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GPU algorithms of signal search

e e.g.Massively parallel narrowband search

Other related projects

Time series (lQ) data: __global__ void sweep(float *g_idata, float *g_odata,
const int *delay_table, const int nfregs, const int ntimes, const int

ndelays) {

e Signal modulation classification It by = Dlocko . i by = blocklchea

e GNuUradio visualization and inference it sk ale s (0l g MLt 7L T
inti =bdx * bx + tx; int j = bdy * by + ty;
° Adversarial domain adapta’“on int p = INDEX(j,i,nfreqs); //j is delays, i is freqs

int delay;

__syncthreads();

/I each core computes one output pixel

for (int t=0; t<ntimes; t++) {
delay = delay_table[INDEX(t,j,ndelays)];
if (delay+i >= 0 && delay+i < nfregs){

g_odata[p] += g_idata[t*nfregs + i + delay];

}

}
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https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68

